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Next generation sequencing as a 
panacea for antibiotic 
susceptibility testing: yea or nay?
Alex van Belkum 1,2*
1 ShanX Medtech, Eindhoven, Netherlands, 2 Independent Researcher, Rijnsburg, Netherlands

Practical next generation sequencing (NGS) technologies are entering the high-
throughput diagnostic clinical microbiology laboratory. Bacterial whole genome 
sequences (WGS) can be used for detection and identification of species and their 
(relative) quantification. Genomic relatedness and epidemiological spread of strains 
of microorganisms can be traced, in parallel with detection of virulence genes 
as well as genes involved in antimicrobial resistance (AMR). The latter potentially 
facilitates genomic antimicrobial susceptibility testing (gAST). AMR mechanisms 
and the genes involved are diverse and require dedicated supporting databases in 
order to be accurately detected by microbial genomics. The present document 
assesses the current position of NGS and gAST assays in the clinical microbiology 
laboratory and discusses their role in establishing a clinically actionable antibiogram 
which defines the spectrum of antibiotics to which a given microbial strain is 
susceptible or resistant. Key question is whether or not gAST has added value as 
compared to current AST methodologies. Full diagnostic implementation of gAST 
in the routine medical microbiology laboratory is as yet impossible. The technical 
complexity of gAST still needs a significant decrease, gAST data management 
needs to be improved and simplified, the timeliness of the gAST assays requires 
improvement, and costs need to go down. The throughput of genomic testing 
for large-scale routine medical-microbiological testing needs to be enhanced. 
Its clinical value needs to be better defined and requirements for optimal market 
access and acceptance should be further developed. When forthcoming gAST 
has been shown to be compatible with insurance and reimbursement budgets as 
well as microbiological QA/QC assessment and has been through the European 
In Vitro Diagnostics Regulation (IVDR) accreditation and/or US FDA approval, 
only then a more significant future role for gAST can be carefully considered. 
We should avoid that bureaucracy impedes the development of sequence-based 
AMR assessment. To date, routine gAST cannot do without combining it with 
rapid phenotypic AST.
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Introduction

The classical clinical microbiology context

Clinical microbiology combines the specific and sensitive detection of disease-invoking 
viruses, bacteria, yeasts, fungi and parasites but still is a reasonably conservative expertise 
where diagnostic testing has been dominated by culture-based technologies for many decades 
(1–4). Especially in the field of bacteriology, microbial cultivation technologies developed by 
Pasteur and Koch in the nineteenth century continue to be important diagnostic workhorses 
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(5). Obviously, culture-based bacterial detection has evolved, albeit 
slowly, and now, for instance, includes elegant assays that allow for 
sensitive cultivation in liquid culture media of the minute numbers of 
bacteria from septic patient’s blood (6). The performance and 
diagnostic value of color-mediated bacterial species identification 
directly on semi-solid culture media is non-disputed (7). Basic 
microbial cultivation has been supplemented with a variety of (bio-)
chemical, immunological, physical and molecular methods for 
enhancing the sensitivity and specificity of microbial identification 
and characterization [for reviews see, (8, 9)]. Matrix assisted laser 
desorption ionization time-of-flight mass spectrometry (MALDI ToF 
MS) for instance has completely revolutionized bacterial identification 
over the past two decades. For a broad and detailed assessment of 
most if not all viable microorganisms in environmental and clinical 
samples so-called culturomics approaches have been designed and 
validated (10–12). Clinical microbiology identifies pathogens and 
allows for the selection of the best therapeutic drugs on a per 
patient basis.

Clinical antibiotic susceptibility testing

An important medical-microbiological diagnostic application is 
the assessment of antibiotic susceptibility of bacterial isolates cultured 
from clinical specimens. Antibiotic susceptibility testing (AST) 
identifies antibiotics that are active against bacterial strains and as 
such guides optimal and accurate treatment of infections. AST should 
be rapid to allow the implementation of timely and correct treatment, 
it defines patient outcome by driving toward cure and it support 
antimicrobial stewardship (13). AST should be performed in real-time 
with ease of specimen collection, it should be affordable, sensitive, 
specific, user-friendly, rapid and robust, equipment-free or 
experimentally simple with limited hands-on time. This is exemplified, 
for instance, by lateral flow tests that can be used for the detection of 
extended-spectrum beta-lactames (14). AST should be  easily 
deliverable to end-users and data communication should be secure 
and undisputed. These are the REASSURED criteria as defined by the 
World Health Organisation (WHO) (15, 16). Rapid AST (RAST) 
should provide high-quality results within 8 h although the current 
consensus is moving toward 2 or even less hours overall assay time. 
Many potential RAST methods that use a variety of chemical, physical 
and (micro)biological methods have been presented over the past 
decades but at present none of them is fully aligned with the 
REASSURED criteria [see (17–21) for technological reviews].

Nucleic acid amplification testing-based 
AST

Molecular AST, mostly based on nucleic acid amplification testing 
(NAAT), was embraced by the diagnostic community over the past 30 
years (22, 23). These tests detect genes (or diagnostic parts of those) 
that are fundamental to an AST phenotype and generate indirect proof 
of microbial antibiotic susceptibility. NAAT has been supplemented 
with nucleic acid sequencing, a diagnostic technology that is now in 
its fourth technical generation. Initial sequencing was based on a 
purely chemical methodology developed by Maxam and Gilbert (24). 
Next came enzymatic, DNA replication-based methods developed by 

Sanger et  al. (25). Current automated high-throughput third and 
fourth generation applications [next generation sequencing (NGS)] 
allow for the collection of huge amounts of sequence data facilitating 
full microbial (and even eukaryote) genome sequencing (26–29). NGS 
requires sophisticated instruments and can be directly applied in the 
clinical microbiology laboratory (26, 30). Whether or not NGS is 
suited for genomic AST (gAST) is the core topic of this current 
manuscript, but this requires an introduction into the practice of 
current medical-microbiological AST methods first.

Brief review of current AST 
methodologies

Phenotypic vs. genotypic AST

Phenotypic methods define the direct physiological effect of an 
antibiotic on the viability of bacterial cells. Phenotypic methods often 
measure (lack of) cell density and division as expressed by changes in 
the number of viable cells present over time in a controlled 
environment with or without antibiotics. Phenotypes are measured by 
quantifying transmission of light through a bacterial culture or by 
cellular activity (changes in morphology, movement, metabolism, 
presence or absence of certain proteins etc). Second, indirect genotypic 
methods detect molecular markers associated with antibiotic 
susceptibility or resistance. A large variety of such tests has been 
developed, essentially for all microbial species and/or resistance 
mechanisms known (18, 31). The test format is mostly PCR-based 
although several tests depending on isothermal amplification 
technologies are available as well (32, 33). It is clear that such 
approaches only allow for the detection of previously known resistance 
markers and are ignorant with respect to synergistic or antagonistic 
interactions between markers or additional genetic elements. In brief, 
phenotyping directly assesses the functional ability of a bacterial cell 
or population to resist static or cidal antibiotic effects. Genotypic 
testing identifies potential for resistance, not defining whether this 
directly and knowingly translates to a survival advantage. The most 
obvious need in the field of RAST is the development of tests that can 
be applied directly to a clinical specimen, that can be performed at the 
point of care (PoC) (e.g., in the general practitioners office), that are 
easily scalable and flexible and that allow rapid adaptation of the 
antibiotics (or concentration thereof) to be tested in vitro. Such tests 
are in development but, again, do not yet meet all of the REASSURED 
criteria although some show a strong promise especially for (direct) 
urine testing (34–36).

AST technology

It is important to define the currently used laboratory methods for 
AST since these define the Gold Standard to which all new methods 
will be  compared (37). Often used phenotypic methods include 
automated high-throughput technologies developed and marketed by 
dominant In Vitro Diagnostics (IVD) companies such as Beckman-
Coulter (USA), ThermoFisher (USA), Becton-Dickinson (US) or 
bioMerieux (France). Flagship technologies such as WalkAway, 
Sensititre, Phoenix and VITEK2, respectively, facilitate growth-based 
AST. When automated systems are not available or required (e.g., due 
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to low(er) diagnostic throughput in smaller hospitals), manual 
technologies such as macro-broth dilution, disk diffusion or antibiotic 
gradient tests may be performed [e.g., (38)]. Next to these classical 
methods, many innovative technologies have been assessed over the 
past decades with regard to their technology readiness level (TRL), 
clinical validation status and time-to-results (39). This has led to 
various user’s encyclopediae for technology developers and clinical 
microbiologists to help them better understand the phenotypic RAST 
technology landscape and its developmental pipeline (20, 40, 41). 
Various novel technologies presently allow the assessment of 
antimicrobial resistance (AMR) at the level of single cells. These 
technologies are inherently very sensitive and sometimes even cover 
the detection of antibiotic heteroresistance (40, 42–45). Finally, 
classical nucleic acid sequencing but also NGS can be coupled to 
NAAT or used as single, stand-alone diagnostic tools (46–49). Below 
more details on the applicability of NGS in AST will follow.

NGS for AST

NGS technology

NGS can be  used in a single assay to detect bacteria and 
microbiomes, to quantify bacterial cells, to search for virulence genes, 
to define epidemiological relatedness among bacterial isolates and to 
provide information on antibiotic resistance genes (50). The workflow 
for this type of analysis consists of practical short-read or long-read 
sequencing provided by Illumina (San Diego, US) or Oxford Nanopore 
Technologies (ONT, Oxford, United  Kingdom), respectively. 
Sequencing will be performed on DNA extracted either from pure 
bacterial strains or all bacterial cells present in a clinical specimen 
[also known as microbiome sequencing (96, 97)]. This is followed by 
read- or genome-based informatics facilitating the interrogation of the 
data for gAST markers (51–55). This approach allows for the definition 
of the so-called resistome in bacterial whole genome sequences 
(WGS) as well as in microbiome sequencing datasets. The resulting 
resistomes cover both cultivable and non-cultivable bacterial species. 
Currently, this has generated insights in the global distribution of 
resistance genes (56), an overview of the spread of multi-drug resistant 
(MDR) bacteria (57), dissection of genetic resistance transfer and 
exchange networks (58) and the assessment of the global evolutionary 
dynamics of AMR (59).

Use of NGS data

First and foremost, experimental NGS data need to be reliable and 
reproducible. As recent as in 2020, multi-centered studies revealed 
that NGS data were insufficiently robust [e.g., (60)], a problem that has 
not been uniformly solved recently (61). Fortunately, most recent 
reports show that Nanopore sequencing may now have the intrinsic 
reproducibility needed for routine clinical microbiology application 
of NGS data (62). For optimal use and insight, raw NGS data need to 
be transformed into assembled genomes. This interpretation requires 
software suites, most of which based on De Bruijn graphs [e.g., (63, 
64)]. The quality of WGS assembly tools such as SPAdes, Velvet, 
ABySS and SOAPdenovo as well as several metagenomic assemblers 
(IBDA-UD, MEGAHIT, MetaSPAdes and MetaVelvet) was recently 

reviewed (46). Next to the assemblers an important role is played by 
search tools that can detect and identify specific AMR genes in 
metagenomic and WGS datasets [e.g., (65)]. Several bioinformatic 
tools have been designed to directly analyze resistance genes in raw 
NGS datasets, without prior genome assembly (66–68). These tools are 
at the heart of gAST. It has to be noted that these latter read-based 
methods have become popular in diagnostic testing since these tend 
to be  less time-intense than the assembly-based methods (69). 
Currently, there is no data management protocol that is broadly 
accepted by all medical microbiologists involved in gAST.

gAST databases

The entire gAST approach depends on the content and intrinsic 
quality of reference microbiological and gAST databases. In such 
databases all resistance genes, variants thereof and their associated 
phenotypic antibiotic resistance effect need to be well represented and 
strictly quality controlled. Databases should be able to detect AMR 
genes and mechanisms but also individual (nucleotide-specific) 
mutations contributing to AMR. The current spectrum of databases 
includes ResFinder, CARD, ARDB, ARG-ANNOT, NCBI’s AMR 
FINDER PLUS, FARME, SARG, BLDB and quite some more [for a 
review and a detailed explanation of all abbreviations see (70, 71)]. 
Databases can be generic, covering many bacterial species and even 
more resistance mechanisms and variants. In addition, gene- or 
resistance mechanism-focused databases for single or a few bacterial 
species also have great diagnostic value [e.g., the Mycobacterium 
tuberculosis specific WHO Mtb Mutation Catalog V2 (ISBN: 
9789240082410) as a pertinent example]. The precise correlation 
between a resistome and the resulting minimal inhibitory 
concentrations (MICs) for all antibiotics used in clinical care needs 
further study and calibration [e.g., (72) as developed for 
M. tuberculosis]. Again, there is not yet a consensus model accepted 
by most microbiologists for which there is a variety of reasons. In 
some cases academic databases or bio-informatic services have been 
discontinued, in others the spectrum of species or AMR mechanisms 
included is too narrow. Costs, technical expertise and availability and 
lack of immediate clinical need are among the culprits.

Of note, all of the above—NGS and gAST technology, 
interpretation of data, and database management—has resulted in a 
huge body of academic literature already and thus far the text here has 
not yet mentioned the tremendous success of using NGS for 
M. tuberculosis AMR prediction, which has become the first-line 
testing modality, and represents a cheaper, faster, and safer way of 
gAST for Mtb than the conventional culture-based AST (73, 74). It has 
to be  stated as well that there are many unmet clinical needs for 
classical AST in slow-growing fastidious microbes including 
mycoplasmata and fungi. Conventional testing also is problematic for 
inducible resistance mechanisms including metallo-beta lactamases 
in Aeromonas spp. (75). The value of culture-based AST is limited in 
these domains and clearly gAST has a great role to play in this space. 
Instead of suggesting that gAST is not ready for use, it has to 
be emphasized that it is working great in certain niches, but still needs 
improvement in the general areas including routine high-throughput 
testing. Concluding, there still is a clear lack of regulation and quality 
approved, commercially supported routinely available tools for gAST 
in day-to-day practice.
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Critical assessment of gAST

Practical issues with microbiological NGS

Major issues with NGS are its significant consumption of time, its 
technical complexity (requiring input by high-level technologists), its 
data intensity (sometimes complicating the recognition of valuable 
versus less valuable data) and, hence, its relatively high costs. 
Improvements in cost-effectiveness and rapidity are urgently needed. 
As the result of NGS, large amounts of experimental data are 
generated, over 99.9% of which is redundant to gAST. This puts strict 
demands on data quality assurance and control (QA/QC), assay 
repeatability, availability of internal positive and negative controls, 
data storage and overall data security and management. As with any 
other microbiological diagnostic assay, bacterial taxonomic 
controversies need to be  dealt with as well, including species 
identification as well as AMR gene—and overall genome—
nomenclature (76, 77). It needs to be realized that, in principle, NGS 
does not distinguish between living and dead microorganisms and 
neither does it discriminate (innocent) bacterial contamination or 
colonization from genuine infections, phenomena that co-depend 
heavily on clinical context (e.g., prior infections or treatment thereof). 
Also, gene presence is not a guarantee for its expression and it has to 
be  realized that many extragenic elements may influence gene 
expression as well (repressors, promoter mutations, multiplicity of 
plasmids etc) (78). Finally, there is a continuous need for 
supplementing both phenotypic and genotypic experimental data 
mining with bioresources (including, e.g., reference strains, clinical 
specimens, (artificial) microbiome compositions and enzymes) that 
can be used for QA/QC during microbiological NGS.

Data and database management

gAST database development still suffers from the lack of 
representative and high-quality reference sequences including well 
annotated sequences for resistance genes and their many variants. 
Database development will remain an ever expanding activity that will 
never be finished and identification and characterization of new genes 
and variants will require continuous intellectual and capital 
investment. It is still difficult to distill resistance gene abundance from 
raw datasets, especially in metagenomic data where inter-species 
homologies for certain genes may be  problematic. Furthermore, 
genotypic data will always need to be  supported by phenotypic 
reference data. Given the wide array of methods, full concordance 
between phenotypic and genotypic approaches is presently incomplete 
at best. The European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) and its USA-based counterpart the Clinical & 
Laboratory Standards Institute (CLSI), the two organizations 
governing clinical AST cut off values, have thus far failed to come up 
with consensus approaches for meeting this limitation (98). The 
EUCAST authors concluded in their position paper published in 2017: 
“For most bacterial species there is currently insufficient evidence to 
support the use of WGS-inferred AST to guide clinical decision making. 
WGS-AST should be a funding priority if it is to become a rival to 
phenotypic AST.” Little changed over the past 10 years. To date, in the 
mid-twenties of the 21st century, curation of databases is still 
problematic and quite a few of the databases are still biased toward 

human pathogens and their specific resistance mechanisms. It will 
require well-managed international collaboration and standardization 
to improve the curation pipelines and agreements. Moreover, longevity 
of databases seems to be strongly dependent on the continuation of 
academic grants or projects. When finances run dry, databases are 
either put on hold or terminated effectively. This is an unfavorable 
situation that can only be solved when (semi-) commercial parties 
become involved.

Future challenges

Improving the gAST system architecture

Clinical microbiologists involved in high throughput routine 
diagnostics prefer sample in – result out approaches. Hence, the final 
workflow for gAST requires the inclusion of direct sampling from 
clinical specimens or even patients. This would then probably result 
in a metagenomic NGS strategy in which essentially all nucleic acids 
in a sample will be  sequenced. Pre-analytical methods for the 
suppression of unnecessary host genome sequencing are needed to 
make the sequencing more targeted and productive. Hybrid-based 
target capture and generic suppression of human DNA have been 
successfully applied (79, 80), but it may also be argued that including 
some host DNA in the NGS can also provide important information 
on host’ disease susceptibility (97). gAST at the PoC would 
be  advantageous as well but this would require REASSURED-
compliant portable equipment with a small footprint (81). Methods 
for accurate clinical interpretation of the data as well as tools for safe 
and secure data communication, either or not based on artificial 
intelligence, need further development and promotion. Machine 
learning (ML) for the prediction of phenotypes directly from 
genotypic data has been developed and this methodology will 
be important for future data interpretation (49). A problem with ML 
is its dependency on training data or existing databases. In the end, 
commercial versions of cartridges, laboratory instruments and 
additional hardware as well as the software packages need to be put 
through formal research and development trajectories in compliance 
with regulatory requirements (see below). Ultimately, the entire gAST 
workflow must be automated. This will require future attention to 
aspects as diverse as documentation, training and instruction, the use 
of internal and external process controls, seamless sample transfer, 
maintenance, backup to downtime of the equipments and 
cleaning protocols.

Compliance with the European In Vitro 
Diagnostic Regulation

The EU In Vitro Diagnostic Regulation (IVDR, Regulation 
2017:746) is applicable to essentially all in vitro diagnostic medical 
devices. IVDR establishes a risk-based classification system for such 
devices (Class A: low patient and public health risk; B: moderate 
patient and/or low public health risk; C: high patient and/or moderate 
public health risk; D: high patient and high public health risk). The 
IVDR mandates oversight, detailed technical documentation, and 
post-market surveillance based on a comprehensive quality 
management system (QMS). The QMS is not only critical for 
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compliance, it also demonstrates regulatory readiness of device 
manufacturers. There is no obligation to use the European harmonized 
standard ISO13485:2016 QMS, but this standard does serve as a point 
of reference for organizations involved in the design, manufacturing, 
installation, and servicing of in  vitro diagnostic devices. This 
internationally recognized certification is important as it aligns with 
patient safety, increased customer satisfaction, and regulatory 
compliance. IVDR assessment requires a Notified Body (NB) which 
is an organization designated by an EU Member State to assess the 
conformity of new with existing IVD products before the new one can 
be placed on the market (82). Regulatory agencies such as the US 
Food and Drug Administration (FDA) are updating their regulations 
to be consistent with the IVDR and other regulations in other parts of 
the world. Any gAST application to be brought into clinical practice 
will have to “survive” NB assessments and IVDR and FDA demands. 
It has been suggested that the new IVDR is detrimental to clinical 
microbiologists since it may limit the use of home-brewn, laboratory-
developed tests that are important in the diagnosis of emerging or rare 
pathogens. In this way also the financial balance of microbiology 
laboratories might be  affected (83). Others are more positive and 
provide guidelines for meeting the IVDR, even in case of laboratory 
developed tests (84, 85). Currently, there are no FDA or IVDR 
compliant gAST tests available. This will probably change in the not 
too far away future.

Market access and market acceptance

gAST market access and market acceptance will probably 
hitchhike with other genomic microbiology applications but are first 
and foremost facilitated by the supposedly high quality of the new 
tests. This should be visualized by comparisons of the new tests with 
the reigning Gold Standard processes [e.g., (86–88)]. Market 
acceptance is then dependent on early adopting clients that confirm 
the published advantages of the new test and as such promote uptake 
by the entire diagnostic community. Obviously the safety and 
effectiveness of the new IVD devices shoud be warranted and test 
should be  affordable and largely falling within the REASSURED 
criteria. Again, at present none of the gAST tests are actually close to 
the stage where they approach commercial market access despite a 
significant body of academic literature supporting their usefulness. 
The development of appropriate target product profiles for new gAST 
tests could help improve their design and applicability and with that 
customer acceptance (88, 89).

Clinical impact

US Clinical Laboratory Improvement Amendment (CLIA) 
regulations establish quality standards for laboratory testing 
performed on human specimens (blood, body fluid, tissue etc). This 
is done for diagnosis, prevention, or treatment of disease, or 
assessment of health. CLIA requirements focus on laboratory 
processes and personnel, while IVDR compliance requires a new test 
to clearly show added clinical value. A CLIA Waiver is a certification 
that allows certain diagnostic tests to be performed in non-laboratory 
settings (e.g., general practitioner’s offices or pharmacies). These tests 
are simple and carry a small risk of producing erroneous results. 

Under these conditions, laboratories can legally examine persons 
through waived tests in order to assess health and treatment. The 
CLIA positioning needs to be  defined by comparison and 
reproducibility studies. The intended use of a test should already 
be indicative of its prospective clinical value. Scientific and clinical 
validity need to be defined and have to be demonstrated in practice. 
This should be based on a review of the published data during routine 
diagnostic testing and a performance concept of equivalence and 
similarity (90). Clinical studies need to be  of sufficient size and 
geographic and institutional diversity. Clinical impact studies for 
gAST are essentially lacking at this stage although in case of the 
detection of antibiotic resistant tuberculosis important steps have been 
taken (91). More studies where gAST is compared with reigning AST 
technologies in large-throughput routine clinical microbiology 
laboratories for positive gAST health-economic effects are needed.

Conclusion

As mentioned above, gAST has been shown to be functioning 
very well in a variety of diagnostic niches. Still, both IVDR companies 
and (high-throughput) clinical microbiology laboratories are not 
ready for routine application of gAST yet. This is most obvious in 
resource limited settings but even in developed economies gAST may 
be hard to afford. The costs for gAST are not yet competitive with 
those of more classical AST formats (92–94). Further, the need for 
NGS laboratory expertise and equipment, management of rapidity, a 
lesser test complexity and improved data interpretation are not yet 
fool-proof and continuous system development is warranted. 
However, when costs go down and automation up, future integration 
of gAST in microbiological diagnostics and public health management 
is foreseen (95). Even the position of classical microbiological 
cultivation may then be disputed since NGS allows for characterization 
of all nucleic acid molecules present in a clinical sample. Such 
microbiome and “infectome” targeting strategies may in the end 
provide a cost effective diagnostic panacea.

The recent transition to stricter IVDR has been a challenge to 
manufacturers of IVDs. Many have had to make changes to their 
products and their quality management systems (QMS) in order to 
comply with the new regulation. It is also important to note that gAST 
will remain a dynamic methodology where many more near-future 
changes in technology, data management and data interpretation are 
foreseen. Regulators need to come up with a strategy that would allow 
a fluent way of integrating such changes while avoiding lengthy (and 
costly) validation and verification processes. At the same time, NBs 
have become significantly more busy posing another limitation on 
rapid market access for new AST methods. Finally, we do need to find 
an NGS method that allows for accurate MIC-level quantitative 
AST. Rapid reporting of results is of utmost important for reaching 
adequate clinical impact. Results should also be actionable and devoid 
of unnecessary jargon. Obviously, we do need to realize that classical 
bacteriology will never become redundant since we will always need 
viable bacterial strains for storage, historical comparisons and the 
development of biobanks that have a broad impact on all aspects on 
infectious disease management. Most importantly, the current global 
need for improved RAST should drive development toward excellent 
and cheap rather than all-encompassing and expensive. To date, gAST 
cannot replace phenotypic RAST.
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