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Introduction: Influenza-like illness (ILI) represents a significant global public 
health challenge influenced by environmental factors. While previous studies 
have demonstrated associations, most have been limited to single-city analyses 
with inconsistent findings. This multi-city study systematically examines the 
effects of meteorological and air pollution factors on ILI across diverse urban 
environments.
Study design: We analyzed daily ILI surveillance data (2015–2023) from 
18 sentinel hospitals across nine Fujian Province cities, combined with 
concurrent air quality and meteorological data. Using LASSO regression for 
variable selection, we employed distributed lag non-linear models (DLNMs) to 
characterize exposure-response relationships in each city, followed by random-
effects multivariate meta-analysis to pool estimates and assess heterogeneity.
Results: A total of 2,995,909 ILI cases were collected. ILI cases in nine cities 
of Fujian Province exhibited significant seasonal fluctuations, peaking in winter 
or early summer. LASSO regression identified temperature, NO₂, and SO₂ as 
key environmental factors. Our results indicated that the combined cumulative 
effect of average temperature on ILI across nine cities decreased with rising 
temperatures, with a risk peak at −0.1°C. The NO₂–ILI association was non–
linear, resembling an inverted “U” shape, with a risk peak at 40.5 μg/m3. SO₂ 
exposure had a large degree of heterogeneity in its effect on ILI.
Conclusion: This study provides robust evidence that ambient temperature 
and NO₂ levels significantly influence ILI risk in Fujian Province, with distinct 
exposure-response patterns. Public health strategies should prioritize cold-
weather preparedness and air quality management, particularly during high-risk 
seasons. Our two-stage analytical approach addresses previous limitations in 
multi-city environmental health studies.
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1 Introduction

Influenza-like illness (ILI) is a clinical syndrome characterized by 
symptoms such as fever and other flu-like manifestations (1). Serving 
as a crucial non-specific indicator in influenza surveillance, ILI not 
only reflects the epidemic trends of influenza but also provides an 
effective approach for investigating its influencing factors (2). 
According to data from the World Health Organization (WHO), 
influenza continues to circulate globally, with an annual incidence rate 
of 5–10% in adults and as high as 20–30% in children. It results in 3 
to 5 million severe cases and 290,000 to 650,000 respiratory deaths 
annually worldwide (3). In China, influenza is classified as a Category 
C notifiable infectious disease, with an estimated annual average of 
approximately 88,100 influenza-associated excess deaths (4). Given its 
high transmissibility and potential to cause severe outcomes, the 
disease burden attributed to influenza is substantial. Therefore, a 
systematic evaluation of the environmental drivers influencing 
influenza virus transmission is of significant importance for informing 
and improving public health prevention and control strategies. The 
epidemic of ILI exhibits significant seasonal characteristics. According 
to the influenza surveillance reports released by the Chinese Center 
for Disease Control and Prevention, ILI peaks in northern China are 
primarily concentrated in the winter and spring, while southern China 
experiences peaks both in winter–spring and summer (5). This 
seasonal pattern may be influenced by various factors, including the 
host’s immune status, socio–economic conditions, and 
environmental factors.

Although the association between environmental factors and the 
transmission of ILI has become a research focus, substantial academic 
controversy remains, particularly regarding the effects of temperature 
and humidity, for which significant inconsistencies have been 
observed across studies. As a key meteorological variable influencing 
influenza spread, the relationship between temperature and ILI risk 
exhibits notable regional heterogeneity. An analysis by Cao et al. across 
122 countries and regions revealed an inverted U-shaped curve for the 
cumulative relative risk of influenza in relation to temperature, though 
the peak risk temperature varied geographically: influenza risk peaked 
between 6 and 14° C in Africa, was highest below 3° C in Asia, and 
showed distinct epidemic peaks above 11° C in the Americas and 
Oceania (6). In contrast, a study by Yang et  al. conducted in the 
United States reported an inverse correlation between temperature 
and ILI risk, indicating that lower temperatures were associated with 
higher ILI incidence (7). This finding is consistent with epidemiological 
observations in northern China, where the seasonal influenza peak in 
winter and spring coincides with periods of lower temperatures.

The relationship between humidity and influenza transmission 
also demonstrates complex patterns. Research by Li et al. in Hong 
Kong indicated a significant negative correlation between absolute 
humidity and influenza incidence, suggesting that higher humidity 
levels may suppress viral spread (8). However, emerging evidence 
points to a U-shaped association, wherein risk of influenza 
transmission is elevated under both low and high absolute humidity 
conditions (9). The heterogeneity in these findings may stem from 
methodological variations, region-specific factors, and interactions 

among environmental variables. Therefore, there is an urgent need for 
more systematic and integrated research frameworks to elucidate the 
underlying mechanisms through which environmental factors 
influence influenza transmission dynamics.

The impact of air pollutants on influenza transmission remains a 
subject of inconsistent and even contradictory findings across existing 
studies. Multiple studies conducted in China have reported positive 
correlations between pollutants—including particulate matter (PM), 
sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon 
monoxide (CO)—and the incidence of ILI (10). However, these 
associations exhibit notable spatiotemporal heterogeneity, with more 
pronounced effects observed during cold seasons, in eastern and 
central regions, as well as in humid and densely populated provinces. 
For instance, research from Beijing indicated that elevated PM₂.₅ 
concentrations during influenza seasons were significantly associated 
with increased ILI visits (11). Similarly, a study in Jinan demonstrated 
that PM₂.₅, PM₁₀, CO, and SO₂ elevated the risk of ILI (12). In 
contrast, a report from Hefei suggested a negative correlation between 
PM₁₀ and clinical ILI incidence, while a study conducted in Nanjing 
found no significant association between PM₂.₅, PM₁₀, or NO₂ and ILI 
risk among individuals aged 25 and above (13, 14). These inconsistent 
results underscore the potentially strong temporal and spatial 
dependence of the effects of air pollutants on influenza transmission, 
highlighting the need for further systematic investigation into the 
underlying mechanisms.

Fujian Province presents a particularly compelling case study 
due to its unique subtropical monsoon climate and rapid 
urbanization. The region experiences high humidity, frequent 
temperature fluctuations, and complex air pollution profiles – all 
potential modifiers of ILI transmission dynamics (15). However, 
current understanding remains limited by single-city study designs 
that fail to capture regional heterogeneity or adequately address the 
non-linear, delayed effects of environmental exposures. This study 
addresses these gaps through a comprehensive multi-city analysis 
across nine urban centers in Fujian, employing distributed lag 
non-linear modeling to simultaneously evaluate meteorological and 
pollution effects while accounting for spatial variability and temporal 
delays, with the ultimate goal of providing robust evidence for 
region-specific ILI prevention strategies and advancing 
methodological approaches for environmental health research in 
subtropical climates.

2 Methods

2.1 Data sources

The daily numbers of reported ILI cases reported from 1 January 
2015 to 31 December 2023 were obtained from the National Influenza 
Center of China (CNIC). The dataset includes ILI surveillance data 
from 18 sentinel hospitals across nine cities in Fujian Province 
(Fuzhou, Longyan, Nanping, Ningde, Putian, Quanzhou, Sanming, 
Xiamen, and Zhangzhou), with 2 hospitals in each city. The 
surveillance content covers both epidemiological and etiological 
monitoring, with long–term continuous monitoring of ILI cases in 
outpatient and emergency departments, as well as the dynamic 
changes in the percentage of ILI cases among outpatient visits at 
sentinel hospitals. The definition ILI used in this study strictly follows 

Abbreviations: ILI, Influenza–Like Illness; DLNM, Distributed lag non-linear model; 

RR, Relative risk; CI, Confidence interval; NO₂, Nitrogen dioxide; SO₂, Sulfur dioxide.
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the criteria outlined in the China National Influenza Surveillance 
Technical Guide (2017 Edition), which is consistent with the influenza 
surveillance case definition recommended by the WHO (16). 
Specifically, it is defined as the outpatients who had acute respiratory 
infection with body temperature more than 38°C and either cough or 
sore throat.

We also collected meteorological and air pollutants data from the 
nine cities of Fujian Province for the period from January from 1 
January 2015 to 31 December 2023. Air pollutants data was obtained 
from the China Air Quality Online Monitoring and Analysis 
Platform1, which includes daily average concentrations of AQI, PM2.5 
(μg/m3), PM10 (μg/m3), SO₂ (μg/m3), NO₂ (μg/m3), and O₃ (μg/m3). 
Meteorological data was sourced from the China Meteorological Data 
Service Center2, including daily average temperature (°C), wind speed 
(m/s), and daily accumulated rainfall (mm).

2.2 Statistical analysis

2.2.1 LASSO regression
We first performed descriptive analysis of the meteorological and 

air pollutants data as well as the ILI from the nine cities in Fujian 
Province. By plotting the time trend of ILI case numbers, we observed 
its annual variation pattern. Furthermore, the normalized seasonal 
distribution was obtained by dividing the monthly case counts by the 
total number of cases in that year, and the peak epidemic period was 
identified by comparing the monthly averages.

LASSO regression was used to control for multicollinearity among 
variables and to filter variables (17). We initially fitted a generalized 
linear model using penalized maximum likelihood. Then, the cross–
validation method was used to calculate the parameter λ, which 
minimizes the mean cross–validation error. Finally, the parameter λ 
was reintroduced into the equation to calculate the optimal coefficients 
for each variable, and the selected variables were used for subsequent 
analysis (18).

2.2.2 DLNM model
In the first stage, for the total population of Fujian Province, ILI 

cases are considered rare events. Additionally, in numerous 
epidemiological studies both domestically and internationally, it is 
often assumed that the number of deaths, outpatient visits, or 
hospitalizations approximately follows a Poisson distribution (19, 20). 
Therefore, this study assumes that the number of ILI visits follows a 
Poisson distribution. Given the characteristics of the data in this study, 
we used a Generalized Additive Model (GAM) with a log link and 
allowed Poisson autocorrelation to establish the logarithm of the 
expected ILI cases in Fujian Province and the relationships between 
environmental factors, combined with a Distributed Lag Non–linear 
Model (DLNM) to quantify the single and cumulative effects of 
environmental data on daily ILI cases in each city of Fujian. 
Considering the incubation period (3–5 days) and infectious period 
(approximately 2 weeks) of most respiratory viral infections (21), the 
lag range was set to 0–14 days to fully cover the lag effects. A 

1  https://www.aqistudy.cn/historydata/

2  http://data.cma.cn/

cross–basis function was chosen, applying natural cubic splines to 
both the independent variables and their lags to display the exposure–
lag–response associations. Natural cubic splines with 7 degrees of 
freedom (df) were used for the time variable to suppress long–term 
trends. The model also adjusted for the effects of the day of the week 
(DOW). The final basic form of the model is as follows:

Ln [E (Yt)] = β1(NO2)t + β2(SO2)t + β3(Tem)t + ns (Time, df) + Dow.
In the equation, Yt represents the number of ILI reports in a 

prefecture–level city on day t; β1, β2,β3 are the regression coefficient; t 
is the value of a specific environmental factor on day t to be studied; 
ns() is the natural spline function used to adjust for the non-linear 
effects of variables; Time is the time variable (a sequence of study days: 
1, 2, 3, 4, …, N); df is the degrees of freedom; Dow is the weekday 
dummy variable, used to control for confounding factors related to 
periodic healthcare-seeking behavior (22). A natural cubic spline 
function with 7 dfs/year was used to eliminate the long–term and 
seasonal trends in the ILI visit counts.

This study used the median values of each exposure as the baseline 
evaluation level. First, we estimated the relative risk of daily ILI under 
the mean conditions of environmental factors and obtained both the 
single lag effects and cumulative effects. The mean values of 
environmental factors represent the most common environmental 
quality conditions in the cities of Fujian Province. Next, the P5 and 
P95 values of the exposure levels were used as cutoff points for low 
and high exposure levels, respectively, to estimate the impact of 
extreme exposure conditions on ILI. Predictions were made using the 
crosspred function, and the original response curves, 3D plots, and 
contour plots were generated to visually display the overall exposure–
lag–response relationship, assessing the effects of each exposure factor 
on ILI and their lag effects.

In the second stage, the exposure–response relationships for 
the nine cities obtained in the first stage were simplified into 
simpler one–dimensional coefficients of exposure and lag 
dimensions, along with the corresponding covariance matrices. 
These were then aggregated using a multivariate meta–analysis 
and restricted maximum likelihood estimation (REML) (23). For 
each air pollutant and meteorological factor, the lag response 
relationships at specific exposure levels (including the 5th and 
95th percentiles) were extracted. Additionally, the lag effects of 
each air pollutant level were summed to represent the cumulative 
relationship between air pollutants and ILI. At the regional level, 
a multivariate regression intercept model was used for meta–
regression analysis of the dimension–reduced city–specific effect 
estimates, yielding region–specific merged lag–response 
relationships and cumulative exposure–response relationships.

The residual heterogeneity was tested using the multivariate 
extension of the Cochran Q test and the I2 statistic (residual 
heterogeneity was considered statistically significant when p < 0.05) 
(24). In this study, the exposure–response degree was quantified using 
the relative risk (RR). We  quantified the uncertainty of the point 
estimates in the study by calculating the RR and the 95% confidence 
interval (95% CI) of RR.

2.2.3 Sensitivity analysis
We evaluated the robustness of our model through sensitivity 

analyses in the following three aspects: First, we altered the degrees 
of freedom (df) for the time trend from 6 to 8 (original df = 7) for the 
temporal trend and refitted a three-predictor exposure-response 
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model including temperature, NO₂, and SO₂ to examine the influence 
of temporal control strategies on the estimates of the main effects. 
Second, we  excluded two cities with extreme population sizes—
Fuzhou (the highest population) and Sanming (the lowest 
population)—to assess the impact of demographic outliers on the 
overall results. Third, we  incorporated additional environmental 
variables, including other pollutants and meteorological factors, as 
covariates in the model to evaluate potential confounding effects on 
the estimates of the primary exposure variables. Through these 
multidimensional assessments, we ensured the stability and reliability 
of our findings under varying model specifications and 
data structures.

All analyses were performed using R software (version 4.0.3), and 
the R packages “dlnm” and “mvmeta” were used to fit the DLNM and 
multivariate meta–regression models, respectively. A two–sided 
p < 0.05 was considered statistically significant for all statistical tests.

3 Results

3.1 Descriptive analysis

From January 1, 2015, to December 31, 2023, a total of 
2,995,909 ILI cases were collected in Fujian Province 
(Supplementary Table S1). The annual ILI cases peaked in 2023 
(475,540 cases, 15.87%) and reached its nadir in 2020 (209,769 
cases, 7.00%). Time trend line chart revealed consistent seasonality 
across nine cities (Figure 1), with dual annual peaks occurring in 
winter (December–February) and early summer (May–June), as 
confirmed by normalized seasonal distribution patterns 

(Figure  2). The pollutant values for each city are shown in 
Supplementary Table S2. The time series data of the four air 
pollutants (NO₂, PM₁₀, PM₂.₅, and AQI) in the nine cities all show 
similar periodicity and relative stability (Supplementary Figure S1).

3.2 LASSO regression result

LASSO regression analysis was used to determine the selection of 
covariates that might overfit the model due to multicollinearity. The 
optimal λ value was 4.49 (one standard error below the minimum 
standard), with three non-zero coefficients represented in sparse 
matrix format. This study evaluated multiple climate variables and air 
pollutants. Finally, the variables of average temperature, SO₂, and NO₂ 
were included in the analysis to avoid multicollinearity, as shown in 
Table 1.

3.3 The relationship between NO₂, SO₂, 
temperature, and ILI in nine cities

Supplementary Tables S3, S6 present comprehensive single-lag 
and cumulative effect estimates, while three-dimensional 
(Supplementary Figures S2, S5, S8) and contour plots (Figures 3–5) 
visualize exposure-lag-response relationships.

For NO₂, significant spatial heterogeneity emerged: Fuzhou, 
Nanping, and Ningde showed acute effects (0–6 day lags) at 
30–60 μg/m3, whereas Xiamen exhibited a unique bimodal 
pattern – initial risk elevation at high concentrations/short lags 
transitioning to protective effects (RR < 1) at ~5-day lags. Low 

FIGURE 1

Time series of ILI cases in 9 cities in Fujian Province between 2015 and 2023. Generated based on the monthly ILI consultation rates from various 
prefecture-level cities in Fujian Province.
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NO₂ exposure (5th percentile) conferred protection across all 
cities, most markedly in Fuzhou, decreasing from RR = 0.875 
(95% CI: 0.854–0.896) at lag 0 to 0.491 (95% CI: 0.471–0.512) at 
lag 14. Conversely, high exposure (95th percentile) increased risk 
cumulatively (peak at lag 14).

SO₂ effects demonstrated similar regional variation, with Fuzhou 
showing maximal risk at 19 μg/m3 with 9-day lag (RR = 1.364; 95%CI: 
1.268–1.467) versus Xiamen’s negative associations. Temperature 
effects followed a consistent thermal gradient: lower temperatures 
(10–20°C) with longer lags increased risk (RR > 1), while higher 

temperatures (>30°C) with shorter lags were protective (RR < 1). 
Cumulative 14-day effects revealed cold-temperature vulnerability in 
all cities except Ningde and Quanzhou, with 5th percentile exposures 
consistently elevating risk (single-day RR > 1).

3.4 Pooled effects of NO₂, SO₂, 
temperature on ILI

The meta-analysis revealed high heterogeneity in both exposure 
and lag responses, with all multivariate Cochran’s Q tests indicating 
statistically significant differences (p < 0.05; Table 2). NO₂ significantly 
contributed to heterogeneity (reducing I2 to 86.6%), though residual 
heterogeneity persisted (p < 0.001). Pooled cumulative effects 
demonstrated a non-linear, inverted U-shaped association between 
NO₂ and ILI (Figure 6), with elevated risks (RR > 1) at concentrations 
of 19.1–66.3 μg/m3, peaking at 40.5 μg/m3 (RR = 1.426, 95% CI: 
1.244–1.636) (Supplementary Table S7). Low NO₂ exposure (vs. 50th 
percentile) showed protective effects (cumulative RR = 0.697, 95% CI: 
0.608–0.800), while high exposure increased risk [strongest at lag 
1 day (RR = 1.032, 95% CI: 1.016–1.048); cumulative RR = 1.426 by 
lag 14] (Supplementary Table S8). Similarly, SO₂ exhibited a positive 
dose–response relationship with ILI, albeit with greater variability 
(Figure 7). Temperature effects followed an inverse pattern: pooled 
results identified peak risk at −0.1°C (RR = 3.165, 95% CI: 2.140–
4.681) (Figure 8), with significant cumulative risks (RR > 1) below 
20.9°C. Low temperatures (5th percentile) showed maximal lag 9-day 
effects (RR = 1.061, 95% CI: 1.049–1.073; cumulative RR = 1.863 by 
lag 14), whereas high temperatures (95th percentile) linearly reduced 

FIGURE 2

Seasonal distribution of ILI cases in 9 cities in Fujian Province, 2015–2023. The term “high” represent values with above-average ILI activity, indicating a 
greater concentration or frequency of cases relative to the average seasonal distribution. The term “low” typically represent values with below-average 
ILI activity, indicating a lower concentration or frequency of cases relative to the average.

TABLE 1  Sparse matrix of covariates coefficients.

Factors Coefficients

Intercept 93.1886548

Air Quality Index (AQI) NE

PM10 (μg/m3) NE

PM2.5 (μg/m3) NE

Mean temperature (°C) 0.4152534

SO₂ (μg/m3) −2.3726399

NO₂ (μg/m3) 0.8637550

O3 (μg/m3) NE

Precipitation (mm) NE

Wind speed (m/s) NE

NE, not estimated; PM2.5, particulate matter of <2.5 μm; PM10, particulate matter of 
<10 μm; AQI, Air Quality Index; SO₂, sulfur dioxide; NO₂, nitrogen dioxide; O3, ozone.

https://doi.org/10.3389/fpubh.2025.1656880
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yao et al.� 10.3389/fpubh.2025.1656880

Frontiers in Public Health 06 frontiersin.org

risk (lag 0 RR = 1.032, 95% CI: 1.011–1.054; cumulative RR = 0.731 at 
lag 14) (Supplementary Table S8).

3.5 Sensitivity analysis results

The parameter estimates from the meta-analysis 
(Supplementary Table S9) and the RR values corresponding to the 
single-lag associations of the three environmental factors 
(Supplementary Table S10) remained consistent across all sensitivity 
analyses. Notably, the exposure-response curves exhibited minimal 
variation (Supplementary Figures S11–S13), confirming both the 
stability of our model and the appropriateness of the selected variables.

4 Discussion

Influenza-like illness represents a significant global public health 
challenge, with transmission dynamics strongly influenced by 
environmental factors (14). This study systematically examines the 
associations between environmental exposures and ILI incidence 
across nine prefecture-level cities in Fujian Province, China. As a 
southeastern coastal region, Fujian exhibits marked variability in 
climate conditions and pollution levels, providing an ideal setting to 
investigate environmental drivers of ILI. The inclusion of all 
prefecture-level cities ensures a comprehensive assessment of 
provincial ILI patterns while capturing region-specific 
environmental heterogeneity.

FIGURE 3

Contour plots of the relative risks of NO₂ on ILI cases in 9 cities in Fujian Province from 2015 to 2023. The reference level was set to the median value 
of the corresponding variable. The Y–axis represents the lag period from 0 to 14 days. The X–axis represents the range of observations for each 
variable. RR stands for relative risk, red stands for RR > 1, white stands for RR = 1, and blue stands for RR < 1.
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Our analysis of ILI cases across nine Fujian Province cities revealed 
distinct bimodal seasonality, with primary peaks occurring during 
winter months (December–February) and secondary peaks in early 
summer (May–June), consistent with national surveillance data (25). 
This pattern likely reflects enhanced viral survival and transmission 
under winter’s lower temperatures and higher humidity (5).

Consistent with existing literature demonstrating the influence of 
meteorological factors and air pollutants on ILI prevalence (1, 11, 26, 
27). we  observed elevated ILI risk at moderate-to-high NO₂ 
concentrations (30–60 μg/m3) with short lag periods (0–6 days), 
suggesting acute effects of NO₂ exposure. This risk pattern attenuated 
substantially after >10 days of exposure, indicating time-
dependent effects.

Our multi-city analysis demonstrated an inverted U-shaped 
concentration-response relationship between NO₂ exposure and ILI 
incidence. Cumulative exposure assessment revealed that short-term, 
low-concentration NO₂ exposure (<30 μg/m3) was associated with 
reduced ILI risk, whereas prolonged high-concentration exposure 
(>60 μg/m3) significantly increased risk. These findings corroborate 
previous reports by Sun et al. on the association between air pollutants 
(PM2.5, NO₂, PM10, and SO₂) and influenza risk (28), as well as 
observations from Ningbo regarding NO₂ and O₃ exposure effects 
(29). Mechanistically, NO₂ acts as a potent respiratory irritant that 
induces airway inflammation and oxidative stress, potentially 
compromising immune defenses and increasing susceptibility to 
respiratory infections (30, 31).

FIGURE 4

Contour plots of the relative risks of SO₂ on ILI cases in 9 cities in Fujian Province from 2015 to 2023. The reference level was set to the median value 
of the corresponding variable. The Y–axis represents the lag period from 0 to 14 days. The X–axis represents the range of observations for each 
variable. RR stands for relative risk, red stands for RR > 1, white stands for RR = 1, and blue stands for RR < 1.
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The influence of temperature on ILI risk exhibits regional 
variability, yet an overall trend emerges: ILI risk is elevated at 
low-to-moderate temperatures and longer lag times but diminishes 
at higher temperatures, with the most pronounced effects occurring 
during short lag periods. Analysis of temperature–ILI associations 
across nine cities reveals that rising temperatures correlate with 
reduced ILI risk, whereas prolonged exposure to cold temperatures 
(below the 5th percentile) increases susceptibility. These findings 
align with Chow et al.’s study in Mississippi, which reported that 
low temperatures (lag 0–4 weeks) heightened ILI risk, while high 
temperatures had negligible effects on transmission (1). Similarly, 
Yang et al. demonstrated that cold weather not only elevates ILI risk 

but also accounts for a substantial proportion of the disease burden 
(7). Similar findings have been validated in several cities across 
China (32–34). Various hypotheses have been proposed to explain 
the relationship between low temperatures and influenza. Low 
temperatures facilitate the transmission of influenza in multiple 
ways, such as by affecting virus survival and spread, influencing 
host susceptibility, and altering human behavior and the 
environment (35, 36). When temperatures drop, the stability of 
influenza virus particles increases, and changes in the physical 
properties of the viral envelope promote the survival and spread of 
the virus. While most studies indicate that low temperatures 
significantly enhance the risk of ILI, some suggest that high 

FIGURE 5

Contour plots of the relative risks of temperature on ILI cases in 9 cities in Fujian Province from 2015 to 2023. The reference level was set to the 
median value of the corresponding variable. The Y–axis represents the lag period from 0 to 14 days. The X–axis represents the range of observations 
for each variable. RR stands for relative risk, red stands for RR > 1, white stands for RR = 1, and blue stands for RR < 1.
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temperatures can also be a risk factor for ILI. For instance, Tamerius 
et al. (37) found that influenza outbreaks in tropical and subtropical 
regions occur during hot and humid periods. Additionally, 
Grigorieva and Lukyanets (38) discovered that the combined effect 
of high temperatures and air pollutants promoted the occurrence of 
respiratory diseases like influenza. These disparities highlight the 
potential influence of climatic zones, socioeconomic factors, and 
lifestyle habits on ILI transmission dynamics.

The findings of this study hold significant academic and 
public health implications. Against the backdrop of rapid 
economic development and ongoing urbanization in China, air 
pollution has emerged as a major environmental risk factor 
impacting population health (39). This study innovatively 
integrated data from all prefecture-level cities in Fujian Province, 
overcoming the limitations of previous single-city studies with 
restricted sample sizes, and is the first to systematically verify the 

non-linear and delayed effects of environmental factors on ILI at 
a provincial scale. The results indicate that air pollutants such as 
NO₂ and SO₂ can significantly increase the risk of ILI incidence. 
This finding provides critical multi-center empirical evidence for 
research on the health effects of air pollution in China, particularly 
filling a research gap in subtropical coastal regions. Furthermore, 
this study confirms that low temperature exposure is an important 
risk factor for ILI. In the context of increasing extreme weather 
events due to climate change, this result carries substantial 
warning implications: extreme cold events may trigger clustered 
ILI outbreaks, thereby intensifying the burden on healthcare 
systems. Based on these findings, we recommend: (a) continuing 
to strengthen air pollution control, with particular focus on the 
management of NO₂ and SO₂ emissions; (b) enhancing preemptive 
deployment and reinforcement of ILI prevention and intervention 
measures during cold wave alerts; and (c) formulating 
differentiated prevention and control strategies for respiratory 
infectious diseases tailored to the characteristics of different 
climate zones. This study not only provides new scientific 
evidence for environmental epidemiology but also offers a 
valuable reference for public health authorities in developing 
targeted intervention strategies. Future research should further 
explore the synergistic health effects of air pollution and climate 
change to better address the health challenges posed by complex 
environmental changes.

In summary, this study reinforces the significant role of air 
pollutants and meteorological factors in ILI transmission, 
underscoring the need for enhanced air quality control and weather 
monitoring during influenza seasons. However, several limitations 
must be acknowledged. First, the air pollutant data were derived 
from outdoor monitoring stations, which may not precisely reflect 
individual exposure levels, potentially introducing measurement 
bias. Second, since ILI cases were identified based on sentinel 
hospital reports, mild or subclinical infections may have been 
excluded, leading to an underestimation of the true disease burden. 
Additionally, due to data constraints, other potentially influential 
meteorological variables—such as solar radiation and absolute 
humidity—were not incorporated into the analysis. To address these 
gaps, future studies should integrate more precise individual-level 
exposure assessments to better characterize the relationship 

TABLE 2  Cochran’s multivariate Q test and I2 statistic to assess 
heterogeneity in the meta-analytic models.

Meta–
analytic 
model

Q df P I2 (%)

Overall cumulative response

P50_NO₂ 178.90 24 <0.001 86.6

P50_SO₂ 656.34 24 <0.001 96.3

P50_Tem 346.11 24 <0.001 93.1

Lag response

P5_Tem 320.75 24 <0.001 92.5

P95_Tem 245.08 24 <0.001 90.2

P5_NO₂ 295.47 24 <0.001 91.9

P95_NO₂ 147.13 24 <0.001 83.7

P5_SO₂ 302.50 24 <0.001 92.1

P95_SO₂ 458.82 24 <0.001 94.8

Q–statistics/P/I2, indicators for quantifying the heterogeneity of environmental factors in 
various cities; P5/P95 value; The P5/P95 value is the 5th/95th Percentile of environmental 
values during the study period, which can represent can represent extremely low/high 
exposure environmental conditions.

FIGURE 6

The pooled effects of NO₂ on ILI in Fujian, 2015–2023. The picture (a) shows the overall cumulative effects over lag 0–14 days in 9 cities, the two 
pictures describe (b,c) the pooled effects at predictor–specific (95th and 5th percentile of NO₂). The dotted lines represent the different effects of 9 
cities, the red line represents the pooled effect and the shaded area is the confidence interval (CI with 95%). The reference level was set to the median 
value of the corresponding variable.
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between air pollution and ILI. Furthermore, combining 
epidemiological data with laboratory-based investigations could 
help elucidate the underlying biological mechanisms driving 
these associations.

5 Conclusion

This multi-city study in Fujian Province revealed ILI exhibits 
winter/early summer peaks, with short-term NO₂ exposure and 
prolonged low-temperature exposure significantly increasing risk. The 
extended cold-weather lag effect highlights the need for integrated 
prevention strategies combining air quality and meteorological 
monitoring during influenza seasons.
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FIGURE 8

The pooled effects of temperature on ILI in Fujian, 2015–2023. The picture (a) shows the overall cumulative effects over lag 0–14 days in 9 cities, the 
two pictures describe (b,c) the pooled effects at predictor–specific (95th and 5th percentile of temperature). The dotted lines represent the different 
effects of 9 cities, the red line represents the pooled effect and the shaded area is the confidence interval (CI with 95%). The reference level was set to 
the median value of the corresponding variable.
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