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Introduction: Cardiovascular disease (CVD) is a major global health issue, 
contributing significantly to mortality and morbidity worldwide. The American 
Heart Association highlights primary prevention as a crucial strategy for 
mitigating the burden of CVD. This research aims to identify essential CVD 
drivers and support primary prevention efforts.
Methods: This study analyzed data on CVD incidence across 48 states in the 
United States (US) from 1991 to 2020, using data obtained from the Global Burden 
of Disease database. To investigate the spatial–temporal heterogeneity and 
drivers of CVD, we employed Global Moran’s I, hot spot analysis, GeoDetector, 
and Geographically Weighted Neural Network Weighted Regression (GTNNWR).
Results: Global Moran’s I analysis revealed significant clustering (Z-score > 2.58) 
of CVD rates across regions. The hotspot analysis identified significant clusters 
in the northeastern US. Factor detection indicated that population density, 
ambient particulate matter pollution, diet low in fruit, diet low in whole grain, diet 
high in sodium, and tobacco influenced CVD incidence. In contrast, total GDP 
was not statistically significant (p > 0.05). Interaction detection demonstrated 
that factors did not act independently, most interactions exhibited bilinear 
enhancement [q(X1, X2) > max(q(X1), q(X2))].
Conclusion: Our article reveals significant spatial clustering of CVD in the 
US, with population density, air pollution, poor dietary patterns, and smoking 
emerging as major contributors. The study provides important evidence for 
designing geographically targeted public health interventions.
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1 Introduction

Cardiovascular disease (CVD) is a leading global public health challenge, significantly 
reducing life expectancy and quality of life. The GBD 2021 study confirms the substantial 
contribution of CVD to the global disease burden, reporting approximately 19.42 million 
deaths in 2021—a 57.5% increase since 1990—and an estimated 428 million disability-adjusted 
life years (DALYs) attributable to CVD (1). In the US, CVD is a major driver of hospitalization 
and mortality, imposing heavy demands on healthcare resources and socioeconomic 
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development. Between 2019 and 2020, CVD accounted for 12% of 
total national health expenditures—more than any other major 
diagnostic group—with total direct and indirect costs reaching 
$422.3 billion ($254.3 billion in medical expenses and $168.0 billion 
in lost productivity due to premature mortality) (2).

Effective CVD control requires treatment advancements and a 
greater focus on primary prevention—reducing disease occurrence by 
controlling risk factors before onset (3). According to the GBD database 
(4), the incidence of CVD in the US has shown a long-term downward 
trend, particularly between 1995 and 2000, largely due to a series of 
preventive measures implemented by the US government. Population-
wide primary prevention has proven effective, as even small reductions 
in crucial risk factors through policy interventions can significantly 
lower CVD incidence (5, 6). For example, following the implementation 
of a comprehensive smoke-free law in New York State, the incidence of 
acute myocardial infarction declined significantly (5). Similarly, 
population-wide reductions in sodium intake have been associated with 
lower rates of CVD and decreased healthcare expenditures (6). Such 
successes emphasize that population-wide interventions can effectively 
reduce the disease burden and improve public health outcomes, 
underscoring the critical need for research on primary prevention.

Primary prevention focuses on identifying high-risk factors for 
disease onset and mitigating them to reduce disease likelihood. Recent 
research has increasingly sought to understand these risk factors, 
including the impact of air pollution on cardiovascular health (7, 8) 
and the roles of lifestyle and dietary factors in disease incidence (9). 
However, existing studies often have several limitations:

	•	 Most are small-scale epidemiological studies, leading to potential 
biases (10, 11);

	•	 They tend to focus on single or limited risk factors, failing to 
address multifactorial interactions comprehensively (12);

	•	 The spatial heterogeneity of disease distribution is not adequately 
considered (10–12).

Addressing these limitations requires an analytical approach that 
simultaneously captures spatial heterogeneity and multifactorial 
interactions to provide a more comprehensive understanding of CVD 
risk factors.

GeoDetector has become popular in spatial studies for its 
ability to assess spatial heterogeneity and multifactorial 
interactions. The factor detector evaluates each factor’s effect on 
CVD distribution, while the interaction detector explores 
interactive effects between factors (13), thereby identifying key 
driving factors that aid targeted interventions. GeoDetector has 
been employed to investigate the spatial risk of diseases, such as 
neural tube defects in Heshun Region, China (14), and the 

spatio-temporal dynamics of COVID-19 transmission (15–18), 
underscoring its utility as a methodological tool in epidemiological 
and public health research.

Recent research has increasingly employed machine learning and 
deep learning models to explore the spatial and temporal dynamics 
of CVD. For example, Kang et al. (19) proposed an explainable AI 
framework to analyze spatiotemporal risk factors of cardiovascular 
mortality in South Korea, while Dong et al. (20) utilized machine 
learning to investigate regional disparities in premature 
cardiovascular mortality across US counties. These studies underscore 
the growing interest in integrating AI-based methods into public 
health research.

However, most of these approaches rely on traditional feature 
importance rankings or black-box predictions, and few are specifically 
designed to model spatiotemporal non-stationarity—a key 
characteristic of epidemiological data. To address this gap, 
we introduce the GTNNWR model, which combines spatial weighting 
and spatiotemporal proximity through neural networks to capture 
local variations over both space and time (21).

By integrating GTNNWR with classical spatial statistics and 
GeoDetector, this study aims to: identify key drivers of CVD incidence 
across the US; assess their spatial heterogeneity; and examine 
interactive and spatiotemporally varying effects, providing a more 
comprehensive understanding of CVD determinants to inform 
geographically targeted prevention strategies.

2 Methodology

2.1 Data source

This study used age-standardized CVD incidence data (1991–
2020) and 29 influencing factors across four domains. Data sources 
include the GBD database, NOAA, and Google Earth Engine. Full 
details are listed in Table 1.

Alaska and Hawaii were excluded due to their distinct geographic 
and socioeconomic conditions, which violate the spatial continuity 
assumptions of the GeoDetector model. Their inclusion may have 
introduced bias into spatial pattern detection. The final dataset 
covered 48 contiguous US states, enabling robust assessment of 
spatiotemporal heterogeneity and key CVD drivers.

2.2 Operational definitions

To ensure clarity and consistency in terminology, this subsection 
provides concise definitions of key terms, models, and statistical 
concepts used throughout the study. Given the integration of spatial 
analysis, epidemiology, and machine learning, standardized 
definitions facilitate accurate interpretation and reproducibility.

We also summarized the operational definitions. Table 2 presents 
definitions grouped by category, including spatial statistical indicators, 
GeoDetector methodology, and components of the GTNNWR model. 
Additionally, Supplementary file 1 provides definitions of disease-
related terms, including criteria for high or low intake of various 
dietary components. These definitions serve as a reference point for 
understanding the analytical framework and results discussed in 
subsequent sections.

Abbreviations: US, United States; GTNNWR, Geographically and temporally Neural 

Network Weighted Regression; GNNWR, geographically neural network weighted 

regression; SWNN, spatial weight neural network; STPNN, spatiotemporal proximity 

neural network; NMSE, Normalized Mean Squared Error; RMSE, Root Mean Squared 

Error; MAE, Mean Absolute Error; MBE, Mean Bias Error; NRMSE, Normalized 

RMSE; NMAE, Normalized MAE; CVD, Cardiovascular disease; DALYs, disability-

adjusted life years; SDI, Socio-demographic Index; DEM, Digital Elevation Model; 

NDVI, Normalized Difference Vegetation Index; AHA, American Heart Association; 

Gi*, Getis-Ord Gi* statistic; FDA, Food and Drug Administration.
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2.3 Statistical analysis

We utilized multiple analytical methods to investigate the spatial–
temporal heterogeneity and driving factors of CVD incidence. The 
detailed analytical process is illustrated in Figure 1, which outlines the 
overall workflow of the study. The analysis begins with data 
acquisition, where 29 influencing factors are grouped into four 
categories: social factors, environmental factors, personal habits, and 
dietary categories. These variables form the basis for subsequent 
analyses. Spatial clustering patterns of CVD incidence are then 
examined using Global Moran’s I and Getis-Ord Gi*, allowing the 
identification of significant aggregation effects and localized hot spots. 
To further explore the geographic drivers behind these patterns, 
we employ GeoDetector to quantify the independent and interactive 
explanatory power of each factor, and GTNNWR to model complex, 
non-stationary spatiotemporal relationships. Together, these methods 
provide a comprehensive framework for understanding both the 
spatial distribution and underlying determinants of CVD across the 
US. The specific analytical procedures and implementation details for 
each method are presented in the subsequent sections.

2.3.1 Global Moran’s I
We applied Global Moran’s I to evaluate the overall spatial 

autocorrelation of CVD incidence. Spatial autocorrelation measures 
the degree to which values at geographically proximate locations 
resemble one another. A positive Moran’s I (values > 0) suggests that 
areas with high (or low) CVD incidence are near other areas with 
similarly high (or low) values, indicating clustering. Conversely, a 
negative Moran’s I (values < 0) implies a spatially dispersed pattern, 

where high and low values are interspersed. A Moran’s I close to zero 
reflects a random spatial distribution. In this study, a Z-score > 2.58 
was considered statistically significant, denoting strong spatial 
clustering of CVD incidence.

2.3.2 Getis-Ord Gi*
To identify localized clusters of high or low CVD burden, 

we employed the Getis-Ord Gi* statistic. Unlike Global Moran’s I, 
which provides an overall measure, Gi* identifies specific spatial units 
that contribute to clustering. For each unit, a z-score is computed 
based on both its value and those of its neighbors. Units with 
significantly high z-scores and neighboring high values are classified 
as “hot spots,” while those with significantly low values are labeled 
“cold spots.” This approach allowed us to detect regional concentrations 
of CVD incidence that may warrant focused public health attention.

2.3.3 GeoDetector
GeoDetector was used to assess spatial stratified heterogeneity 

and evaluate individual factors’ independent effects and interactions. 
The method quantifies the explanatory power of each factor using a 
q-statistic, with higher values indicating stronger associations with the 
dependent variable. Interaction types—such as bilinear enhancement, 
nonlinear enhancement, or weakening—were determined by 
comparing the q-values of individual factors and their combinations. 
Specific rules for classifying interaction types are summarized in 
Table  3, following the standard GeoDetector framework. The 
GeoDetector model was implemented using the “GD” package in R 
4.3.2 or higher. The input data were continuous type variables, and 
we discretized the data using various classification methods (equal 

TABLE 1  Influential factors affecting CVD rates in the US.

Factor Data source Collection period

cardiovascular disease incidence Institute for Health Metrics and 

Evaluation. GBD Results Tool. 

Available from: http://ghdx.

healthdata.org/gbd-results-tool. 

Accessed 1 Aug 2024

1991–2020

Population density, SDI, GDP, Person income, Ambient ozone pollution, Ambient particulate matter 

pollution, Household air pollution from solid fuels, Nitrogen dioxide pollutionDiet Low in Omega-6 

Polyunsaturated Fatty Acids, Diet high in processed meat, Diet high in red meat, Diet high in sodium, 

Diet high in sugar-sweetened beverages, Diet high in trans fatty acids, Diet low in fiber, Diet low in 

fruits, Diet low in legumes, Diet low in nuts and seeds, Diet low in seafood omega-3 fatty acids, Diet 

low in vegetables, Diet low in whole grains, Dietary risks, High alcohol use, Low physical activity, 

Tobacco,

Institute for Health Metrics and 

Evaluation. GBD Results Tool. 

Available from: http://ghdx.

healthdata.org/gbd-results-tool. 

Accessed 1 Aug 2024

1991–2020

Temperature, precipitation National Oceanic and Atmospheric 

Administration. Available from: 

https://www.noaa.gov. Accessed 1 

Aug 2024.

1991–2020

DEM SRTMDEM 90 m. Google Earth 

Engine. Available from: https://code.

earthengine.google.com/. Accessed 1 

Aug 2024.

1991–2020

NDVI MODIS MYD13A2. Google Earth 

Engine. Available from: https://code.

earthengine.google.com/. Accessed 1 

Aug 2024.

1991–2020
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interval, geometric interval, natural breaks, quantile) and determined 
the optimal method by comparing the results. The final discretization 
classification details are provided in Supplementary file 2.

2.3.4 GTNNWR
Geographically Weighted Neural Network Weighted Regression 

(GTNNWR) is designed to model spatiotemporal non-stationary 
relationships, addressing variations in spatial feature relationships 

caused by changes in spatiotemporal structures. To tackle 
spatiotemporal non-stationarity, the model incorporates 
spatiotemporal distance into the geographically neural network 
weighted regression (GNNWR) framework and introduces a 
spatiotemporal proximity neural network (STPNN) for precise 
spatiotemporal distance calculations. Integrating STPNN with the 
spatial weight neural network (SWNN) within the GTNNWR model 
computes a spatiotemporal non-stationary weight matrix, enabling a 

TABLE 2  Operational definitions of key terms used in this study.

Category Term Definition

Disease & Database CVD All cardiovascular conditions included in the GBD database, such as ischemic heart disease, stroke, and hypertensive heart 

disease.

GBD Database A global health database by IHME providing standardized estimates of disease incidence, mortality, and risk factors across 

time and regions.

Spatial Statistics Global Moran’s I A measure of spatial autocorrelation (range: −1 to +1), indicating clustering of similar values across space.

Z-score Standardized value used to assess the significance of clustering. Z > 2.58 denotes significance at the 99% confidence level.

Getis-Ord Gi* A spatial statistic identifying “hot spots” and “cold spots” based on local clusters of high or low values and their neighbors.

Hot Spot/ Cold 

Spot

Areas with significantly high (hot) or low (cold) CVD incidence identified via Gi* analysis.

GeoDetector Method GeoDetector A spatial analysis method that detects spatial stratified heterogeneity and quantifies explanatory power of independent 

variables.

q-statistic A value between 0 and 1 quantifying the explanatory power of a variable. Higher values indicate stronger influence on the 

dependent variable.

Discretization The transformation of continuous variables into categorical bins before GeoDetector analysis (e.g., equal interval, quantile, 

natural breaks).

Deep Learning 

Models

GTNNWR A neural network model capturing spatiotemporal non-stationarity by combining spatial and temporal weighting 

mechanisms.

GNNWR A predecessor of GTNNWR, focusing only on spatial non-stationarity using neural networks.

STPNN A neural module within GTNNWR that computes spatiotemporal distances and generates temporal weights.

SWNN A neural module within GTNNWR that computes spatial weights based on geographic proximity and feature similarity.

FIGURE 1

Analytical framework for exploring the spatial–temporal heterogeneity and drivers of CVD incidence.
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more accurate representation of spatiotemporal non-stationary 
relationships (21). Our study utilized Python 3.11 or higher to 
construct the GNNWR model (https://github.com/zjuwss/gnnwr). 
The model’s specific parameters are detailed in Table  4. We  have 
included a schematic diagram illustrating the working principle of 
GTNNWR in Figure 2. This diagram illustrates the workflow of the 
modified GTNNWR model applied to identify and quantify the 
spatiotemporal driving factors of CVD incidence across the US.

First, for each estimation point (pᵢ; representing a specific state 
and year), the dataset is duplicated to construct a comparison set 
including all training samples. The spatiotemporal distances—
including spatial distance (dˢ), temporal distance (dᵗ), and their 
combined effect (dˢᵗ)—are calculated between pᵢ and each training 
sample. These distances are then passed through a Spatiotemporal 
Specific Neural Network, which learns a nonlinear transformation to 
generate instance-specific weights that reflect the proximity of each 
training sample to the estimated point in both space and time. These 
learned weights capture the heterogeneity and non-stationarity of 
relationships between risk factors and CVD incidence. The weighted 
distances are fed into the Weighted OLR (Ordinary Linear Regression) 
component. Here, instance-specific weights are used to perform 
localized regression, where the influence of each explanatory variable 
(e.g., PM₂.₅ concentration, dietary sodium intake, smoking prevalence, 
and population density) on CVD incidence is estimated individually 
for each location-time pair. This allows the model to derive adaptive 
and interpretable coefficients (βᵢ) that vary across both space and time. 
The final output is an estimated value (ŷᵢ), representing the predicted 
CVD incidence for the point pᵢ, which fully accounts for the dynamic 
influence of risk factors in different spatiotemporal contexts.

We adopted a hold-out validation strategy to evaluate the 
GTNNWR model’s performance. Specifically, the dataset was 
randomly split into 75% training, 10% validation, and 15% testing sets 
using a fixed random seed (seed = 48) to ensure reproducibility. The 
model was trained on the training set, its hyperparameters were tuned 

and early stopping monitored on the validation set, and final 
performance was assessed on the independent test set. We did not use 
k-fold cross-validation due to the high computational cost of graph 
construction and spatiotemporal weighting in the 
GTNNWR architecture.

The GTNNWR model was trained using the Normalized Mean 
Squared Error (NMSE) loss function. NMSE penalizes large deviations 
more heavily and is well suited for continuous regression tasks such 
as spatial prediction of CVD incidence. This choice ensures sensitivity 
to outliers and enables stable gradient behavior during optimization.

This architecture allows the model to overcome the limitations of 
global regression by learning localized patterns, which is particularly 
important in understanding how CVD determinants vary across 
different states and periods in response to changing environments and 
public health policies.

3 Results

3.1 Spatial distribution of CVD in the US

Figure 3 shows the cumulative incidence of CVD over the full 
study period (1991–2020), further highlighting persistent regional 
disparities. States in the Midwest, South, and Northeast—including 
Ohio, Pennsylvania, West Virginia, and Mississippi—exhibited the 
highest cumulative incidence levels (>814‱). In contrast, much of 
the West and Upper Midwest, including states such as Colorado, Utah, 
and North Dakota, maintained comparatively low rates (<682‱). 
This long-term pattern suggests a stable east–west gradient in CVD 
burden, potentially shaped by persistent differences in socioeconomic 
status, health behaviors, access to care, and environmental exposures.

Figure  4 illustrates the spatial distribution of CVD incidence 
across the contiguous US from 1991 to 2020, segmented into six five-
year intervals. A clear temporal trend of geographic redistribution is 
observed. In the early 1990s (1991–1995), high-incidence areas 
(≥90‱)were concentrated in the eastern and southeastern states, 
particularly in New York, Kentucky, and Louisiana. Over time, these 
high-risk areas gradually shrank, and by 2016–2020, much of the 
country—especially the western and northern states—fell into the 
lower incidence categories (<70‱), suggesting an overall decline in 
disease burden and a weakening of spatial clustering.

Together, these spatial patterns underscore the need for regionally 
targeted interventions. While national-level prevention strategies have 
contributed to a general decline in CVD incidence, the persistence of 
high-burden clusters in specific states highlights the importance of 
localized public health responses tailored to regional characteristics.

3.2 Spatial analysis of CVD incidence using 
Moran’s I and Getis-Ord Gi*

Global Moran’s I was used to analyze the spatial agglomeration 
characteristics of CVD incidence data from 1991 to 2020, grouped by 
five-year intervals. Moran’s I results demonstrated significant spatial 
clustering across all groups (Z > 2.58), rejecting the null hypothesis 
(H0) of random spatial distribution for CVD incidence (Table 5). The 
annual Moran’s I values followed an n-shaped trend, peaking in 2002 
(Figure 5).

TABLE 4  Model parameter.

Parameter Value

Architecture [[3], [512, 256, 64]]

Drop Out 0.4

Optimizer Adadelta

Optimizer Scheduler MultiStepLR

Scheduler Milestones [1,000,2000,3,000,4,000]

Scheduler Gamma 0.8

Epochs 15,000

Log Interval 1,000

TABLE 3  Interaction detection meaning.

Formula Interaction

q(X1, X2) < Min(q(X1),q(X2)) Weaken, nonlinear

Min(q(X1),q(X2)) < q(X1, X2) < Max(q(X1),q(X2)) Weaken, unilateral

q(X1, X2) > Max(q(X1),q(X2)) Enhance, bilinear

q(X1, X2) = q(X1) + q(X2) Independent

q(X1, X2) > q(X1) + q(X2) Enhance, nonlinear
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Figure 6 presents the spatial clustering of CVD incidence across 
the contiguous US, as identified by Getis-Ord Gi* analysis. Over the 
entire study period (1991–2020), a clear east–west contrast is evident. 
Statistically significant hot spots (areas with consistently high CVD 
incidence) were concentrated in the northeastern and central 

Appalachian states, including West Virginia, Ohio, Pennsylvania, 
Kentucky, and Maryland—many of which reached the 99% confidence 
level. In contrast, cold spots (areas with significantly low incidence) 
were primarily located in the northwestern and central mountain 
states, such as Colorado, Montana, and North Dakota.

FIGURE 2

Framework of the modified GTNNWR model for CVD risk factor estimation.

FIGURE 3

Spatial distribution of CVD incidence (1991–2020).
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Figure 7 further illustrates the temporal evolution of CVD hot and 
cold spots across six five-year intervals. Throughout the entire period, 
hot spots remained remarkably stable, persistently occupying the 
northeastern and Midwestern regions. Notably, the core cluster—
comprising Ohio, West Virginia, and Pennsylvania—maintained 99% 
confidence levels across all time windows, indicating long-term 
structural determinants of elevated risk in these regions. Meanwhile, 
cold spots in the western US, particularly in Colorado and 
surrounding states, also remained stable, suggesting persistent 
environmental or behavioral protective factors.

The spatial persistence of these clusters suggests entrenched 
geographic health disparities. The northeastern hot spot belt may 
be associated with a combination of aging populations, socioeconomic 
disadvantage, poor dietary habits, and high smoking prevalence, while 
the cold spots in the western and northern states may reflect healthier 
lifestyles, better access to preventive care, or more favorable 
environmental exposures.

These results underscore the importance of geographically 
targeted public health strategies. Interventions should prioritize high-
incidence areas with tailored approaches that account for persistent 
local risk profiles.

3.3 Identification of key driving factors of 
CVD incidence

Factor detection analysis using the GeoDetector model identified 
significant driving factors for CVD incidence (p < 0.05; 
Supplementary file 3). Population density, ambient particulate matter 
pollution, diet low in fruits and diet low in whole grain, diet high in 
sodium, and tobacco, exhibited high explanatory power across 
multiple periods. In contrast, economic factors such as GDP did not 
significantly influence CVD incidence, and their effects varied over 
time. The q-value in GeoDetector quantifies the explanatory power 
of each factor, with values closer to 1 indicating greater explanatory 
strength. Based on the q-values, with higher values indicating greater 
importance, we used red to highlight the most influential factor and 
blue to indicate the least influential factor in each five-year period. As 
shown in Figure 8, population density, ambient particulate matter 
pollution, and dietary risks—such as low intake of fruits and whole 
grains—were consistently among the most influential factors across 
multiple periods. In contrast, macroeconomic indicators such as 
GDP and environmental variables like precipitation were often 
among the least influential. This pattern suggests a stable and 
persistent influence of behavioral and environmental risks on CVD 

FIGURE 4

Temporal changes in the spatial distribution of CVD incidence in the US (1991–2020, 5-year intervals).

TABLE 5  Moran’s I on a five-year scale.

Year Moran index Z

1991–1995 0.1926 5.2160

1996–2000 0.1995 5.3771

2001–2005 0.2001 5.3858

2006–2010 0.1920 5.1798

2011–2015 0.1764 4.8013

2016–2020 0.1642 4.5124
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incidence, while socioeconomic factors showed weaker or 
inconsistent associations over time.

In addition to the 5-year interval analysis, the overall factor 
detection results for the full 1991–2020 period are shown in 
Figure  9. The ranking pattern remains broadly consistent, with 
population density, trans fatty acid intake, and sodium-rich diets 
among the strongest explanatory variables. Notably, DEM 

(elevation) emerged as the most influential factor overall, while 
nitrogen dioxide pollution showed the weakest explanatory power. 
This suggests that over longer time spans, objective environmental 
conditions may exert a measurable influence on CVD incidence. 
However, the extended period from 1991 to 2020 may obscure some 
short-term or transient factors that also contribute to 
disease patterns.

FIGURE 5

Moran’s I on a one-year scale. The value of Moran’s I show an n-shaped curve, which has gradually decreased since 2002.

FIGURE 6

Hotspot analysis of CVD incidence in the US (1991–2020).
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Interaction results between key risk factors, grouped in five-year 
intervals, are summarized in Supplementary file 4, where each 
pairwise interaction type was classified according to the criteria 

described in Table 3. To facilitate interpretation, we also visualized the 
interaction strengths in Figure 10 in each five-year period. In these 
figures, the diagonal elements represent the individual explanatory 

FIGURE 7

Temporal changes in the hotspot analysis of CVD incidence in the US (1991–2020, 5-year intervals).

FIGURE 8

GeoDetector single-factor analysis of CVD incidence in the US (1991–2020).
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power of each factor (q(X₁), q(X₂)), while the off-diagonal cells show 
the joint explanatory power of each factor pair (q(X₁, X₂)). Darker 
colors indicate larger values. Based on the thresholds provided in 
Table 3, the nature of each interaction can be inferred. In addition, 
Figure 11 displays the interaction results for the entire study period, 
providing a comprehensive overview of long-term factor interactions.

According to our analysis, whether in five-year intervals or across 
the entire study period, most interactions among the critical factors 
exhibit bilinear enhancement, suggesting synergistic but additive 
effects between paired variables.

3.3.1 Sensitivity analysis of the GeoDetector 
model

To evaluate the robustness of the GeoDetector model, 
we conducted a sensitivity analysis by introducing a 10% random 
perturbation to each of the 29 independent variables. For each 
perturbed dataset, we recalculated the corresponding q-values and 
assessed the relative change compared to the original results. A smaller 
change indicates greater model stability.

The results of the sensitivity analysis are presented in Table 6. The 
analysis revealed that the average relative variation in q-values was 

FIGURE 9

GeoDetector single-factor analysis results across the entire period.

FIGURE 10

GeoDetector interaction analysis of CVD incidence in the US (1991–2020).
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6.879%, which is below the 10% threshold commonly used in 
sensitivity assessments. This suggests that the GeoDetector model 
demonstrates strong robustness and reliability in the presence of 
minor data fluctuations, thereby supporting the credibility of the 
factor detection results.

3.4 Analysis of key influencing factors on 
CVD incidence using GTNNWR model

3.4.1 Quantitative assessment of GTNNWR 
performance

As illustrated in Table  7, the GTNNWR model demonstrates 
excellent fitting capability and robust generalization in predicting CVD 
incidence. It achieves a training R2 of 0.9054, indicating that 90.54% of 
the variance in CVD incidence can be explained by the input variables 
on the training set. The validation R2 of 0.9133 confirms strong 
predictive performance on unseen data, with no signs of overfitting. In 
terms of absolute error, the model yields a Root Mean Squared Error 
(RMSE) of 14.41 and a Mean Absolute Error (MAE) of 10.10, suggesting 
that the predictions closely match the actual values. The Mean Bias Error 
(MBE) of 1.69 implies minimal systematic over- or underestimation, 
further supporting the model’s accuracy. The normalized metrics—
Normalized RMSE (NRMSE) of 0.0153 and Normalized MAE (NMAE) 
of 0.0107—are both below 2%, which highlights the model’s robust 
relative performance across different spatial and temporal scales. 
Additionally, the NMSE loss values of 0.0022 on the training set and 

0.0019 on the validation set indicate extremely low error during the 
learning process, reflecting the model’s strong optimization and 
convergence behavior. In summary, the GTNNWR model performs 
with high accuracy, low bias, and excellent stability in capturing the 
spatiotemporal non-stationarity of CVD incidence. These results suggest 
it is a reliable tool for dynamically identifying and modeling region-
specific public health risk factors. For clarity, definitions of all 
quantitative metrics related to GTNNWR performance are provided in 
Supplementary file 1.

3.4.2 Key influencing factors identified by 
GTNNWR

Figure 12 highlights a subset of influencing factors that showed 
either consistently strong associations or substantial temporal 
variation in their impact on CVD incidence. Dietary risk factors such 
as low intake of whole grains, legumes, and fruits, as well as diet in 
high sodium, were among the most influential contributors. Tobacco 
use and nitrogen dioxide pollution also exhibited a consistently high 
impact across the entire study period. Notably, the influence of legume 
intake increased markedly after 2005, while the explanatory power of 
whole grain intake gradually declined after 1990. In contrast, GDP 
maintained a consistently low impact throughout. These trends 
underscore the importance of diet and behavioral factors in shaping 
CVD risk and reflect the model’s ability to capture nuanced, time-
sensitive patterns in disease determinants. To ensure transparency, 
we have included the full set of visualizations covering all influencing 
factors in Supplementary file 5.

FIGURE 11

GeoDetector interaction results across the entire period.
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4 Discussion

CVD represents a pressing public health challenge, with 
increasing research dedicated to uncovering its risk factors. 
Traditional analytical approaches often focus on single variables or 
constrained geographic regions, limiting a comprehensive 
understanding of CVD’s multifactorial and spatially diverse nature. 
Unlike conventional models, GeoDetector is unaffected by 
multicollinearity among multiple variables (22). Instead, it analyzes 
the combined effects of various factors on CVD through spatial 
stratified heterogeneity and allows for analysis across different 
periods. Our findings underscore critical influences on CVD 
incidence, including population density, particulate pollution, and 
dietary patterns. This study offers a valuable framework for targeted 
and effective public health interventions by pinpointing high-risk 
areas and significant contributing factors.

Previous studies have extensively examined CVD is influenced 
by a combination of multiple factors. Pope et al. established a strong 

association between long-term exposure to air pollutants, especially 
PM2.5 and NO₂, and increased CVD mortality (23, 24). Franklin 
et  al. clarified three specific mechanisms linking particulate 
pollution to CVD (25). Additionally, diet high in high, diet low in 
whole grain, and diet low in fruit have been highlighted as 
significant contributors to diet-related mortality and disability-
adjusted life years (DALYs) (26). Our study revealed patterns that 
are consistent with previous findings while also providing new 
insights through GeoDetector analysis. Although smoking has 
traditionally been a prominent CVD risk factor, our results showed 
a decreased influence from 2016 to 2020, potentially reflecting the 
effectiveness of tobacco control measures (27). Furthermore, red 
and processed meat consumption was associated with higher CVD 
risk, suggesting that substituting these with plant-based foods or 
dairy could reduce this risk (28, 29).

The findings of our study, as revealed by GeoDetector, indicate 
that regional per capita GDP showed no statistically significant 
influence on the incidence of CVD (p > 0.05). This may be explained 
by the economic context of the US. Spiteri and von Brockdorff 
(2019) proposed an n-shaped relationship between economic growth 
and cardiovascular mortality, with mortality increasing during early 
economic development and declining after reaching a peak income 
threshold—estimated between $14,819 and $20,447 per capita (30). 
As the US far exceeds this threshold, additional economic growth at 
the macro level may not directly translate to reductions in CVD 
burden. It is important to note that while per capita GDP reflects the 
overall economic output of a region, it does not capture disparities 
in individual living standards. In contrast, personal income provides 
a more accurate representation of individuals’ access to resources 
such as nutritious food, clean housing, and healthcare. Biggs et al. 
(2010) found that the relationship between income and health 
within a country is heavily influenced by inequality and poverty 
(31). When inequality and poverty decrease, the positive effect of 
rising personal income on health outcomes becomes more 
pronounced—likely due to improved access to healthcare services. 
These insights underscore the importance of focusing interventions 
on low-income and marginalized populations, even in 
high-GDP settings.

While temperature and precipitation did not significantly affect 
CVD in five-year intervals, existing research suggests that extreme 
weather events, such as heat waves, could impact CVD outcomes in 
the short term (32, 33). This study’s large temporal and spatial scale 
may mask these short-term effects. Factors such as low physical 

TABLE 6  The results of the sensitivity analysis.

Variable ∆q/q

population_density 0.0268

Dem 0.0001

temperature 0.0647

precipitation/mm 0.0059

NDVI 0.0153

SDI 0.1572

Ambient ozone pollution 0.2022

Ambient particulate matter pollution 0.1176

Household air pollution from solid fuels 0.0442

Nitrogen dioxide pollution 0.0860

GDP 0.1353

personal income 0.2436

Diet Low in Omega-6 Polyunsaturated Fatty Acids 0.0420

Diet high in processed meat 0.0431

Diet high in red meat 0.0175

Diet high in sodium 0.0603

Diet high in sugar-sweetened beverages 0.0054

Diet high in trans fatty acids 0.0027

Diet low in fiber 0.0697

Diet low in fruits 0.0717

Diet low in legumes 0.0689

Diet low in nuts and seeds 0.0463

Diet low in seafood omega-3 fatty acids 0.0785

Diet low in vegetables 0.0496

Diet low in whole grains 0.0267

Dietary risks 0.1015

High alcohol use 0.1591

Low physical activity 0.0309

Tobacco 0.0222

TABLE 7  GTNNWR model evaluation metrics.

Metric Value

Train NMSE Loss 0.0022

Train R2 0.9054

Valid NMSE Loss 0.0019

Valid R2 0.9133

RMSE 14.4063

MAE 10.1049

MBE 1.6899

NRMSE 0.0153

NMAE 0.0107
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activity and insufficient intake of nuts and legumes have recently 
emerged as significant contributors to CVD, highlighting the need 
for dynamic and adaptable prevention strategies that evolve with 
emerging risk factors.

Using Global Moran’s I and Getis-Ord Gi* statistics, we observed 
significant spatial clustering of CVD incidence across the 
US. Additionally, the annual Moran’s I index revealed that the degree 
of aggregation peaked in 2002, followed by a decline. While this shift 
likely reflects major policy interventions—such as the Clean Air Act’s 
reductions in ambient particulate pollution and successive AHA 
health-promotion goals targeting tobacco use and dietary sodium 
(27, 34)—it also coincides with advances in clinical care. The 
widespread adoption of statin therapy beginning in the late 1990s has 
been shown to lower population cholesterol levels and reduce 
coronary events (Ford et  al. 2007) (35). At the same time, 
improvements in hypertension management and expanded use of 
antihypertensive medications have further driven down CVD risk 
(Go et al. 2014) (36). Enhanced emergency response systems and 
greater availability of reperfusion therapies (e.g., PCI and 
thrombolytics) have also contributed to reduced morbidity and 
mortality. While these factors may collectively explain the observed 
post-2002 decline, the relative contributions of each—and the 
potential role of additional, unexamined influences—warrant 
further investigation.

Our hotspot analysis identified a persistent and statistically 
significant concentration of CVD incidence in the Northeastern US, 
particularly in New York, Pennsylvania, Ohio, and West Virginia, 
which consistently appeared as 99% confidence hotspots from 1991 
to 2020. These areas feature high population density and urbanization, 
often linked to greater exposure to pollutants such as nitrogen 
dioxide and particulate matter, as well as heightened psychosocial 
stress—established risk factors for CVD (23, 24, 37, 38). 
Socioeconomic disparities, including income inequality and housing 

instability, may further limit access to healthy food, healthcare, and 
safe environments, contributing to chronic inflammation and 
endothelial dysfunction (38). While the spatial pattern remained 
largely stable, fluctuations were noted: Washington was a cold spot 
during 1991–2000 but not afterward, and Tennessee and Arkansas 
showed hotspot characteristics between 1996 and 2005. These 
changes suggest that short-term policy or behavioral shifts may 
temporarily modulate CVD risk.

The results between GeoDetector and GTNNWR are broadly 
consistent. The low intake of whole grains and tobacco has been 
identified as a significant factor influencing CVD. Dietary factors 
have also become increasingly crucial in CVD incidence, and GDP is 
insignificant in either model. The influence of low legume intake has 
shown substantial variation, transitioning from a minor impact on 
CVD incidence to becoming the primary influencing factor between 
2010 and 2015 before declining again. This fluctuation may be related 
to recommendations and policies from the US Food and Drug 
Administration (FDA). In 1999, the FDA approved a health claim 
linking soy protein to reduced coronary heart disease (CHD) risk 
based on significant scientific consensus. However, in 2007, the FDA 
announced plans to re-evaluate the evidence for this claim, and in 
2017, citing insufficient scientific consensus, proposed revoking it 
(39). In most epidemiologic studies, dietary intake is merely an 
estimate or subjective value. Studies that do not directly measure the 
concentration or amount of this variable in blood or specific tissues 
or do not explicitly exclude the effects of other caloric substitutes 
have results that warrant careful consideration, as they may introduce 
misclassification. Additionally, many dietary factors only influence 
CVD when intake reaches a certain threshold, below which 
socioeconomic or other factors may introduce bias (39, 40). This 
study’s data, sourced from the GBD database, may also face similar 
limitations, highlighting the need for more precise and detailed 
original data to evaluate soy’s impact on CVD better.

FIGURE 12

GTNNWR results of selected influencing factors.
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Despite their overall consistency, slight differences were observed 
between the results of the two models. These differences may 
be  attributed to the models’ distinct analytical approaches and 
temporal characteristics. The GTNNWR model is adept at capturing 
localized spatiotemporal effects and identifying spatial variation, while 
GeoDetector excels in assessing the spatial explanatory power of 
variables through variance analysis, particularly for factors with 
spatial heterogeneity. Additionally, temporal misalignment between 
the models could play a role, as some factors, such as prolonged 
exposure to certain conditions, require time to impact CVD 
significantly. In contrast, others, like short-term elevated temperatures 
or air pollution, can have immediate effects (33, 41).

5 Limitations

While this study provides valuable insights into the spatial–
temporal heterogeneity and driving factors of CVD incidence, several 
limitations must be acknowledged.

First, limitations in data granularity and collection procedures 
may have influenced our findings. Our analysis relies on state-level 
data, which may overlook important variations at finer geographic 
scales—such as counties, cities, or neighborhoods—thereby 
potentially masking localized patterns in CVD incidence. This 
highlights the need for future research to incorporate more granular 
data, such as county-level health records or electronic medical data, 
to enable more targeted disease prevention efforts. Additionally, given 
the scale and complexity of GBD data collection and the involvement 
of numerous contributors, some degree of epidemiological uncertainty 
may arise from underlying assumptions or inconsistencies in 
data reporting.

Second, methodological limitations should be considered. The 
GeoDetector model requires data discretization, where variables are 
grouped into categories before analysis. While this approach helps 
assess factor influence, it may introduce classification bias, as different 
discretization methods can yield slightly different results. Although 
we applied multiple classification techniques to minimize this effect, 
the inherent variability remains. Similarly, the GTNNWR model, 
while effective in capturing spatial–temporal dependencies, requires 
careful parameter tuning to avoid overfitting or underfitting, which 
may affect the generalizability of results. Future studies could integrate 
alternative machine learning models, such as random forest or deep 
learning, to enhance robustness and predictive accuracy.

Third, the absence of certain health and socioeconomic indicators 
may limit the explanatory power of our models. While this study 
includes a diverse range of environmental, behavioral, and 
demographic variables, the lack of individual-level clinical data, 
healthcare access metrics, and genetic predisposition factors could 
lead to an incomplete understanding of CVD risk. Future research 
should incorporate multilevel data sources, including individual and 
community-level health records, to provide a more comprehensive 
picture of CVD determinants.

Finally, due to the potential impact of the COVID-19 pandemic 
on disease surveillance and healthcare systems, we excluded 2021 
data. However, to ensure continuity in our temporal segmentation 
(e.g., 5-year and 10-year intervals), we  retained the 2020 data to 
preserve analytical consistency. This decision may introduce some 
bias, which should be considered when interpreting the results.

6 Conclusion

This study systematically examined the spatiotemporal 
distribution and driving factors of CVD incidence across the 
contiguous US from 1991 to 2020, integrating spatial statistical 
methods with advanced deep learning models. The following key 
conclusions were drawn.

	(1)	 Persistent Spatial Clustering of CVD Incidence: Global Moran’s 
I  results consistently indicated statistically significant spatial 
clustering of CVD incidence across the study period, with Z-scores 
exceeding 2.58  in most years (p < 0.01). The Getis-Ord Gi* 
analysis further revealed persistent hot spots of high CVD 
incidence in the northeastern and Appalachian states, such as 
Ohio, West Virginia, and Pennsylvania, while cold spots were 
concentrated in the western and northern regions including 
Colorado and North Dakota. These patterns remained stable 
across six consecutive five-year intervals, suggesting long-term 
structural disparities in health outcomes. This persistent clustering 
underscores the necessity of regionally tailored public health 
interventions and continued surveillance in high-burden areas.

	(2)	 GeoDetector analysis identified several key drivers of CVD 
incidence with consistently high explanatory power across 
time, including population density, ambient particulate matter 
pollution, poor dietary habits (e.g., low intake of fruits and 
whole grains, high sodium), and smoking. These factors 
showed significant q-values (p < 0.05), highlighting the 
influence of behavioral and environmental risks.

	(3)	 Improved Modeling of Spatiotemporal Complexity: By 
incorporating the GTNNWR, this study advanced the modeling 
of non-stationary and nonlinear relationships in space and time. 
Unlike traditional regression models, GTNNWR dynamically 
assigned spatiotemporal weights, enabling more nuanced 
assessments of variable importance across regions and years. The 
model corroborated the influence of key drivers identified by 
GeoDetector while further revealing that their effects were not 
uniformly distributed. For example, dietary risks had stronger 
explanatory power in the Southeast, while pollution-related 
variables were more influential in industrialized regions. These 
results demonstrate the value of deep learning in enhancing the 
interpretability and spatial resolution of chronic disease modeling.

	(4)	 Implications for Precision Public Health: The integration of 
spatial analysis and machine learning provides a robust 
framework for evidence-based policymaking. The 
identification of stable hot spots—particularly in states such 
as New York, Kentucky, and Louisiana—enables public health 
agencies to more effectively prioritize resource allocation, 
implement targeted screening programs, and design 
behavioral interventions tailored to the specific risk profiles 
of these high-burden regions. Furthermore, the detection of 
nonlinear interactions supports the design of 
multidimensional policies that account for synergistic risk 
exposure—such as combining air quality improvement with 
dietary education campaigns. This approach also contributes 
to long-term health equity by revealing regions where 
entrenched disadvantages continue to drive disease burden, 
thereby informing structural and policy-level responses 
beyond individual behavior change.
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Together, these results demonstrate that spatial heterogeneity in 
CVD incidence remains a pressing public health concern. By 
combining interpretable spatial statistical tools and advanced neural 
network models, this study offers a transferable analytical framework 
for chronic disease surveillance and geographically adaptive 
intervention planning.
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