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The rapid aging of the population in the Guangdong-Hong Kong-Macao Greater 
Bay Area (GBA) has increased demand for smart healthcare solutions. Artificial 
intelligence (AI)-based nursing technologies show promise in alleviating care 
burdens, yet family caregivers—often the primary decision-makers—exhibit low 
adoption rates due to trust issues and risk perception. This study investigated factors 
influencing caregivers’ behavioral intention to adopt AI nursing technologies by 
developing an extended Unified Theory of Acceptance and Use of Technology 
(UTAUT) model incorporating trust and perceived risk. A cross-sectional survey 
was conducted across hospitals and care institutions in the GBA (n = 163) and 
analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). 
Results indicated that trust, perceived usefulness (performance expectancy), 
and institutional support (facilitating conditions) were positively associated with 
intention to adopt. Social influence also had a positive effect but was significantly 
weakened by perceived risk, while age moderated the effect of perceived difficulty 
on adoption intention. The findings highlight the importance of improving system 
transparency, tailoring interface design for older users, and building trust through 
institutional support, suggesting that policymakers and developers should prioritize 
inclusive, age-adaptive AI design and ethical governance to enhance caregiver 
acceptance and AI integration in older population.
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1 Introduction

The global community is facing an unprecedented demographic challenge: rapid 
population aging. According to the Ministry of Civil Affairs and the National Working 
Commission on Aging of China, by the end of 2023, the number of individuals aged 60 and 
above in China had reached 296.97 million—21.1% of the total population—with those aged 
65 and over accounting for 216.76 million (15.4%). Over the next decade, the country is 
projected to add more than 20 million older adults individuals annually, and the population 
of the oldest old (aged 80 and above) is expected to surpass 50 million by 2035 (1). This 
demographic shift, coupled with a rising burden of chronic disease, places immense strain on 
healthcare and caregiving systems.

In the economically vibrant and densely populated Guangdong–Hong Kong–Macao 
Greater Bay Area (GBA), population aging presents similarly urgent challenges. Ensuring 
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access to high-quality and sustainable eldercare services has become 
a critical regional priority. According to a recent industry report by 
KPMG, the rapid advancement of artificial intelligence (AI) is 
reshaping opportunities in healthcare and eldercare. Over the coming 
decade, AI technologies are expected to drive transformative 
innovations—from AI-assisted diagnostic systems and personalized 
treatment plans to autonomous caregiving robots—potentially 
alleviating workforce shortages and enhancing service delivery (2).

The GBA has emerged as a testbed for AI-driven healthcare 
innovations. As reported by China Daily, public hospitals in Hong 
Kong are deploying AI systems to identify high-risk patients and 
enable early intervention. Locally developed models, such as the 
ophthalmic diagnostic system VisionFM, now demonstrate accuracy 
on par with or superior to expert clinicians. In Shenzhen, AI-assisted 
surgical planning platforms like “CARES Copilot” are being integrated 
into clinical practice. Collectively, these advancements signal a 
growing regional commitment to leveraging AI for more efficient, 
intelligent healthcare systems (3).

To provide readers with a clearer overview of the diversity of 
AI-driven healthcare systems in the region, we have summarized the 
main categories of current applications in Figure 1, including remote 
monitoring, care coordination, telehealth, documentation, and 
decision support.

However, the realization of AI’s full potential hinges not only on 
technical capability, but also on end-user acceptance. In clinical and 
caregiving contexts—where safety, reliability, and ethics are 
paramount—trust plays a pivotal role. Despite AI’s promise, 
widespread skepticism persists among patients and their families. 
Studies indicate that 65.8% of surveyed adults express low trust in the 
use of AI in healthcare, and 57.7% doubt the healthcare system’s ability 
to prevent AI-related harm (4). Even as general health and AI literacy 
improve, trust deficits remain, suggesting that building acceptance will 
require deeper engagement and transparency (5).

Mistrust is often exacerbated by negative user experiences with 
overhyped or underperforming AI caregiving products. Such setbacks 
have made trust and perceived risk key barriers to adoption. Notably, 
when it comes to eldercare decisions, family members frequently serve 
as surrogate decision-makers. Many older adults rely on family due to 
cognitive limitations or unfamiliarity with digital tools, depending on 
them to install health apps, interpret electronic health records, or 
facilitate telehealth consultations (6, 7).

In this context, family caregivers often become de facto 
gatekeepers for AI adoption. If they harbor doubts or perceive high 
risk, they may withhold consent for AI-assisted care, regardless of its 
potential benefits (8). Therefore, understanding the perspectives of 
patients’ families—their willingness to adopt AI caregiving 

FIGURE 1

Applications of AI-driven healthcare systems in the Greater Bay Area (GBA).
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technologies and the factors shaping their trust—is crucial to 
unlocking the transformative value of AI in eldercare. As the GBA 
continues to accelerate AI integration into healthcare systems, 
addressing the needs, concerns, and behavioral intentions of these key 
stakeholders is essential for achieving meaningful, user-
centered innovation.

2 Research questions

Although earlier research highlighted the persistent resistance to 
innovation in care services (9, 10), more recent evidence indicates that 
the COVID-19 pandemic has accelerated the adoption of digital health 
and also reshaped the dynamics of trust. For instance, Park et al.’s 
research found that the emotions of family caregivers strongly influence 
their willingness to adopt medical AI (6); After surveying 2,039 
respondents, Nong and at found that although health literacy has 
improved, respondents’ trust in the use of AI in the healthcare system 
remains fragile (5). Similarly, a quantitative survey and analysis by 
Janne Kauttonen and other researchers on trust and acceptance of 
artificial intelligence applications in the healthcare sector revealed that 
doubts about AI-assisted healthcare persisted after the pandemic, 
mainly stemming from emotional and privacy concerns. These findings 
highlight the necessity of examining the acceptance of AI care in the 
post-pandemic care environment (11). In the context of sensor-based 
health monitoring, studies by T.F. Kummer have shown that hospitals 
in Germany and Australia deploying intelligent surveillance systems 
frequently encounter user anxiety triggered by a complex interplay of 
factors. These include uncertainty about the system’s effectiveness, 
concerns over privacy and security, and emotionally driven intuitive 
rejection (10). Such findings underscore that, in healthcare settings, 
technology adoption is shaped not only by rational cost–benefit 
evaluations but also by psychological and affective dimensions.

Located at the crossroads of Eastern and Western medical 
traditions and cultural frameworks, the Guangdong–Hong Kong–
Macao Greater Bay Area (GBA) presents a distinctive context in which 
public perceptions of medical AI are shaped by a unique interplay of 
influences. The bases for trust and the ways users perceive risk in this 
region are likely to diverge significantly from those observed 
elsewhere. Nevertheless, existing research on public acceptance of 
AI-driven healthcare solutions within the GBA remains limited, with 
even fewer studies concentrating on the perspectives of family 
caregivers—a stakeholder group of considerable importance.

Conventional frameworks for studying technology acceptance, 
such as the Technology Acceptance Model (TAM) and the Unified 
Theory of Acceptance and Use of Technology (UTAUT), are 
commonly utilized to evaluate factors influencing the adoption of AI 
in healthcare and eldercare environments (12). Despite their broad 
application, these models frequently overlook essential psychological 
components, particularly trust and perceived risk (8). Although the 
UTAUT’s core elements—performance expectancy, effort expectancy, 
social influence, and facilitating conditions—offer explanatory power 
in general information systems research, their ability to predict user 
intentions diminishes in healthcare contexts, where the stakes of 
decision-making and potential errors are much higher.

In such settings, trust in AI’s reliability and safety, as well as 
perceived risks of unintended harm, become pivotal in shaping 
decisions. Overlooking these factors may obscure the reasons why 

some family members remain unwilling to authorize the use of 
AI-based care technologies, even when their potential benefits are 
clearly demonstrated (4, 8). Therefore, there is a compelling need to 
extend existing theoretical models by incorporating trust as a central 
antecedent and perceived risk as a moderating factor in explaining AI 
adoption behaviors in healthcare.

Based on these insights, this study seeks to answer the following 
core research question:

What factors influence family members’ willingness to adopt AI 
caregiving technologies in the Greater Bay Area, and how do trust and 
perceived risk shape this decision-making process?

To tackle this research gap, we construct an extended conceptual 
framework grounded in UTAUT, incorporating trust and perceived 
risk as pivotal psychological factors. Specifically, the model maintains 
the core UTAUT predictors—performance expectancy (perceived AI 
utility), effort expectancy (ease of use), social influence (social 
encouragement/pressure), and facilitating conditions (supportive 
resources/infrastructure)—as foundational determinants of behavioral 
intention. Trust is integrated as an additional direct antecedent, 
defined as family members’ assurance in the safety and competence of 
AI-assisted caregiving. Furthermore, we propose that perceived risk—
conceptualized as the subjective assessment of potential adverse 
consequences linked to AI use—exerts a moderating effect on the 
trust-intention relationship. This synthesized framework seeks to 
provide a more holistic explanation of the psychological drivers 
shaping AI adoption choices in eldercare, particularly within the 
Greater Bay Area’s unique socio-technical environment.

3 Literature review

3.1 The current landscape of AI in nursing

Research on artificial intelligence (AI) in nursing and healthcare 
has flourished in recent years, characterized by multi-directional and 
multi-layered advancements. Functionally, AI has been employed 
across a wide spectrum of applications, including medication 
management, patient monitoring and engagement, and optimization 
of nursing administration (13, 14). A comprehensive systematic 
review identified core applications of AI in healthcare, such as 
diagnostic assistance, disease management, personalized health 
interventions, patient self-management, and improvements in hospital 
operations (15). These functionalities are increasingly being extended 
to nursing contexts.

In clinical practice, AI-driven decision support systems (DSS) can 
aid nurses in assessing patient conditions and formulating 
personalized care plans, thereby enhancing decision accuracy and 
reducing workload (16). In disease management and rehabilitation, 
intelligent monitoring devices and algorithms enable real-time 
tracking of vital signs and symptoms, allowing for timely alerts and 
interventions by healthcare providers or family caregivers—ultimately 
improving patient outcomes and self-management (17). AI 
technologies are also reshaping administrative workflows in nursing 
by streamlining staff scheduling, predicting bed turnover, and 
minimizing paperwork, thus improving overall service efficiency (18).

Several case studies highlight tangible progress in both domestic and 
international contexts. For example, deep learning models have 
demonstrated high accuracy in diagnosing hepatic diseases, offering a 
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promising AI-assisted approach for future hepatology care (19). In 
inpatient monitoring, AI-enabled sensors provide continuous 24/7 
surveillance and early risk detection, potentially reducing nurses’ burden 
and improving patient safety. However, some family members perceive 
such monitoring as intrusive, citing privacy concerns, emotional 
detachment, and skepticism toward technological reliability (20).

In caregiving and elder services, socially assistive robots and 
AI-enabled smart speakers have been introduced to provide 
companionship, medication reminders, and emergency alerts (20). 
Although pilot implementations show promise in enhancing patient 
well-being and safety, broader adoption remains constrained by 
emotional, ethical, and risk-related concerns (21).

Overall, AI in nursing represents a dual function of empowerment 
and efficiency enhancement—enabling care professionals to perform 
better and expanding the reach and responsiveness of nursing services. 
Buchanan et al. (22) argue that AI systems can alleviate administrative 
burdens, allowing nurses to focus on tasks that demand human 
empathy and clinical judgment. This human-AI collaboration model 
is widely regarded as the future of nursing.

Nevertheless, scholars urge caution, noting potential risks such as 
algorithmic bias, decision opacity, and system failures, which necessitate 
robust governance mechanisms to ensure the trustworthiness and 
reliability of AI in clinical practice (6, 23). The key principles identified 
for successful AI implementation in healthcare are trustworthiness, 
usability, and accessibility—AI must be perceived as reliable, easy to use, 
and readily available to patients and their families (24).

In the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), 
AI nursing research exhibits unique characteristics. The region boasts 
strong investments in healthcare innovation, with notable projects 
from institutions such as the Hong Kong Hospital Authority (3). 
Robert (20) notes that the emergence of AI caregiving technologies is 
likely to reshape the healthcare workforce in the near future. For 
instance, Hong Kong hospitals have piloted AI assistants with cartoon 
avatars to remind patients to take medications, and have actively 
gathered feedback from patients and families (3). Similarly, smart 
older adults care programs in Guangdong report that trust from older 
adults and their families is critical to AI product adoption (25).

These regional experiences underline the interactive relationship 
between technological innovation and user acceptance. The success of 
AI in nursing is not solely determined by algorithmic sophistication 
or hardware capabilities; it also hinges on the system’s ability to 
address humanistic, ethical, and experiential expectations from 
users—especially patients and their families.

3.2 The UTAUT model and its applications 
in healthcare

In information systems, the Unified Theory of Acceptance and 
Use of Technology (UTAUT), introduced by Venkatesh et al. (26), is a 
widely utilized framework. It identifies four core determinants of 
behavioral intention toward technology adoption: Performance 
Expectancy (usefulness), Effort Expectancy (ease of use), Social 
Influence (peer/social pressure), and Facilitating Conditions 
(supportive environment). Empirical evidence demonstrates that 
these factors collectively predict up to 70% of intention variance, 
underscoring UTAUT’s status as a parsimonious and comprehensive 
model (26).

Since its introduction, UTAUT has been applied extensively across 
diverse sectors, including educational technology (27), healthcare 
(28), Emotional support (29), e-government (30), financial 
technologies (31), and mobile internet (32). These applications 
reaffirm the model’s utility in capturing the essential cognitive and 
contextual determinants of technology adoption.

Nevertheless, it is acknowledged that healthcare’s unique 
complexities may restrict the applicability of the standard UTAUT 
framework. Decisions in health contexts are often emotionally intense, 
carry high stakes, and encompass multifaceted psychological and ethical 
dimensions. Key influences such as trust, privacy worries, safety 
concerns, and moral judgments—not explicitly covered by core 
UTAUT—may play a decisive role in healthcare technology adoption 
(4, 8, 33).

As a result, numerous studies have proposed extensions to UTAUT 
by incorporating Trust and Perceived Risk as additional variables. For 
instance, Cao et al. (34) integrated trust, risk perception, and health 
consciousness into an extended UTAUT model to study mobile health 
app adoption among Japanese youth. Their findings showed that trust 
significantly boosted usage intentions, while perceived risk had a clear 
negative effect.

Thus, although UTAUT remains a powerful theoretical lens, it 
requires contextual adaptation to fully capture the nuances of technology 
acceptance in healthcare. This is particularly true in domains such as 
AI-enabled caregiving, where users—especially family members of 
patients—may base decisions more on emotional security and perceived 
risk than on functionality or convenience alone (18, 35).

Building upon the UTAUT framework, this study incorporates trust 
and perceived risk to create a model sensitive to the Greater Bay Area’s 
unique cultural and institutional context. The resulting hybrid model is 
designed to reveal patient families’ genuine perspectives and concerns 
about AI in caregiving, offering richer insights into the sociotechnical 
dynamics underlying adoption decisions.

4 Research hypotheses

Performance expectancy, as defined by Venkatesh et al. (26), 
denotes an individual’s perception that adopting a specific 
technology will enhance their task performance or goal attainment. 
Empirical evidence consistently links this expectancy to stronger 
intentions to adopt technologies (36). Conversely, effort expectancy 
captures the perceived ease of use and low effort required when 
utilizing a technology (26). This dimension similarly predicts 
adoption intention (37). To enhance clarity for nursing 
participants, effort expectancy was assessed using reverse-scored 
items in this study.

Social influence is conceptualized as an individual’s belief about 
whether significant others (e.g., society, hospitals, physicians) expect 
them to use a particular technology (26). Within AI-based nursing, this 
translates to perceptions of AI acceptance by these key stakeholders. 
Facilitating conditions represent the perceived availability of resources 
and support enabling effective technology use (26).

Building on UTAUT’s theoretical foundation, the following 
hypotheses are advanced:

H0: Family caregivers' wilingness to accept AI-based nursing 
significantly influences their actual usage behavior.
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H1: Performance expectancy has a significant positive effect 
on behavioral intention to use AI-based nursing.

H2: Reverse-coded effort expectancy has a significant negative 
effect on behavioral intention to use AI-based nursing.

H3: Social influence has a significant positive effect on 
behavioral intention to use AI-based nursing.

H4: Facilitating conditions have a significant positive effect on 
behavioral intention to use AI-based nursing.

Considering the specific context of AI in nursing, this study 
further proposes that trust in AI shapes nurses’ acceptance willingness 
(38). Therefore, an additional hypothesis is formulated:

H5: Trust in AI has a significant positive effect on family 
caregivers’ behavioral intention to use AI-based nursing.

As AI-based nursing is an emerging technology, nurses’ decision-
making may involve more complex psychological and organizational 
factors. For instance, under high perceived risk, nurses may question 
whether AI can make accurate diagnoses; perceived risk may suppress 
social normative pressure, rendering social influence less effective; and 
there may be cognitive dissonance between perceived risk and trust 
(e.g., concerns about algorithmic transparency). Therefore, perceived 
risk is introduced as a moderating variable:

H6a: Perceived risk may weaken the positive effect of 
performance expectancy on behavioral intention.

H6b: Perceived risk may weaken the positive effect of social 
influence on behavioral intention.

H6c: Perceived risk may weaken the effect of trust in AI on 
behavioral intention.

Age is also introduced as a moderating variable. Older individuals 
tend to experience a decline in working memory capacity, making 
them more cognitively burdened by multi-step AI operations and 
more susceptible to frustration (39). Furthermore, older users are 
more emotionally motivated and less susceptible to social approval or 
authoritative opinions (40). Glikson and Woolley (38) also suggest 
that a high level of trust can reduce perceived risk in older adults. 
Based on this, the following hypotheses are proposed:

H7a: Older caregivers are more sensitive to the perceived 
difficulty of operating AI systems.

H7b: Age weakens the effect of social influence on 
behavioral intention.

H7c: Increased age strengthens the effect of trust in AI on 
behavioral intention.

Venkatesh and Morris (26) found that gender moderates the 
effect of facilitating conditions on technology acceptance, with 
women being more influenced by the availability of support. 
Additionally, research in healthcare settings has shown that female 
nurses tend to have greater needs for team-based resources and 
collaboration. Therefore, the following hypothesis is proposed 
(Figure 2):

H8: Sensitivity to facilitating conditions differs significantly 
between genders.

5 Research methodology

5.1 Measures and operational definitions

All constructs in this study were measured using reflective multi-
item scales adapted from established literature to ensure validity and 

FIGURE 2

Research model.
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reliability. The items were rated on a five-point Likert scale ranging 
from 1 (strongly disagree) to 5 (strongly agree). To enhance 
comprehension among family caregivers—who may be unfamiliar 
with specific AI technologies—we provided a clear explanation in the 
survey introduction: “AI nursing technologies refer to intelligent 
systems or devices that assist in older adults care, such as health 
monitoring sensors, medication reminders, emergency alert systems, 
or companion robots.” Detailed operational definitions and 
measurement items for each construct are provided in the Table 1.

Control variables such as age (continuous) and gender 
(categorical) were also included.

5.2 Sample recovery and analysis

This study targeted family members responsible for medical 
decision-making or participating in caregiving processes for older 
adults patients within the Guangdong-Hong Kong-Macao Greater Bay 
Area, encompassing nine cities in central and southern Guangdong 
Province, Hong Kong Special Administrative Region, and Macao 
Special Administrative Region (Figure 3).

Recruitment was conducted through both online and offline 
channels. For the online sample questionnaires were distributed via 
academic networks and caregiver community groups on WeChat, X 
(formerly Twitter), and Facebook, Participants were provided with an 
introductory statement explaining study objectives, ethical approval, 
and voluntary participation guidelines before beginning the survey. 
For the offline sample, paper questionnaires were distributed at 
partner hospitals and nursing institutions, with trained research 
assistants present to assist respondents if needed.

A total of 163 valid responses were collected. Among these, 89 
respondents (54.6%) were recruited through hospitals, while 74 
respondents (45.4%) were recruited through nursing institutions, 
With respect to recruitment channel, 94 participants (57.7%) were 
recruited online while 69 participants (42.3%) were recruited offline, 
This distribution ensured representation of both hospital-based and 
institution-based caregiving contexts, while leveraging online 
platforms to reach younger and digitally active caregivers.

Given the methodological requirements for structural equation 
modeling (SEM), psychological avoidance tendencies among caregiver 
populations, and the necessity for stable parameter estimates and 
adequate statistical power, the study aimed for at least 150 valid 
questionnaires. In May 2024, questionnaires were distributed 
throughout the Greater Bay Area. After eliminating incomplete or 
severely flawed responses, 163 valid samples remained for quantitative 
analysis. To enhance questionnaire design and clarity, the research 
team conducted brief supplementary interactions after questionnaire 
completion in select cases, involving short (1–2 min) follow-up 
questions such as “Which questions did you find difficult?” or “Did 
any options seem inconsistent with your actual experiences?” These 
interactions were neither audio-recorded nor thematically analyzed 
but rather served to verify item clarity and rationality for future 
questionnaire refinements; they were excluded from formal data 
analysis (Table 2).

For data analysis, this study utilized Partial Least Squares 
Structural Equation Modeling (PLS-SEM) via SmartPLS 4 
software. PLS-SEM is well-suited for exploratory research 
involving complex models and is comparatively flexible with 

respect to sample size and data distribution assumptions. The 
analysis proceeded in two stages. First, the measurement model 
was evaluated by examining the reliability and validity of the latent 
constructs—specifically, Cronbach’s alpha and Average Variance 
Extracted (AVE)—as well as assessing multicollinearity through 
Variance Inflation Factors (VIF). Following the guideline by Hair 
et  al. (41), VIF values exceeding 5 suggest problematic 
multicollinearity; in this study, all indicators showed VIF values 
well below this threshold, indicating no significant multicollinearity 
issues. Second, the structural model was assessed in terms of path 
coefficient significance, explanatory power (R2), and predictive 
relevance (Stone-Geisser’s Q2). Path coefficients were tested for 
statistical significance using a bootstrapping procedure with 5,000 
resamples (Figure 4).

6 Research results

6.1 Reliability and validity assessment

This study used the Partial Least Squares (PLS) algorithm within 
SmartPLS 27 software to systematically examine constructs in the 
questionnaire, focusing primarily on key indicators such as Cronbach’s 
alpha, composite reliability (CR), and factor loadings.

Validity was evaluated through convergent validity and 
discriminant validity assessments. Convergent validity was assessed 
using Average Variance Extracted (AVE). As indicated in Table 3, 
all variables demonstrated AVE values exceeding the threshold of 
0.5. Cronbach’s alpha values between 0.6 and 0.7 typically represent 
acceptable reliability (42). Behavioral Intention had the highest 
AVE (0.902). Discriminant validity was assessed based on the 
Fornell-Larcker criterion by comparing the square roots of AVE 
values with the correlation coefficients between variables (Table 4). 
All latent variables met discriminant validity requirements, 
consistent with Hair et al.’s recommendations for systematic PLS 
modeling (43).

Overall, the measurement model exhibited ideal levels of 
reliability, convergent validity, and discriminant validity. Empirical 
data showed that Cronbach’s alpha coefficients for all latent variables 
exceeded the acceptable threshold of 0.7, confirming excellent internal 
consistency and reliability (44). AVE values were all above 0.5, 
confirming convergent validity. Additionally, discriminant validity 
was confirmed by each construct’s square root of AVE being 
significantly higher than its correlations with other constructs, 
satisfying the Fornell-Larcker criterion (41).

6.2 Structural model assessment

The Variance Inflation Factor (VIF) was employed as the primary 
diagnostic tool for multicollinearity within PLS modeling. Hair et al. 
recommended that a VIF value above 5 indicates significant 
multicollinearity issues (Table 5).

All latent variables in this study had VIF values below 5, 
confirming the absence of serious multicollinearity and validating the 
questionnaire’s construct settings. This result further indicates that 
questionnaire items effectively distinguished among dimensions, thus 
minimizing biases and distortions from multicollinearity.
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6.3 Model explanatory power assessment

In the Partial Least Squares Structural Equation Modeling (PLS-
SEM) framework, researchers estimate path coefficients and factor 
loadings to maximize explained variance (R2) for endogenous latent 
variables (Table 6). The PLS method is particularly suitable for small 
sample sizes and complex models, offering effective predictions 
among latent constructs. Hair et  al. established a standardized 
assessment framework classifying R2 effect sizes as strong (0.75), 
moderate (0.50), and weak (0.25).

The results indicated a high explanatory power for behavioral 
intention (BI), with R2 = 0.832, significantly exceeding the typical 
UTAUT benchmark of 50–60%. This demonstrates that core 
predictors, such as performance expectancy and effort expectancy, 
explained 83% of the variance in behavioral intentions toward AI 
nursing applications. The adjusted R2 value (0.814), accounting for 
degrees of freedom, further underscored model robustness. Usage 
behavior (UB) had an R2 of 0.709 and an adjusted R2 of 0.707, showing 
that the model maintained strong explanatory power even after 
accounting for control variables and interaction effects.

6.4 Model fit assessment

Model fit was evaluated using the Standardized Root Mean 
Square Residual (SRMR). According to Henseler and Sarstedt 
(45), an SRMR value should be below 0.14. Analysis revealed that 
the SRMR value of the saturated model was 0.048, and the SRMR 
value of the estimated model was 0.069 (Table 7). Both values were 
significantly below the threshold, indicating acceptable  
model fit.

6.5 Predictive relevance assessment

Predictive relevance (Q2) is a critical indicator of predictive 
validity in PLS models, ranging from −∞ to 1, with higher values 
indicating stronger predictive capability. Using the PLSpredict 
algorithm, predictive relevance for behavioral intention (BI) was 
Q2 = 0.762, and for usage behavior (UB) was Q2 = 0.727 (Table 8). 
Both values substantially exceeded 0, confirming the model’s 
strong predictive effectiveness.

TABLE 1  Operational definitions and measurement items.

Constructs Operational definition Questions

Performance 

Expectation

The extent to which caregivers believe that 

using AI nursing technology improves the 

efficiency and quality of caregiving.

I believe that AI-assisted nursing diagnosis and treatment can enhance the efficiency of care.

AI technology helps improve the quality of patients’ rehabilitation.

Using an AI-assisted system enables me to better understand the patient’s condition.

Effort Expectation
The degree of ease associated with learning 

and using AI nursing technology.

It’s not easy for me to learn to use AI-assisted systems.

I think using an AI system requires too much technical knowledge.

I cannot quickly adapt to the operation process of AI-assisted care.

Social Influence

The extent to which caregivers perceive that 

important others expect or encourage them 

to use AI nursing technology.

Important others (such as doctors and nurses) think that I should use an AI-assisted system.

The recognition of AI in healthcare in society has influenced my acceptance of it.

The usage trend in hospitals will influence my view on AI systems.

Facilitating 

conditions

The perceived availability of resources and 

institutional support to enable the use of AI 

nursing technology.

I think hospitals have the resources (such as equipment and networks) to use AI systems.

If I encounter any problems, there is technical support available to assist me in solving them.

Medical institutions have provided sufficient AI-related training or explanations for family 

members.

AI Trust
The confidence of caregivers in the reliability, 

safety, and fairness of AI nursing systems.

I believe that the AI system will make reasonable nursing judgments.

I believe that AI technology can safeguard the basic rights of patients.

I trust that the AI system deployed by the hospital is reliable.

Perceived Risk

The subjective expectation of potential losses 

or adverse consequences associated with 

using AI nursing technology.

I’m worried that the AI system might malfunction and affect patient safety.

I’m worried that using AI might leak patients’ private information.

I’m uneasy about whether the AI’s judgment is accurate.

Behavioral Intention
The extent to which caregivers intend to use 

or recommend AI nursing technology.

If conditions permit, I am willing to use AI-assisted care services.

In the future, I will give priority to medical institutions that incorporate AI systems.

I am willing to recommend AI-assisted care services to others.

UB
The actual or self-reported use of AI nursing 

technology in caregiving practice.

If the hospital continues to offer AI-assisted care services, I will choose to keep using them.

In the future nursing process, I hope to continue to rely on AI systems to assist in decision-making.

Even without a doctor’s advice, I am willing to actively use AI-assisted functions.

I have already incorporated AI-assisted care services as part of my medical care.

I tend to continue using AI systems in other similar medical facilities.
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6.6 Results analysis and discussion

Bootstrapping with 5,000 resamples was utilized to calculate path 
coefficients and determine their significance. Path significance 
(T-statistic > 1.96 and p-value ideally < 0.05) determined hypothesis 
support, while the size of path coefficients indicated effect strength. 
Furthermore, the magnitude of each path coefficient reflects the 
relative strength of influence exerted by the independent variables on 
the corresponding dependent construct. The results of the hypothesis 
testing are summarized in Table  9. Figure  5 presents a bar chart 
illustrating the standardized β coefficients for each hypothesized path, 
with color coding used to differentiate between supported and 
unsupported hypotheses. Additionally, Figure 6 displays simple slope 
interaction plots, depicting variations in behavioral intention (BI) 
across different levels of key independent variables. These 

visualizations offer an intuitive representation of both the strength and 
directionality of the observed relationships.

6.6.1 Supported hypotheses
The path from Behavioral Intention (BI) to Usage Behavior (UB) 

was highly significant (β = 0.842, t = 18.065, p < 0.001), confirming 
the strong translation from AI nursing intention to actual usage 
behavior. Performance Expectancy (PE) significantly enhanced BI 
(β = 0.235, t = 3.051, p = 0.002), supporting H1. Reverse-coded Effort 
Expectancy (EE) negatively influenced BI (β = −0.158, t = 1.993, 
p = 0.046), supporting H2. Social Influence (SI) positively affected BI 
(β = 0.198, t = 2.005, p = 0.045), supporting H3. Facilitating 
Conditions (FC) strongly drove BI (β = 0.349, t = 2.960, p = 0.003), 
supporting H4. AI Trust significantly predicted BI (β = 0.334, 
t = 3.964, p < 0.001), supporting H5. Age significantly amplified the 

FIGURE 3

The location of the Pearl River Delta.
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negative influence of EE on BI (β = 0.254, t = 2.381, p = 0.017), 
supporting H7a. Perceived Risk (PR) negatively moderated the 
relationship between SI and BI (β = −0.339, t = 2.203, p = 0.028), 
supporting H6b.

6.6.2 Unsupported hypotheses
Perceived Risk did not significantly moderate Performance 

Expectancy (H6a: β = 0.144, t = 1.062, p = 0.288), possibly due to 
institutional risk management in the Greater Bay Area (e.g., 

TABLE 2  Demographic data.

Demographic Type Frequency Percentage

Gender
Male 90 55.21%

Female 73 44.79%

Age

18–25 98 60.12%

26–35 27 16.56%

36–45 17 10.43%

Over 45 21 12.88%

Region

Central and southern 

Guangdong Province (Nine 

cities in the mainland)

97 59.51%

East of the Pearl River Estuary 

(Hong Kong)
34 20.83%

West of the Pearl River Estuary 

(Macao)
32 19.63%

FIGURE 4

Research process.
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insurance, review mechanisms). The moderation effect of PR on AI 
Trust (H6c: β = 0.169, t = 1.926, p = 0.054) approached significance, 
suggesting potential clinical implications, possibly influenced by 
trust calibration mechanisms (46). Age did not significantly 
moderate the influence of SI on BI (H7b: β = −0.141, t = 1.417, 
p = 0.157), possibly due to older nurses prioritizing emotional goals 
over social evaluations. Similarly, Age did not significantly moderate 
AI Trust’s effect on BI (H7c: β = −0.101, t = 1.196, p = 0.232), 
perhaps reflecting heightened cognitive vigilance among older 
professionals in high-risk healthcare contexts. Gender’s moderating 
effect on FC (H8: β = −0.105, t = 1.364, p = 0.173) was not 

significant, likely reflecting diminished gender differences due to 
professional identity and widespread digital literacy.

7 Research significance and objectives

This study aimed to explore the factors influencing family 
caregivers’ acceptance of AI nursing technology and the underlying 
mechanisms, constructing and empirically testing a theoretical model 
integrating the Unified Theory of Acceptance and Use of Technology 
(UTAUT) with additional variables of trust and perceived risk. The 

TABLE 3  Results of internal consistency, or reliability, and concurrent validity testing.

Constructs Items Loadings Cronbach’s alpha Composite 
reliability (rho_c)

Average variance 
extracted (AVE)

PE

PE1 0.954

0.940 0.961 0.892PE2 0.952

PE3 0.928

EE

EE1 0.906

0.819 0.892 0.735EE2 0.728

EE3 0.924

SI

SI1 0.909

0.886 0.929 0.814SI2 0.918

SI3 0.879

FC

FC1 0.915

0.899 0.937 0.832FC2 0.909

FC3 0.912

Trust

Trust1 0.927

0.900 0.938 0.834Trust2 0.903

Trust3 0.909

BI

BI1 0.948

0.946 0.965 0.902BI2 0.943

BI3 0.959

UB

UB1 0.938

0.956 0.966 0.852

UB2 0.927

UB3 0.889

UB4 0.891

UB5 0.966

TABLE 4  Discriminant validity Fornell-Larcker test.

Age AI trust BI EE FC GDR PE PR SI

Age 1.000

AI trust −0.128 0.913

BI −0.193 0.798 0.950

EE −0.178 0.583 0.610 0.857

FC −0.204 0.715 0.813 0.744 0.912

GDR 0.120 0.180 0.163 0.176 0.241 1.000

PE −0.173 0.596 0.726 0.731 0.783 −0.107 0.945

PR −0.198 0.575 0.567 0.536 0.523 −0.097 0.483 1.000

SI −0.251 0.677 0.762 0.732 0.812 −0.118 0.773 0.545 0.902
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study focused specifically on the Guangdong-Hong Kong-Macao 
Greater Bay Area—a region characterized by both international and 
local features—to provide valuable insights for promoting effective 
application of AI in nursing services within this region and beyond. 
The findings identified performance expectancy (β = 0.235, p < 0.01), 
facilitating conditions (β = 0.349, p < 0.01), and caregiver trust 
(β = 0.334, p < 0.001) as the three primary factors driving behavioral 
intention to use AI nursing. These results indicate that caregivers 
prioritize whether AI effectively reduces caregiving burdens (e.g., 
automated nursing reports), sufficient technical support from 
hospitals (e.g., 24-h equipment maintenance), and trust in algorithm 
reliability. Although social influence significantly enhanced usage 
intention (β = 0.198, p < 0.05), its effect was notably attenuated by 
perceived risk (moderation effect β = −0.339, p < 0.05). Furthermore, 
older caregivers exhibited significantly higher sensitivity to operational 
complexity (interaction effect of age and effort expectancy β = 0.254, 

p < 0.05), suggesting a need for simplified interaction designs. 
However, the moderating effect of age on social influence was not 
significant (p > 0.05), highlighting the rigorous and autonomous 
nature of caregivers’ decision-making processes regarding AI nursing.

Although AI systems in the Greater Bay Area span a wide 
spectrum—from monitoring sensors and scheduling tools to 
telehealth platforms and clinical decision support—their very 
heterogeneity contributes to uncertainty among caregivers. Even 
when certain systems demonstrate strong technical performance in 
pilot programs, caregivers often generalize concerns about 
malfunction, privacy, or operational complexity across all AI systems. 
This explains why our study found persistently low trust (β = 0.334, 
p < 0.001) despite evidence of effectiveness in similar contexts, and 
why perceived risk significantly weakened the effect of social 
influence (β = −0.339, p < 0.05). Building trust therefore requires not 
only improving algorithmic performance but also enhancing system 
transparency, caregiver training, and human-in-the-loop 
oversight mechanisms.

By focusing on caregivers as decision-makers and employing 
literature review and empirical analysis, this research advances social 
understanding of caregivers’ decision logic concerning AI nursing 
acceptance. It facilitates theoretical innovation in AI nursing research, 
shifting focus from technological efficacy to family acceptance 
mechanisms, and highlights how risk perception reshapes technology 
acceptance in safety-sensitive contexts.

Within the unique social-technological and healthcare context 
of the Guangdong-Hong Kong-Macao Greater Bay Area, this 
study holds particular research value. On the one hand, the region 
boasts advanced medical technologies and high digital literacy, 
potentially leading to overall greater acceptance of AI nursing. 
Conversely, the differences of institutional among cities (e.g., 
Hong Kong, Guangzhou, Macao) add valuable complexity to 
regional AI adoption research. This study aimed to identify 
regional variations in caregiver trust and risk perception and their 
effects on technology adoption intentions, thus informing region-
specific policy development.

8 Research limitations and future 
directions

This study has several limitations. First, the sample size was 
relatively small. Our target population—primary family members 
actively involved in caregiving and medical decision-making—
was inherently difficult to recruit, given substantial psychological 
and time pressures during patient care; strict adherence to ethical 
standards and informed consent without inducements further 
reduced response rates. Second, the sample was concentrated in 
the Guangdong–Hong Kong–Macao Greater Bay Area and skewed 
younger (ages 18–25 constituted 60.12%), which limits 
generalizability to other age groups and regions. Model- and 
design-related constraints should also be  noted. Although the 
theoretical framework included trust and perceived risk, it did not 
fully capture deeper ethical constructs such as algorithmic 
transparency and accountability mechanisms, which may partly 
explain why certain moderation effects (e.g., H6a, H6c) were not 
significant. Moreover, the cross-sectional survey design cannot 
reflect dynamic shifts in technology acceptance—especially 

TABLE 5  Multicollinearity statistics (VlF) for indicators.

Indicators VIF

EE1 2.43

EE2 1.467

EE3 2.681

FC1 2.779

FC2 2.764

FC3 2.814

PE1 4.938

PE2 4.896

PE3 3.557

SI1 2.663

SI2 3.101

SI3 2.217

Trust1 3.27

Trust2 2.578

Trust3 2.796

Age 1

GDR 1

PR 1

TABLE 6  The explanatory power of the model R2.

R-square R-square adjusted

BI 0.832 0.814

UB 0.709 0.707

TABLE 7  Model fit indices comparison table.

Saturated model Estimated model

SRMR 0.048 0.069

TABLE 8  Predictive relevance assessment (Q2 predict).

Q2 predict

BI 0.762

UB 0.727
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adaptations in caregiver trust following real-world AI exposure. 
Our ethical–legal discussion remains partly conceptual and 
jurisdiction-specific.

While the EU Artificial Intelligence Act (Regulation (EU) 
2024/1689) establishes a risk-based regime, key implementation 
details and timelines are still evolving; by contrast, China currently 
regulates AI through sector-specific instruments rather than a single 
comprehensive act. Likewise, patient co-ownership models (e.g., 

GPOC) show early feasibility in the literature but have not yet been 
operationalized or evaluated in our context (47–49). To address these 
limitations, future work will:

	(i)	 Pilot consent and portability pathways consistent with 
co-ownership principles;

	(ii)	 Conduct prospective fairness and harm audits (including 
subgroup performance and post-deployment monitoring) 

TABLE 9  Path coefficients for hypothesis testing.

Original 
sample (O)

Sample mean 
(M)

Standard 
deviation 
(STDEV)

T statistics (|O/
STDEV|)

p values Result

BI → UB 0.842 0.841 0.047 18.065 0.000 Supported

PE → BI 0.235 0.249 0.077 3.051 0.002 Supported

EE → BI −0.158 −0.146 0.079 1.993 0.046 Supported

SI → BI 0.198 0.206 0.099 2.005 0.045 Supported

FC → BI 0.349 0.323 0.118 2.960 0.003 Supported

AI Trust → BI 0.334 0.329 0.084 3.964 0.000 Supported

PR × PE → BI 0.144 0.130 0.135 1.062 0.288 Not supported

PR × SI → BI −0.339 −0.313 0.154 2.203 0.028 Supported

PR × AI Trust → BI 0.169 0.158 0.088 1.926 0.054 Not supported

AGE × SI → BI −0.141 −0.132 0.099 1.417 0.157 Not supported

AGE × EE → BI 0.254 0.223 0.107 2.381 0.017 Supported

AGE × AI Trust → BI −0.101 −0.082 0.084 1.196 0.232 Not supported

GDR × FC → BI −0.105 −0.096 0.077 1.364 0.173 Not supported

FIGURE 5

Path coefficients and hypothesis testing results.
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grounded in Ethics-by-Design and the four biomedical-ethics 
principles (50, 51);

	(iii)	Align documentation (e.g., data-governance records, model 
cards, and logging) with emerging high-risk obligations and 
fundamental-rights protections highlighted by the EU framework.

In parallel, we will expand sample diversity—especially older 
decision-makers—strengthen cross-region comparisons, 
integrate ethical and institutional context variables, and adopt 
longitudinal designs to better illuminate trust-building 
mechanisms and risk-mitigation pathways in high-risk healthcare 
scenarios, thereby providing more precise decision-support 
for  the sustainable implementation of smart nursing in 
aging societies.

Our findings also highlight the lack of formal training 
programs for caregivers in the use of AI-driven healthcare 
systems. Despite receiving some technical support, caregivers 
often struggled with system complexity and malfunction, which 
negatively affected their trust and willingness to adopt these 
technologies. Future studies should explore the development of 
structured, accessible training programs to enhance caregiver 
competency in using AI healthcare tools, especially for older 
caregivers who may face additional technological barriers. 
Moreover, it is essential that technical support be  available, 
comprehensive, and responsive to caregivers’ needs to improve 
their experience with AI systems.

Finally, our study did not differentiate in detail between the 
multiple categories of AI-driven healthcare systems (e.g., 
monitoring, coordination, documentation), which may limit 
comparability across heterogeneous applications. Future research 
should stratify system types to better capture context-specific 
trust dynamics.
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