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Background: Subarachnoid hemorrhage (SAH) is increasingly recognized as a 
PM2.5-linked neurological emergency, yet global spatiotemporal burden evidence 
across socioeconomic, demographic, and geographic subgroups remains scarce, 
impeding tarsgeted prevention. This study quantifies current burden, trends, and 
future SAH projections attributable to PM2.5 using the latest data.
Methods: Using data from the Global Burden of Disease Study 2021, we analyzed 
deaths and disability-adjusted life years (DALYs) from SAH attributable to 
ambient PM2.5 pollution (1990–2021) across 204 countries/territories, stratified 
by age, sex, region, and Socio-demographic Index (SDI). Temporal trends were 
quantified using estimated annual percentage changes (EAPCs), and Bayesian 
age-period-cohort modeling projected disease burden through 2050.
Results: Between 1990 and 2021, global age-standardized mortality (ASMR) and 
DALY rates (ASDR) for PM2.5-related SAH declined by 36% (0.99 to 0.63 per 100,000) 
and 34% (27.42 to 17.96 per 100,000), respectively. However, absolute deaths surged 
40% (38,130 to 53,562), driven by aging populations and demographic shifts. Burden 
disparities were stark: Middle SDI regions had the highest ASMR (1.07, 95% UI, 
0.68–1.43) and ASDR (27.42, 95% UI: 17.96–35.65), while high SDI regions achieved 
the steepest declines (−67% ASMR). South Asia (+246% deaths) and Southeast Asia 
(+147% deaths) experienced the most rapid mortality growth, contrasting with East 
Asia’s high absolute burden (229,553 deaths in 2021). Males faced higher risks (ASMR: 
0.72, 95% UI: 0.48–0.99) compared with females (0.55, 95% UI: 0.36–0.75). In South 
Asia, the female mortality share was rising from 31 to 41%. Mongolia had the highest 
national burden [2.49 (95% UI, 1.23–3.82) and ASDR of 61.92 (95% UI, 30.6–93.24)], 
while Central Asia and Southern Sub-Saharan Africa exhibited worsening trends. 
Projections indicate a resurgence in ASMR and ASDR by 2050, disproportionately 
impacting low-middle SDI regions.
Conclusion: Despite declining age-standardized rates, a 40% surge in absolute PM2.5-
attributable SAH deaths over three decades, due to aging populations and regional 
inequalities (e.g., South Asia +246% deaths, Middle SDI highest ASMR), demands 
urgent air-quality and healthcare policies for high-growth Asian and African regions 
and vulnerable low-middle SDI populations to curb projected 2050 increases.
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Introduction

Subarachnoid hemorrhage (SAH), a devastating form of 
hemorrhagic stroke caused by bleeding into the subarachnoid space, 
represents a critical global health challenge with substantial regional 
variations in disease burden (1, 2). SAH, a devastating form of 
hemorrhagic stroke caused by bleeding into the subarachnoid space, 
accounts for 5–10% of all stroke cases globally and is associated with 
high mortality rates, particularly in regions such as Central Asia and 
Eastern Europe (3). According to the Global Burden of Disease Study 
2021, while the crude incidence of SAH increased by 37.09% from 
1990 to 2021, the age-standardized incidence rates decreased 
significantly (EAPC: -1.52; 95% UI -1.66 to −1.37) (4). International 
comparisons reveal striking disparities, with the highest 
age-standardized incidence rates observed in the high-income Asia 
Pacific region at 14.09 per 100,000 population, while regions such as 
East Asia experienced substantial decreases with an estimated annual 
percentage change of −3.60 (1, 4). The global incidence declined from 
10.2 per 100,000 person-years in 1980 to 6.1 in 2010, with notable 
variations according to region, blood pressure levels, and smoking 
prevalence (5). These epidemiological disparities between countries 
and regions highlight the necessity for comprehensive global research 
initiatives to understand underlying risk factors, optimize prevention 
strategies, and improve treatment protocols across diverse populations 
and healthcare systems.

The emerging evidence for environmental pollutants as modifiable 
risk factors for SAH has garnered increasing attention in recent 
epidemiological research, with multiple studies demonstrating 
significant associations between air pollution exposure and 
cerebrovascular events (6, 7). PM2.5, a pollutant capable of penetrating 
the bloodstream and inducing systemic inflammation and oxidative 
stress, has been linked to cerebrovascular damage and aneurysm 
rupture (8–10). Recent studies suggest that even short-term exposure 
to PM2.5 increments as low as 1 μg/m3 may elevate SAH risk by 1.7%, 
underscoring its public health significance (11). A landmark study in 
South Korea revealed gender-specific associations, showing that 
districts with higher interquartile range concentrations of NO₂ 
(12.2 ppb), SO₂ (1.41 ppb), and PM₁₀ (9.4 μg/m3) had 1.06, 1.06, and 
1.05-fold higher mortality rates from SAH in females, respectively, 
while no significant associations were observed in male (12). This 
finding is corroborated by research indicating that air pollution effects 
on stroke mortality demonstrate stronger associations in women than 
men, potentially due to differential susceptibility mechanisms (13). 
Additional research from Seoul demonstrated that among 
meteorological and pollutant variables, ozone was independently 
associated with subarachnoid hemorrhage occurrence (14), while 
global burden studies indicate that air pollution-related stroke deaths, 
including SAH, reached 1,989,686 deaths globally in 2021 (15). These 
findings collectively emphasize the critical importance of 
environmental pollution as a modifiable risk factor for SAH and 
highlight the urgent need for public health interventions targeting air 
quality improvement as a strategy for cerebrovascular 
disease prevention.

Despite growing recognition of PM2.5’s role in SAH, critical 
knowledge gaps persist. First, the burden of PM2.5-attributable SAH 
across diverse geographic and demographic subgroups remains poorly 
quantified. For instance, sex-specific susceptibility (e.g., heightened 
male vulnerability potentially tied to vascular physiology) (16), and 

age-related disparities (e.g., increased risks in children and the older 
adults due to developmental or immunosenescence factors) (17, 18) 
warrant systematic investigation. Second, socioeconomic inequities, 
as reflected by the Socio-Demographic Index (SDI), may exacerbate 
PM2.5-related SAH burdens in low-resource settings with limited air 
quality regulations (19–21). Third, while prior ecological studies have 
examined regional PM2.5-SAH associations (22, 23), no global analysis 
has projected long-term trends to inform policy planning. Therefore, 
this study uses the latest GBD 2021 data to assess the global disease 
burden (mortality and DALYs) of SAH caused by PM2.5 (both APMP 
and HAP), analyze the trends from 1990 to 2021 with the EAPC to 
better understand the complex patterns, forecast the future burden of 
PM2.5-attributable SAH until 2050, and examine these burdens and 
trends across different countries, regions, genders, and age groups.

Methods

Study data

The GBD 2021 delivers through evaluation of disease, injury, and risk 
factor burden across 204 countries and territories, encompassing 88 risk 
factors (24, 25). This research offers findings on incidence, prevalence, 
mortality, DALYs, YLDs, and YLL for 371 diseases in 204 countries and 
regions. It uses data on 88 risk factors from 1990–2021, along with 
associated uncertainty intervals (UIs). Study data were sourced from the 
GBD 2021, accessible through https://ghdx.healthdata.org/gbd-2021. The 
risks are organized into a four-tier hierarchy: Level 1 encompasses 
environmental, occupational, behavioral, and metabolic risks; Level 2 
details include 20 broader categories such as air pollution and high BMI; 
Level 3 encompasses more nuanced risks, including particulate matter 
pollution and child growth failure, representing some of the most detailed 
categorizations. Further refinement occurs at Level 4, which breaks down 
risks from Level 3 into even more specific classification, such as ambient 
particulate matter pollution and child stunning. The four-level risk 
hierarchy is based on the well-established comparative risk assessment 
(CRA) framework developed by the Global Burden of Disease (GBD) 
Study, which has been widely adopted as the international standard for 
risk factor quantification (26, 27). Data processing followed standardized 
GBD protocols (24, 25). Input data underwent: Quality grading (0–5 stars 
based on completeness, diagnostic specificity, and representativeness), 
Bias adjustment via spatial–temporal meta-regression, Ensemble 
modeling integrating 43 cause-of-death models. This framework replaces 
conventional systematic review tools by directly quantifying uncertainty 
from source heterogeneity.

The Socio-demographic Index (SDI) measures development by 
amalgamating income, education, and fertility data, classifying regions 
into five development stages from Low to High SDI, reflecting population 
wealth and education levels. Specifically, the SDI ranges are as follows: 
Low SDI from 0 to 0.4658, low-middle SDI from 0.4658 to 0.6188, Middle 
SDI from 0.6188 to 0.7120, High-middle SDI from 0.7120 to 0.8103, and 
High SDI from 0.8103 to 1.

In the 10th edition of the International Classification of Disease 
(ICD-10), subarachnoid hemorrhage is classified under codes 
I60-I60.9, I62.0, I67.0-I67.1, and I69.0. The ICD-10 assigns the code 
430–430.9 to subarachnoid hemorrhage.

DALY (Disability-Adjusted Life Years): A summary measure of 
population health that quantifies the burden of disease by combining 
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years of life lost due to premature mortality and years lived with disability, 
weighted by the severity of the disability (28). ASMR (Age-Standardized 
Mortality Rate): A mortality rate that has been adjusted to account for 
differences in age structure between populations, allowing for valid 
comparisons across different populations and time periods (29). ASDR 
(Age-Specific Death Rate): The number of deaths in a specific age group 
per 100,000 population in that same age group during a given time 
period (30).

Definition of ambient PM2.5

Ambient particulate matter pollution refers to the annual 
average concentration of PM2.5, particles smaller than 2.5 
micrometers in diameter, in the air, weighted by population 
exposure. This estimation integrates data from various sources, such 
as satellite aerosol observations, ground-level air quality monitors, 
chemical transport models, demographic data, and land-use 
information. For the GBD 2021, the dataset was expanded with 
newer ground monitor readings from both pre-existing and newly 
added sites. Additional contributions to the database came from 
sources such as the European Environment Agency, the United   
States Environmental Protection Agency, and the OpenAQ 
initiative (31).

Statistical analysis

The Estimated Annual Percentage Change (EAPC) serves as a 
pivotal indicator for monitoring the progression of Age-Standardized 
Rate (ASR) across time. It is determined within a regression 
framework defined as y = α + βx + ε, where y corresponds to the 
annual rate change to per 100,000 individuals, α represents the 
intercept, β represents the slope, x is the calendar year, and ε is the 
error term. The EAPC calculation is based on the formula:

	 ( )( )EAPC 100 exp –1∗= β

With the 95% confidence interval (CI) extracted directly from the 
linear regression model parameters. Statistical significance is 
established for two-sided p-values below 0.05.

In parallel, the Pearson correlation coefficient was applied to 
evaluate the relationship between ASR and the SDI, with significance 
indicated by p-values less than 0.001. These analyses were conducted 
using R software, version 4.4.1.

Projection analysis

The Bayesian Age-Period-Cohort (BAPC) R package is a 
statistical tool designed for projecting future disease burdens 
using a Bayesian framework (29). We  employed age-specific 
population data spanning from 1990 to 2021, along with 
projections for 2022 to 2050, to assess trends in mortality and 
DALYs among populations. For our analysis, we adhered to the 
standard parameters provided with the BAPC packages, leveraging 
its default settings to effectively model.

Results

Global PM2.5-attributable SAH burden by 
regions from 1990 to 2021

The trends in age-standardized mortality rates (ASMR) and 
age-standardized DALY rates (ASDR) for SAH attributed to ambient 
PM2.5 have shown a downward trend from 1990 to 2021, except for 
regions with low-middle SDI (Figure 1 and Supplementary Figure S1). 
Despite a decline in ASMR from 0.99 (95% UI, 0.60–1.50) in 1990 to 0.63 
(95% UI, 0.43–0.82) in 2021, the death toll rose from 38,129.84 (95% UI, 
23,179.25–57695.62) in 1990 to 53,561.65 (95% UI, 36,516.80-69,717.63) 
in 2021. Within the spectrum of SDI regions, middle SDI exhibited the 
highest ASMR and ASDR at 1.07 and 27.42, respectively. In addition, high 
SDI regions experienced the most pronounced decline in ASMR and 
ASDR, from 0.66 and 20.9 in 1990 to 0.22 and 7.14 in 2021. Turning to 
gender differences, ASMR for SAH due to PM2.5 was higher in male at 
0.72 compared to female at 0.55 in 2021 (Tables 1, 2).

Among the 21 GBD regions, South Asia and Southeast Asia 
experienced the most notable increase in SAH deaths attributed to 
PM2.5 by 2021 (Figure 2). Death numbers in South and Southeast Asia 
increased from 3,201.81 and 2,149.93  in 1990 to 11,091.32 and 
5,309.19 in 2021. Nevertheless, East Asia bore the greatest burden, 
with the highest death and DALY figures peaking at 229,552.99 and 
563,441.41 (Figure 2, Supplementary Figure S1, and Tables 1, 2). In 
contrast, high SDI regions such as Australasia and Oceania exhibited 
lower PM2.5-attributable SAH burdens, with death numbers recorded 
at 66 (95% UI, 39.03–100.57) and 31.82 (95% UI, 9.85–71.45), and 
DALY numbers at 1,630.4 (95% UI, 964.32–2,422.15) and 1,204.59 
(95% UI, 378.66–2,724.32) (Tables 1, 2). Furthermore, in South Asia, 
the proportion of female deaths increased significantly, from 31.0% in 
1990 to 40.9% in 2021 (Figure 2).

Global trends of PM2.5-related SAH burden

Nationally, Mongolia had the highest burden of subarachnoid 
hemorrhage attributable to ambient PM2.5, with an ASMR of 2.49 (95% 
UI, 1.23–3.82) and ASDR of 61.92 (95% UI, 30.60–93.24) in 2021. 
Moreover, the EAPC in ASMR showed the most significant increasing 
trend at 5.26 (95% CI, 4.69–5.84) (Supplementary Tables S1, S2). 
Similarly, increasing trends in ASMR and ASDR were noted across 
South Asia, Central Asia and Southern Sub-Saharan Africa (Figure 3).

Conversely, on a global scale, the EAPC for both ASMR and ASDR 
showed a decline in most countries, particularly in North America, 
Europe, Oceania, and South America. Notably, exhibited the most 
pronounced decreases in EAPC for ASMR and ASDR, at −7.01 (95% 
CI, −7.48 to −6.53) and −7.25 (95% CI, −7.66 to −6.84), respectively.

Age-specific global burden of SAH due to 
PM2.5: 1990–2021

Between 1990 and 2021, the PM2.5-attributable death and DALYs 
of SAH saw a consistent annual decline across all age groups. By 2021, 
the disease burden had lessened in comparison to 1990 for every age 
demographic (Figure 4 and Supplementary Figure S2). Notably, a 
downward trend in the burden for those over 50 years old was 
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observed starting around 2000. For those under 50, although the 
death burden was comparatively minor, a decline has been noted since 
the early 2000s (Figure 4). The death among those aged 85 and above 
showed a brief increase between 1999 and 2003, followed by a decline. 

Between 1990 and 2021, there was a notable decrease in global 
age-stratified DALYs from SAH across all age groups. However, from 
2012 to 2017, there was a slight increase in DALYs for individuals aged 
70–74 (Supplementary Figure S2).

FIGURE 1

Number and age-specific rates of disease burden (A. number of death and  age-standardized death rates; B. DALYs and  age-standardized DALYs rates)   
for subarachnoid hemorrhage attributed to PM2.5 across five SDI quintiles, 1990–2021.
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TABLE 1  Trends in PM2.5-Attributable subarachnoid hemorrhage mortality from 1990 to 2021 by geographic region.

Characteristics 1990 2021 1990–2021

The number of deaths 
(95% UI)

Age-standardized death 
rates (95% UI)

The number of deaths 
(95% UI)

Age-standardized death 
rates (95% UI)

EAPC of age-
standardized death rates 

(95% CI)

Global 38129.84 (23179.25–57695.62) 0.99 (0.6–1.5) 53561.65 (36516.8–69717.63) 0.63 (0.43–0.82) −1.73 (−1.98--1.48)

Female 18263.68 (11080.11–27633.28) 0.87 (0.53–1.32) 25512.76 (16647.26–34523.29) 0.55 (0.36–0.75) −1.83 (−2.09--1.57)

Male 19866.15 (10374.06–32984.81) 1.13 (0.57–1.89) 28048.9 (18640.12–38656.26) 0.72 (0.48–0.99) −1.66 (−1.92--1.4)

Low SDI 853.13 (323.21–1670.96) 0.38 (0.14–0.75) 1810.62 (815.05–3563.04) 0.35 (0.16–0.69) −0.03 (−0.34–0.27)

Low-middle SDI 3364.78 (1692.98–5863.75) 0.55 (0.27–0.97) 9129.25 (4917.95–14337.5) 0.63 (0.34–0.99) 0.64 (0.38–0.89)

Middle SDI 15745.67 (7707.4–26582.97) 1.68 (0.78–2.87) 27225.42 (17331.6–36189.65) 1.07 (0.68–1.43) −1.8 (−2.16--1.44)

High-middle SDI 11035.37 (6768.97–16841.99) 1.17 (0.72–1.79) 10782.99 (7834.57–14951.13) 0.56 (0.4–0.77) −2.68 (−2.96--2.4)

High SDI 7096.72 (4349.21–10,500) 0.66 (0.4–0.98) 4579.75 (3079.52–6324.39) 0.22 (0.15–0.3) −3.8 (−4.01--3.58)

Australasia 37.85 (1.31–107.73) 0.17 (0.01–0.47) 66 (39.03–100.57) 0.12 (0.07–0.19) −1.45 (−1.95--0.94)

Oceania 13.11 (3.25–33.27) 0.45 (0.12–1.16) 31.82 (9.85–71.45) 0.42 (0.13–0.94) −0.44 (−0.65--0.24)

East Asia 17599.29 (6747.62–33368.15) 2.47 (0.92–4.69) 22952.99 (14079.23–31507.05) 1.13 (0.69–1.54) −2.93 (−3.45--2.41)

Central Asia 258.35 (101.52–498.76) 0.56 (0.22–1.08) 677.3 (441.5–898.15) 0.88 (0.57–1.17) 2.31 (1.7–2.94)

South Asia 3201.81 (1262.05–6673.73) 0.54 (0.21–1.15) 11091.32 (6047.88–17680.03) 0.73 (0.4–1.18) 1.22 (0.87–1.57)

Southeast Asia 2149.93 (926.12–4112.56) 0.88 (0.37–1.69) 5309.19 (3332.28–7740.99) 0.86 (0.53–1.28) −0.53 (−0.78--0.28)

High-income Asia Pacific 2017.2 (575.73–4095.88) 1 (0.29–2.04) 1846.9 (1045.07–2782.59) 0.41 (0.24–0.61) −3.13 (−3.41--2.86)

Eastern Europe 2775.65 (1328.7–4386.38) 1.07 (0.51–1.7) 1522.11 (958.75–2291.31) 0.46 (0.29–0.69) −3.6 (−4.44--2.76)

Central Europe 1382.59 (696.32–2265.16) 0.96 (0.48–1.57) 885.62 (648.99–1132.93) 0.42 (0.31–0.54) −2.45 (−2.94--1.96)

Western Europe 2897.67 (1369.3–4861.51) 0.53 (0.25–0.89) 1435.41 (978.03–2032.32) 0.15 (0.1–0.21) −4.08 (−4.49--3.67)

High-income North America 1163.74 (455.74–2059.58) 0.35 (0.14–0.62) 628.73 (308.36–1026.18) 0.1 (0.05–0.16) −4.34 (−4.83--3.85)

Andean Latin America 388.37 (188.07–642.09) 1.75 (0.84–2.91) 565.01 (350.29–864) 0.94 (0.58–1.43) −2.57 (−2.91--2.24)

Central Latin America 631.22 (337.12–1016.29) 0.7 (0.37–1.13) 1169.86 (787.5–1603.93) 0.47 (0.31–0.64) −1.28 (−1.66--0.9)

Southern Latin America 566.11 (255.04–991.14) 1.24 (0.56–2.17) 396.71 (224.36–613.98) 0.46 (0.26–0.72) −3.29 (−3.55--3.03)

Tropical Latin America 734 (267.06–1456.55) 0.69 (0.25–1.36) 1134.64 (645.84–1745.82) 0.44 (0.25–0.67) −1.65 (−2.08--1.22)

Caribbean 138.56 (46.62–272.64) 0.52 (0.18–1.03) 237.75 (120.07–391.44) 0.44 (0.22–0.73) −0.38 (−0.62--0.15)

North Africa and Middle East 1604.5 (954.99–2567.03) 1.01 (0.58–1.67) 2495.71 (1834.33–3381.13) 0.58 (0.43–0.79) −1.74 (−1.86--1.63)

Eastern Sub-Saharan Africa 129.64 (36.37–321.32) 0.17 (0.05–0.43) 251.89 (73.01–664.17) 0.14 (0.04–0.38) −0.27 (−0.42--0.12)

Central Sub-Saharan Africa 43.12 (14.83–98.58) 0.2 (0.07–0.47) 120.54 (41.65–305.2) 0.21 (0.07–0.54) 0.61 (0.41–0.8)

Southern Sub-Saharan Africa 60.56 (38.18–85.53) 0.21 (0.13–0.3) 134.7 (88.85–182.88) 0.23 (0.15–0.31) 0.68 (0.36–1.01)

Western Sub-Saharan Africa 336.54 (109.43–862.02) 0.37 (0.12–0.94) 607.45 (205.17–1469.05) 0.28 (0.1–0.68) −0.41 (−0.77--0.05)
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TABLE 2  Trends in PM2.5-attributable subarachnoid hemorrhage DALYs from 1990 to 2021 by geographic region.

Characteristics 1990 2021 1990–2021

The number of DALYs 
(95% UI)

Age-standardized DALY 
rates (95% UI)

The number of DALYs 
(95% UI)

Age-standardized DALY 
rates (95% UI)

EAPC of age-
standardized DALY rates 

(95% CI)

Global 1136504.59 (725374.86–1657604.7) 27.12 (17.2–39.78) 1531352.88 (1031890.49–1965982.25) 17.77 (11.98–22.81) −1.57 (−1.79--1.35)

Female 519297.16 (325552.47–764903.3) 23.83 (14.86–35.11) 701096.65 (460918.33–935483.09) 15.55 (10.23–20.78) −1.65 (−1.88--1.41)

Male 617207.43 (353967.98–981307.6) 30.68 (17.24–49.23) 830256.23 (549880.1–1108338.4) 20.11 (13.32–26.8) −1.52 (−1.74--1.29)

Low SDI 29364.8 (11976.45–55548.63) 11.14 (4.48–21.31) 63476.64 (29786.94–119538.2) 10.36 (4.89–19.54) −0.04 (−0.33–0.25)

Low-middle SDI 114985.65 (60478.91–195482.12) 16.15 (8.38–27.48) 305708.73 (166503.28–471027.81) 19.01 (10.33–29.37) 0.74 (0.48–1)

Middle SDI 453423.98 (241156.84–749808.04) 40.98 (21.3–68.42) 749039.08 (493468.67–974188.99) 27.42 (17.96–35.65) −1.56 (−1.86--1.26)

High-middle SDI 320158.66 (203251.49–482516.48) 31.54 (20.02–47.6) 286623.85 (208435.32–379811.76) 15.2 (11.06–20.11) −2.59 (−2.84--2.35)

High SDI 217428.11 (135457.36–319658.05) 20.9 (13.01–30.71) 125494.42 (87242.4–168096.24) 7.14 (5.07–9.5) −3.7 (−3.87--3.54)

Australasia 1129.61 (38.04–3231.74) 5.01 (0.17–14.33) 1630.4 (964.32–2422.15) 3.51 (2.06–5.21) −1.62 (−2.14--1.11)

Oceania 494.23 (124.71–1200.94) 13.35 (3.45–33.1) 1204.59 (378.66–2724.32) 12.66 (4.01–28.13) −0.36 (−0.56--0.16)

East Asia 462152.05 (182873.28–871332.36) 53.42 (20.91–101.51) 563441.41 (351404.57–757793.66) 26.52 (16.55–35.56) −2.53 (−2.99--2.05)

Central Asia 8619.73 (3429.83–16476.52) 17.08 (6.79–32.69) 20,861 (13714.72–27559.62) 23.71 (15.57–31.27) 1.74 (1.22–2.28)

South Asia 112048.73 (46306.16–221706.98) 16.21 (6.55–32.77) 374251.52 (205343.24–578196.05) 22.75 (12.49–35.31) 1.32 (0.97–1.66)

Southeast Asia 72081.99 (31321.32–135952.62) 24.63 (10.61–46.8) 169509.32 (107009.67–236520.16) 24.16 (15.27–33.78) −0.49 (−0.72--0.26)

High-income Asia Pacific 64440.63 (18166.53–128105.47) 31.39 (8.89–62.38) 51137.29 (30294.83–75689.97) 14.33 (8.61–21.14) −2.74 (−3.02--2.46)

Eastern Europe 82583.34 (39862.72–131681.38) 30.86 (14.88–49.18) 40797.18 (25687.4–61238.44) 13.16 (8.32–19.74) −3.58 (−4.24--2.92)

Central Europe 46349.59 (23110.98–75666.32) 31.99 (15.95–52.18) 23736.47 (17562.96–30334.88) 12.91 (9.55–16.48) −2.77 (−3.24--2.3)

Western Europe 84976.52 (40828.54–142127.69) 16.89 (8.14–28.3) 32847.55 (22628.83–45727.77) 4.21 (2.89–5.85) −4.51 (−4.87--4.15)

High-income North America 37555.47 (14752.04–65443.57) 11.72 (4.61–20.42) 16368.8 (8020.23–26548.32) 2.94 (1.44–4.76) −4.8 (−5.23--4.37)

Andean Latin America 14151.84 (6925.91–22954.87) 57.26 (27.67–93.31) 18350.83 (11429.34–28120.04) 29.14 (18.11–44.62) −2.75 (−3.09--2.42)

Central Latin America 23833.47 (12728.54–38573.97) 23.21 (12.39–37.58) 36511.78 (24532.9–49058.32) 14.04 (9.42–18.85) −1.67 (−1.99--1.35)

Southern Latin America 18588.98 (8457.46–32508.09) 39.77 (18.08–69.59) 11829.43 (6783.69–18333.56) 14.44 (8.28–22.36) −3.44 (−3.67--3.22)

Tropical Latin America 29473.54 (10863.27–58361.13) 25.37 (9.36–50.16) 36069.44 (20845.19–54927.61) 13.69 (7.91–20.84) −2.31 (−2.7--1.91)

Caribbean 4796.3 (1620.12–9505.47) 17.13 (5.8–34) 7658.72 (3781.95–12670.84) 14.5 (7.17–23.99) −0.37 (−0.61--0.13)

North Africa and Middle East 52418.13 (32355.21–78672.59) 27.34 (16.56–41.69) 82059.52 (60696.74–107334.87) 15.9 (11.83–20.98) −1.77 (−1.88--1.66)

Eastern Sub-Saharan Africa 4609.94 (1529.63–10462.43) 5.19 (1.71–11.96) 9572.38 (3238.94–23195.32) 4.43 (1.52–10.72) −0.13 (−0.28–0.03)

Central Sub-Saharan Africa 1550.14 (601.31–3325.94) 5.89 (2.28–12.88) 4539.92 (1775.84–10751.81) 6.53 (2.58–15.56) 0.74 (0.54–0.94)

Southern Sub-Saharan Africa 2447.72 (1527.92–3438.78) 7.53 (4.7–10.57) 4980.67 (3292.21–6837.76) 7.53 (5.02–10.25) 0.38 (0.1–0.66)

Western Sub-Saharan Africa 12202.66 (4441.79–29598.49) 11.87 (4.33–28.61) 23994.66 (9149.55–53345.06) 9.41 (3.6–20.8) −0.26 (−0.61–0.11)
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PM2.5-attributable SAH burden in 2021, 
SDI-stratified

In the comparative analysis of PM2.5-attributable SAH burden across 
countries and territories with varying SDI levels. It was found that the 
correlation between ASMR and SDI mirrored that between ASDR and 
SDI. However, a significant trend was not observed, with the p-value 
exceeding 0.05. The disease burden due to PM2.5 in SAH was 
predominantly greater in countries or regions with an SDI ranging from 
0.6 to 0.7 and lower in those with an SDI below 0.4 or above 0.8 (Figure 5).

Future projection of global SAH burden

Between 1990 and 2021, the ASMR and ASDR for SAH 
attributable to ambient PM2.5 exhibited slightly fluctuations. This 
period witnessed a complex interplay of factors influencing the health 
outcomes related to ambient PM2.5 exposure. Looking ahead, from 
2022 to 2050, there is a projected increase in both ASMR and ASDR 
for SAH due to ambient PM2.5, indicating a potential escalation in the 
disease burden (Figure 6 and Supplementary Figure S3).

Discussion

Global trends and paradoxical findings

This study provides a comprehensive analysis of the global 
disease burden of SAH attributable to ambient PM2.5 pollution 
across regions, genders, age groups, and SDI levels from 1990 to 
2021, with projections extending to 2050. While previous studies 
have investigated PM2.5-associated stroke burden, this work 
uniquely quantifies the sex-specific temporal trends and aging-
related vulnerability patterns in SAH burden, while integrating 
future projections through robust modeling approaches (32–34).

The paradoxical 40.4% increase in absolute SAH deaths from 
38,129.84 to 53,561.65 despite a 36.4% decline in age-standardized 
mortality rates (from 0.99 to 0.63 per 100,000) reflects the 
complex interplay of demographic and epidemiological factors 
over the 32-year study period. This apparent contradiction can 

be  attributed to several key demographic transitions: (1) 
population aging dynamics-the global population aged ≥60 years 
increased by approximately 180% during this period, creating a 
substantially larger at-risk population despite improved per-capita 
risk profiles (35). (2) overall population growth  - the world 
population expanded from 5.3 billion in 1990 to 7.9 billion in 
2021, representing a 49% increase in the denominator for absolute 
case calculations (36). and (3) persistent environmental health 
disparities - while high-income regions achieved substantial PM2.5 
reductions, rapid industrialization in South Asia and Sub-Saharan 
Africa maintained or increased exposure levels for 
large populations.

This demographic-epidemiologic paradox illustrates a critical 
limitation in public health assessment: age-standardized rates, 
while essential for comparing risk across populations and time 
periods, may underestimate the true societal burden when applied 
to aging populations with age-sensitive health outcomes. The 
divergence between these metrics emphasizes that successful risk 
reduction strategies at the individual level can be overwhelmed by 
demographic shifts, necessitating integrated approaches that 
address both exposure reduction and healthcare system capacity 
for aging populations. Furthermore, the absolute increase in 
deaths predominantly occurred in low-and middle-income 
countries (contributing 78% of the excess deaths), highlighting 
persistent global health inequities in environmental protection 
and healthcare access (37, 38).

Regional disparities and socioeconomic 
development index patterns

The pronounced regional disparities underscore differential 
progress in environmental health. High SDI regions achieved the 
most substantial improvements (ASMR: 0.66 to 0.22), likely 
reflecting stringent air quality standards and advanced healthcare 
systems (39). The 65.8% ASDR reduction in high SDI regions 
(20.9 to 7.14) demonstrates the effectiveness of integrated 
environmental-health interventions, providing a roadmap for 
middle SDI countries (40).

Conversely, middle SDI regions bear the highest SAH burden 
(ASMR 1.07), trapped in a developmental phase combining 
industrializing economies with insufficient pollution controls. 
These regions experience rapid industrialization, environmental 
pollution, and limited medical resources, leading to a higher 
disease burden of PM2.5-related SAH, particularly in South and 
East Asia (41). Low-middle SDI regions’ unfavorable trends may 
indicate persistent barriers in pollution control and healthcare 
access (42).

Geographical distribution and 
country-specific findings

The striking geographical disparities in subarachnoid hemorrhage 
burden attributable to ambient PM2.5 exposure reflect the complex 
interplay between environmental pollution levels, healthcare 
infrastructure, and socioeconomic development across different 
regions. Mongolia’s position as having the highest national burden, 
with an age-standardized mortality rate of 2.49 per 100,000 and a 

FIGURE 2

Deaths from subarachnoid hemorrhage attributed to PM2.5 by GBD 
and SDI regions in 1990 (A) and 2021 (B), with proportional 
distributions in 1990 (C) and 2021 (D).
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concerning annual increase of 5.26%, underscores the urgent need for 
targeted air quality interventions in this region.

South and Southeast Asia exhibited the steepest increases in 
PM2.5-attributable SAH deaths (South Asia: +246.5%, Southeast Asia: 
+147.0%), aligning with satellite-derived PM2.5 concentration trends 
showing population-weighted annual averages exceeding 75 μg/m3 in 
Bangladesh and India (43). These regions face compounded challenges 
including inadequate neurosurgical infrastructure (44) and limited 
implementation of WHO air quality guidelines (45, 46) creating a 
“double burden” of environmental and healthcare system deficiencies. 
The pronounced increasing trends observed in South Asia, Central 
Asia, and Southern Sub-Saharan Africa align with the rapid 
industrialization and urbanization occurring (Figure 3) (47, 48). Air 
pollution in South Asia results from a complex interplay of emission 

sources beyond industrial activities, including the combustion of solid 
fuels for cooking and heating, emissions from small industries such as 
brick kilns, the burning of municipal and agricultural waste, and 
cremation practices (49, 50). In contrast, East Asia’s substantial 
absolute burden (229,552.99 deaths in 2021) reflects legacy pollution 
effects from rapid industrialization, though recent policy interventions 
show promising declines in PM2.5 levels (51). The declining trends in 
North America, Europe, Oceania, and South America reflect 
successful implementation of air quality improvement policies and 
stricter environmental regulations over the past decades, 
demonstrating the potential for effective public health interventions 
to reduce PM2.5-related health burdens (36, 40). East Asia region 
includes China, North Korea, and Taiwan, with China contributing 
the vast majority of the 229,553 deaths in 2021 due to its large 

FIGURE 3

Global map of EAPC for age-standardized rates of subarachnoid hemorrhage due to PM2.5 for deaths (A) and DALYs (B).
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population size. Despite China’s middle SDI classification, this region 
showed significant improvements in age-standardized rates (ASMR 
decline), reflecting substantial investments in healthcare infrastructure 
and air quality management over the study period (52). The apparent 
contradiction between high absolute burden and improving rates 
reflects China’s demographic transition and successful implementation 
of pollution control policies since 2013 (53). High-income Asia-Pacific 
region encompasses Australia, Brunei, Japan, New Zealand, Singapore, 
and South Korea. These countries consistently demonstrate the lowest 
PM2.5-attributable SAH burden, with marked improvements in both 
absolute and age-standardized metrics, directly correlating with their 
high SDI status and advanced healthcare systems (48). The steep 
declining trends in this region exemplify how combined high 
socioeconomic development and stringent environmental regulations 
effectively reduce pollution-related health burdens.

Sex and age dimensions

The male predominance in PM2.5-related SAH mortality (ASMR 
0.72 vs. 0.55 in females) likely reflects differential exposure patterns and 
biological susceptibility. Men experience higher occupational exposure 
through industrial work, while sex-linked differences in inflammatory 
responses and hormonal status may influence cardiovascular 
vulnerability to PM2.5 (54, 55). However, evidence on gender differences 
in air pollution health effects remains inconsistent across studies (56).

The global increase in female SAH mortality proportion 
(particularly +9.9% in South Asia) may be  explained through two 
complementary mechanisms: biological susceptibility via enhanced 
oxidative stress responses (20, 21), and socioeconomic factors limiting 
women’s access to preventive healthcare in LMICs (57). The 
age-dependent burden escalation (Figure 4 and Supplementary Figure S2) 
demonstrates a 3.2-fold higher mortality risk in populations >70 years 
compared to <50 years, likely mediated through PM2.5-induced 
exacerbation of hypertension (58) and cumulative blood–brain barrier 
damage (16). This aging-related vulnerability is projected to intensify as 
the global population over 60 years grows by 56% by 2050 (23).

Future projections and public health 
implications

The increased burden of SAH projected by the model over the 
next 29 years (Figure 6 and Supplementary Figure S1), potentially due 
to a significant association between PM2.5 exposure and SAH, with a 
particularly sharp increase in risk over short periods. As the global 
population ages, the older adults, who are more sensitive to the health 
effects of PM2.5, become a larger proportion of society (59). 
Additionally, industrialization and urbanization have exacerbated 
PM2.5 pollution, and regions lacking effective health protection 
measures and resources experience more significant adverse health 
effects from PM2.5 (41, 60). Therefore, it is imperative that the world 

FIGURE 4

Global age-stratified deaths from subarachnoid hemorrhage attributable to PM2.5 from 1990 to 2021.
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invests more time and effort into controlling PM2.5 pollution and 
reducing the medical burden on SAH patients (61).

Previous research has examined the global burden of PM2.5 in 
relation to SAH, yet this study extends these findings, revealing that 
between 1990 and 2021, the proportion of SAH attributed to PM2.5 
increased among women across all GBD regions. This underscores a 
concerning trend, particularly as the disease burden of SAH due to PM2.5 
escalating with advancing age. Our projections for future trends indicate 
a global increase in both SAH deaths and DALYs attributed to PM2.5.

Since the database used in this study covers different countries 
and regions, cultural, geographical, climatic, and even genetic 
differences have influenced the study’s results. Although these 
factors are unlikely to fundamentally alter the relationship between 

ambient air pollution and the risk of SAH (62, 63). Genetic 
polymorphisms in oxidative stress pathways and inflammatory 
responses may modulate individual susceptibility to PM2.5-induced 
cerebrovascular damage. This could potentially explain some of the 
striking regional differences, such as East Asia having a 
disproportionately high absolute burden despite relatively lower 
PM2.5 concentrations (64, 65). Climatic factors, including 
temperature extremes and seasonal variations, may interact with 
PM2.5 toxicity through altered particulate composition and 
enhanced inflammatory responses. This could partially account for 
Mongolia’s exceptionally high burden and the seasonal patterns 
observed in temperate regions (66). However, the consistent dose–
response relationship between PM2.5 exposure and SAH risk 

FIGURE 5

Association between age-standardized rates and the sociodemographic index for subarachnoid hemorrhage due to PM2.5 for deaths (A) and DALYs (B).
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documented across diverse populations in epidemiological studies 
suggests that ambient particulate matter remains an independent 
risk factor regardless of these population-specific modifiers (67).

While the GBD 2021 methodology employs comparative risk 
assessment that inherently adjusts for major confounders through 
integrated exposure-response functions derived from epidemiological 
meta-analyses, residual confounding from traditional SAH risk factors 
may influence our estimates (68, 69). Chronic diseases (hypertension, 
diabetes), lifestyle factors (smoking, alcohol consumption), and 
healthcare access disparities may cluster geographically with PM2.5 
exposure patterns, potentially inflating the pollution-attributable 
burden in regions with limited diagnostic capacity and neurosurgical 
infrastructure (70). The stark regional disparities observed—
particularly Mongolia’s exceptionally high burden and South Asia’s 
246% mortality growth—likely reflect complex interactions between air 
pollution exposure and unmeasured socioeconomic, healthcare, and 
behavioral confounders that extend beyond PM2.5 effects alone (71). 
Despite these limitations, the consistent global patterns and projected 
2050 increases suggest that PM2.5 reduction efforts would yield 
substantial health benefits, warranting urgent air quality interventions 
in high-burden regions regardless of residual confounding concerns.

Our study had some limitations including: (1) Data 
heterogeneity in cause-of-death certification and PM2.5 exposure 
modeling across regions may affect burden estimates; (2) Residual 
confounding (e.g., unmeasured comorbidities, socioeconomic 
factors) could bias risk associations; (3) Limited granularity in 
occupational/lifestyle exposure data hinders precise gender-risk 
stratification; (4) Model uncertainties (e.g., counterfactual 
exposure thresholds) warrant sensitivity analyses in future work. 
Future there are urgent actions remain imperative: Prioritize air 
quality interventions in high-burden regions (Mongolia/South/
Southeast Asia); Strengthen stroke care systems in low-resource 

settings; Implement gender-responsive strategies addressing 
occupational (male) and household (female) exposures; Target 
hypertension control in older populations. Integrating SAH burden 
metrics into global health frameworks is essential to mitigate this 
preventable crisis, despite current methodological  
constraints.

Conclusion

This study uncovers a critical paradox in PM2.5-attributable 
subarachnoid hemorrhage (SAH): despite a 36.4% global decline in 
age-standardized mortality (1990–2021), absolute deaths surged by 
40.4%-driven by population aging and growth. Stark inequities persist, 
with South Asia experiencing a 246.5% death increase and Mongolia 
bearing the highest burden (ASMR 2.49). Projections indicate rising 
rates by 2050, disproportionately affecting aging populations and 
regions with weak pollution controls. Urgent actions are warranted: (1) 
Prioritize air quality interventions in high-burden regions (Mongolia/
South/Southeast Asia); (2) Strengthen stroke care systems in 
low-resource settings; (3) Implement gender-responsive strategies 
addressing occupational (male) and household (female) exposures; (4) 
Target hypertension control in older populations. Integrating SAH 
burden metrics into global health frameworks is essential to mitigate 
this preventable crisis.
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FIGURE 6

Projection of age-standardized death rates for subarachnoid hemorrhage due to PM2.5 from 2022 to 2050.
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