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Background: Although MDR-TB is recognized as a significant threat, systematic 
descriptions of its long-term (>30 years) global spatiotemporal evolution 
patterns are still limited.
Objectives: This study conducted a 46-year spatiotemporal analysis of global 
MDR-TB (1990–2035) to provide key evidence for evaluating and refining the 
WHO End TB Strategy.
Methods: We used Global Burden of Disease data to identify identified temporal 
inflection points in ASIR, ASDR, and DALYs using Joinpoint regression. Spatial 
clustering was quantified using Moran’s I  and Getis-Ord hotspot analysis. A 
Bayesian age-period-cohort model projected MDR-TB incidence from 2022 to 
2035.
Results: The male-to-female ratio was approximately 1.5:1. Incidence was 
highest at 30–60 years, deaths at 60+, DALYs peak at 45–60; children under 
14 years of age significantly affected. ASIR rose from 0.97/100 k (1990) to 
6.39/100 k (2000), then declined (APC: −3.15%) post-2005 to 5.62/100 k (2021); 
males exhibited a sharper increase (+2.39%) and slower decline (−0.71%). ASDR 
peaked at 2.12/100 k (2002; males 27% higher). DALYs peaked at 89.05/100 k 
(2003). Sub-Saharan Africa is hyperendemic (Moran’s I = 12.38, p < 0.001; 
Somalia: 57.25/100 k), with high-high clusters in Africa/Kyrgyzstan. Projections: 
Global ASIR declines modestly (−1.62% by 2035), but 480,000 cases expected 
due to population growth; female incidence drops 7.27% (2025+), male trends 
stable.
Conclusion: MDR-TB has proven more challenging than anticipated, with 
persistent hotspots in sub-Saharan Africa and a disproportionate impact on 
males, the older adults, and children. Despite a marginal decline in ASIR to 5.46 
per 100,000, the absolute number of cases is projected to rise to 480,000 by 
2035 due to sustained population growth and aging. This will seriously hinder 
the WHO End TB Strategy. Addressing MDR-TB should prioritize key populations 
and regions, targeted resources, tailored interventions, sustained investment in 
diagnostics and treatment, and stronger government support for patient care.
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Background

Multidrug-resistant tuberculosis (MDR-TB), defined by resistance 
to rifampicin and isoniazid—the two most effective first-line anti-TB 
drugs—continues to pose a critical global public health challenge. 
Effective management of MDR-TB requires prolonged treatment with 
costly second-line regimens that involve complex administration 
protocols and rigorous monitoring (1, 2). Despite overall global 
declines in tuberculosis incidence and death, the prevalence of 
MDR-TB has been increasing (3). The 2024 Global TB Report by 
World Health Organization (WHO) estimated 10.8 million new TB 
cases (representing an incidence of 134 per 100,000 population) and 
1.25 million TB-related deaths in 2023. These figures surpass deaths 
from Coronavirus Disease 2019 (COVID-19) and reestablish 
tuberculosis as the foremost infectious disease killer (4). Achieving the 
targets of the WHO End TB goal—an 80% reduction in incidence, a 
90% decline in death, and the elimination of catastrophic costs for 
affected families by 2030—remains a major challenge (5).

Among newly diagnosed TB cases, 400,000 were identified as 
MDR-TB, with resistance observed in 3.2% of new cases and 16% of 
re-treatment cases (4). Further, significant geographic disparities in 
MDR-TB epidemiology persist, especially in high-TB-burden nations 
such as India, the Philippines, China, Russia, and South Africa, where 
an increasing incidence of MDR-TB is projected despite improvements 
in acquired drug resistance management (6). Modeling studies 
anticipate substantial increases in MDR-TB cases in these countries 
by 2040, thereby underscoring the urgent need for enhanced 
containment strategies to interrupt transmission (7).

Although MDR-TB is recognized as a significant threat, systematic 
descriptions of its long-term (>30 years) global spatiotemporal 
evolution patterns is still limited. Existing research focuses on specific 
regions, short time span (such as after 2000) or single index (such as 
incidence rate), and lacks panoramic and long-term scale analysis 
integrating incidence rate, death, disability-adjusted life years (DALYs) 
and their age gender geographical heterogeneity. Song (8) focused on 
30-year trends, but their analysis mainly focused on the comparison 
of overall trends and drug sensitivity TB. Lv (9) provided valuable 
global burden assessments, but their analysis time frame up to 2019 
did not capture potential key turning points before and after the 
COVID-19 pandemic, and lacked depth in spatial heterogeneity and 
future predictions. Alene et  al. (10) conducted research on 
northwestern Ethiopia, using spatial autocorrelation (Moran’s I) and 
local spatial association index (LISA) to identify MDR-TB hotspots, 
but only covered a single country or region and did not expand 
globally. Sharma et al.’s (7) prediction was limited to four high burden 
countries. Although Guo et al. (11) used GBD 2021 data, they only 
used ARIMA models to predict until 2030, without integrating 
population structure and cohort effects.

Therefore, building on previous research in this field in the early 
stage, this study has filled some key analysis gaps. It aims to conduct 
a comprehensive spatiotemporal epidemiological study of global 
MDR-TB for the first time over a period of 46 years (from 1990 and 
predicting until 2035) using the latest released GBD 2021 data. We use 
Joinpoint regression to accurately identify the turning point of the 

historical trend over the past 30 years. By analyzing the distribution 
characteristics of key populations through subgroup analysis, such as 
specific age groups and genders, describe the country clustering of 
MDR-TB and its spatio-temporal changes in combination with spatial 
autocorrelation analysis and identify the continuous high burden 
hotspots. The Bayesian Age Period Cohort (BAPC) model was applied 
to integrate historical epidemiological data and the United Nations 
population projections, accounting for future demographic and 
age-structural changes across different countries and regions. This 
model was selected not only for its ability to capture temporal trends 
in the data, but more importantly, for its incorporation of population 
characteristics (such as age structure, birth cohort effects, and 
demographic shifts) across different countries and regions, thereby 
providing a more nuanced and accurate reflection of future disease 
burden than traditional time-series forecasting methods—enabling 
more refined predictions of the global incidence rate and number of 
MDR-TB cases between 2022 and 2035. The projections provide 
critical evidence for assessing the feasibility and challenges of 
achieving the WHO End TB goals (12, 13).

Methods

Data source

This study leveraged multiple publicly accessible databases. 
Historical data on global MDR-TB incidence and death from 1990 to 
2021 were extracted from the Global Burden of Disease (GBD) 
database,1 a comprehensive epidemiological repository managed by 
the Institute for Health Metrics and Evaluation (IHME) at the 
University of Washington. The GBD database systematically integrates 
globally representative estimates of diseases, injuries, and risk factors, 
including incident cases, deaths, and stratified metrics by age, gender, 
and geography across more than 200 countries and territories (14–16). 
To ensure consistency in geographic attribution, all region-specific 
data were aligned using ISO 3166-1 alpha-3 country codes. 
Demographic data were obtained from the United Nations World 
Population Prospects 2024 (WPP 2024),2 which provides historical 
population estimates (1950 to 2021) and projections (until 2,100) for 
age-structure standardization. For the standardization of age structure 
in incidence projections (2022 to 2035), the World Health 
Organization’s 2000 to 2025 Standard Population3 was applied, 
defining 5-year age intervals (0–4, 5–9, …, 100+) with corresponding 
weighting coefficients (17, 18). Geospatial boundaries were sourced 
from the Natural Earth dataset,4 a validated global administrative 
division database ensuring geopolitical neutrality (19). To harmonize 
geographic units across all datasets, we used the Natural Earth vector 
boundaries as the spatial reference. Regions with missing or 

1  http://ghdx.healthdata.org/gbd-results-tool

2  https://population.un.org/wpp

3  https://seer.cancer.gov/stdpopulations/world.who.html

4  https://www.naturalearthdata.com
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low-quality data were explicitly flagged and excluded from high-
resolution spatial analyses. Primary outcomes included the 
age-standardized incidence rate (ASIR), age-standardized death rate 
(ASDR), and DALYs associated with MDR-TB (excluding extensively 
drug-resistant tuberculosis [XDR-TB]), all reported with 95% 
confidence intervals (CI).

Analytical methods for MDR-TB Ttrends, 
projections

Joinpoint regression
To examine temporal trends in MDR-TB ASIR, ASDR, and 

DALYs from 1990 to 2021, Joinpoint regression analysis was 
performed using the Joinpoint Regression Program (version 5.3.0, 
National Cancer Institute). This method identifies significant 
inflection points in epidemiological trajectories by iteratively fitting 
segmented log-linear regression curves. The optimal number of 
joinpoints (up to a maximum of five, allowing for six trend segments) 
was determined using permutation tests (4,500 iterations) to minimize 
the Bayesian Information Criterion (BIC) (20, 21). The annual percent 
change (APC) for each segment was calculated from the slope of the 
log-transformed rates using the formula APC = 100% × (e^β − 1), 
where β denotes the regression coefficient (22). Statistical significance 
was determined at p < 0.05. Trend directionality was inferred based 
on the 95% CI; a positive trend was defined by a lower bound>0, 
whereas a negative trend was indicated by an upper bound<0. 
Overlapping intervals were interpreted as stable trends.

Spatial auto-correlation analysis
Spatial autocorrelation analysis was conducted to identify 

geographic clustering of MDR-TB incidence. Global spatial 
dependency was assessed using Moran’s I  statistic in ArcGIS 10.2 
(Esri), with spatial weights defined by Queen contiguity (shared 
borders/vertices) (23, 24). Significance was determined through 
Monte Carlo randomization simulations (p < 0.05). Further, local 
clustering patterns were analyzed using Getis-Ord hot spot analysis, 
wherein z-scores greater than 2.58 (Bonferroni-corrected p < 0.01) 
signaled high-risk clusters, and z-scores less than −2.58 indicated cold 
spots (25, 26).

Bayesian age-period-cohort model
Furthermore, to forecast future trends in MDR-TB incidence, a 

BAPC model was implemented in the R statistical environment 
(version 4.4.3) using the nordpred and BAPC packages. This approach 
is particularly valuable for understanding the underlying drivers of 
disease dynamics, as it disentangles the effects of age (reflecting 
changes in susceptibility across the lifespan), period (capturing 
population-wide influences such as policies or diagnostics affecting all 
age groups simultaneously), and birth cohort (representing shared 
early-life exposures or societal transitions). The BAPC framework is 
especially suited for producing accurate long-term global projections, 
as it explicitly accounts for anticipated shifts in the size and age 
structure of populations—such as aging or demographic transitions 
across regions—which are critical when forecasting the burden of 
age-influenced diseases like MDR-TB. This framework decomposed 
temporal variations into age, period, and cohort effects by employing 
second-order random walk (RW2) priors for age-specific trends and 

first-order random walk (RW1) priors for period and cohort effects, 
with hyperparameters following weakly informative Gamma (1, 
0.0005) distributions (27). The model integrated observed age-specific 
MDR-TB incidence data from 1990 to 2021 with United Nations 
population projections from 2022 to 2035. Posterior distributions of 
the parameters were estimated using Markov chain Monte Carlo 
(MCMC) algorithms, with convergence assessed via Gelman-Rubin 
diagnostics (R^<1.05) and predictive validity evaluated through leave-
one-out cross-validation (LOOCV) (28). The resulting projections 
were accompanied by 95% credible intervals to quantify uncertainty.

Results

Global distribution of MDR-TB burden

Figure  1 illustrates the global disease burden associated with 
MDR-TB from 1990 to 2021. Overall, incidence, death, and DALYs 
initially increased and subsequently decreased over this period. 
Analysis of the global population pyramid by gender and age 
(Figure 2) revealed a male-to-female ratio of approximately 1.5:1, with 
incidence burden primarily concentrated among individuals aged 30 
to 60 years, death burden among those aged 60 and above, and DALYs 
peaking in the 45–60 age group. Notably, the disease burden among 
children under 14 should not be underestimated.

Trend of MDR-TB epidemic from 1990 to 
2021

To elucidate temporal trends, Joinpoint regression analysis 
identified significant nonlinear trajectories in MDR-TB epidemiology 
(Table 1). For ASIR, five significant joinpoints (p<0.05) were detected 
over the study period. A rapid increase was observed from 0.97 per 
100,000 (95% CI: 0.45–2.20) in 1990 to 6.39 per 100,000 (95% CI: 
4.79–8.74) in 2000, followed by a slower increase to 7.32 per 100,000 
(95% CI: 5.95–9.10) in 2005. A subsequent decline (2005 to 2015; 
APC=−3.15, 95% CI: −2.62 to −4.22%) was followed by stabilization 
at 5.62 per 100,000 in 2021, with a slight upward trend observed from 
2016 to 2021. Stratification by gender revealed parallel patterns, with 
males experiencing a greater increase (+2.39%) and a smaller decrease 
(−0.71%) compared to females (Figure 3A). ASDR exhibited distinct 
phases: an initial steep increase from 1990 to 2002 (peak APC=47.89, 
95% CI: 45.42–50.44) reaching 2.12 per 100,000 in 2002, followed by 
stabilization between 2003 and 2005, and a sustained decline 
thereafter, with 2021 ASDR at 2.12 per 100,000. Notably, male ASDR 
consistently exceeded that of females, peaking at 2.70 per 100,000 in 
2003 (Figure  3B). Similarly, the trend in DALYs mirrored that of 
ASDR, peaking at 89.05 per 100,000 in 2003 and declining to 52.28 
per 100,000 by 2021. Sex-specific trends in DALYs paralleled those 
observed in death (Figure 3C).

Spatial auto-correlation analysis of 
MDR-TB incidence

Globally, ASIR of MDR-TB exhibits notable geographical 
heterogeneity (Figure  4). From 1991 to 2021, based on the 
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geographical distributions of MDR-TB ASIR every 10 years, the 
countries/regions with the highest initial burden ranking of disease 
include Africa, Russia, India, China, and others. Over time, compared 
to other countries/regions at the same time, the ranking of MDR-TB 
outbreaks in countries such as Russia and China has gradually 
declined, especially in China, with significant changes. On the other 
hand, in sub-Saharan Africa, the ranking of epidemics in the past 
30 years has not changed significantly. High-burden regions are 
predominantly located in sub-Saharan Africa, India, Central Asia, and 
Eastern European countries, including Russia. Somalia had the 
highest ASIR (57.25 per 100,000; 95% CI: 14.12 to 169.56), with 11 

countries or territories recording rates exceeding 20 per 100,000. 
Significant spatial correlation was confirmed by Moran’s I  index 
(z=12.38, p<0.001), indicating regional clustering (Figure 5A). Hot 
spot analysis revealed marked spatial aggregation, with primary 
hotspots situated in Central and Southern Africa and cold spots 
identified in Europe, North/Central America, the Caribbean, and 
northern South America (Figure 6A). Cluster mapping detected two 
high-high clusters: one forming a contiguous zone across sub-Saharan 
Africa and another isolated cluster in Kyrgyzstan (z=3.14, p=0.002; 
Figure  5B). No statistically significant low clusters were observed 
(Figure 6B).

FIGURE 1

Disease burden of global MDR-TB (1990 to 2021). The black line represents the direction of data distribution. The yellow area represents the upper and 
lower limits of the 95% confidence interval. (A) ASIR, (B) ASDR, (C) DALYs (per 100,000), (D) number of incident cases, (E) number of deaths, (F) number 
of DALYs.

FIGURE 2

Distribution of disease burden of global MDR-TB by age group for different genders in 2021. The blue bars represent males, and the red bars represent 
females. (A) Number of incident cases, (B) number of deaths, (C) number of DALYs.
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Projection of MDR-TB incidence from 2022 
to 2035

Based on historical MDR-TB incidence data spanning 1990 to 
2021 and age-stratified population projections from the WPP 2024, 
we employed a BAPC model to forecast global MDR-TB incidence 
through 2035. Although Joinpoint regression previously identified a 
decline post-2005 followed by stabilization, our projections suggest 
persistent challenges. Incidence is expected to increase slightly from 
2022 to 2025 (to 5.55 per 100,000; 95% CI: 2.41 to 8.63), with a turning 
point in 2026 that initiates gradual declines. By 2035, the incidence is 
projected to remain elevated at 5.46 per 100,000 (95% prediction 
interval: −12.01 to 22.88), representing a reduction of only 1.62% 
relative to 2025 levels (Figure  7A). Although male incidence 
trajectories mirror overall trends, female rates are projected to 
decrease by 7.27% compared to 2025 (Figures 7B,C). Despite this 
modest decline, projected global population growth to 8.89 billion by 
2035 is expected to drive an increasing absolute case count, with 
annual MDR-TB cases are projected to reach over 480,000 by 2035 
(Figure 7D). Among these cases, approximately 280,000 are expected 
to occur in males and 200,000 in females (Figures 7E,F).

Discussion

This study provides for the first time, a comprehensive 
spatiotemporal epidemiological picture of global MDR-TB spanning 

46 years (1990–2035), filling the knowledge gap regarding its long-
term evolution patterns, population and geographic heterogeneity, 
and refined long-term predictions. Our analysis confirmed and 
quantified the non-linear changes in MDR-TB burden over time, 
significant demographic differences, and persistent geographic 
clustering. Crucially, the BAPC model predicts that the global burden 
of MDR-TB will remain high until 2035, especially with population 
growth and aging, the absolute number of cases is projected to 
increase. This finding posed a serious challenge to achieving the End 
TB target.

The widespread adoption of first-line anti-TB drugs (isoniazid 
and rifampicin) since the 1980s, particularly after rifampicin’s 
inclusion in the short-course regimen that reduced treatment 
duration from 18–24 months to 6 months, was initially transformative 
(29, 30). However, these gains were eroded by escalating drug 
resistance, driven by suboptimal adherence to prolonged regimens 
and inadequate drug exposure in settings with weak health systems 
(31, 32). The steady increase in ASIR between 1990 and 2005 reflects 
both the expansion of drug-resistant TB transmission and historical 
diagnostic limitations. Late-twentieth-century improvements in 
diagnostic methodologies—including the advent of phenotypic 
techniques (e.g., solid culture drug susceptibility testing) and 
molecular diagnostics (e.g., Xpert MTB/RIF) (33, 34)—significantly 
enhanced case detection, thereby revealing previously undiagnosed 
reservoirs. The subsequent decline in ASIR post-2005 (annual 
percentage change = −3.15%) is likely associated with the 
implementation of enhanced TB control strategies, such as the 

TABLE 1  The epidemic trends of global MDR-TB (1990 to 2021).

Item Period APC value 95% CI p value

Lower Upper

ASIR 1990 to 1992 64.11 58.65 69.64 <0.001

1992 to 1995 18.44 15.43 20.53 <0.001

1995 to 2000 7.59 5.66 9.44 <0.001

2000 to 2005 2.71 −1.09 4.30 0.089

2005 to 2015 −3.15 −4.22 −2.62 0.008

2015 to 2021 0.66 −0.38 2.22 0.172

ASDR 1990 to 1992 47.89 45.42 50.44 <0.001

1992 to 1995 25.35 24.13 26.67 <0.001

1995 to 1998 10.99 9.53 12.01 <0.001

1998 to 2002 4.57 3.44 5.55 <0.001

2002 to 2005 −0.88 −2.95 1.37 0.206

2005 to 2015 −3.39 −4.09 −3.14 <0.001

2015 to 2021 −1.51 −2.07 −0.67 0.005

DALYs 1990 to 1992 48.25 45.84 50.78 <0.001

1992 to 1995 25.64 24.45 26.91 <0.001

1995 to 1998 10.67 9.35 11.70 <0.001

1998 to 2001 5.09 1.94 6.05 0.004

2001 to 2005 −0.02 −2.50 0.86 0.777

2005 to 2015 −3.81 −4.32 −3.53 <0.001

2015 to 2021 −2.26 −2.79 −1.35 <0.001

APC, annual percent change. CI, Confidence Interval. ASIR, age-standardized incidence rate. ASDR, age-standardized death rate. DALYs, disability-adjusted life years.
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directly observed treatment strategy (DOTS), and improved access 
to second-line therapies (35, 36). However, the recent plateau and 
slight resurgence in incidence since 2016 underscore persistent 
systemic gaps; treatment success rates remain at approximately 50%, 
thereby perpetuating community transmission of resistant strains. 
The impact of the COVID-19 pandemic on the global healthcare 
industry may have halted the downward trend of MDR-TB incidence 
after 2019. A review covering 17 low- and middle-income countries 
(LMICs) shows that the number of MDR-TB cases rebounded after 

the pandemic, especially in areas with weak healthcare infrastructure 
such as Indonesia and India (37). Concurrent declines in ASDR and 
DALYs from 2015 to 2021, as reported in global TB studies (38), 
suggest partial effectiveness of intensified MDR-TB management 
efforts. Nonetheless, persistent incidence trends necessitate the 
urgent adoption of novel transmission control strategies, optimized 
treatment regimens (e.g., incorporating bedaquiline and pretomanid), 
and the scaling up of quality assurance programs to effectively curb 
further transmission.

FIGURE 3

ASIR, ASDR and ASR of DALYs of global MDR-TB based on the joinpoint regression analysis (1990 to 2021). (A) ASIR, (B) ASDR, (C) Age-standardized rate 
of DALYs.

FIGURE 4

Spatial distribution of ASIR of MDR-TB incidence with years. (A) 1991, (B) 2001, (C) 2011, (D) 2021.
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Our research indicated that the global burden of MDR-TB 
exhibits marked gender and age stratification. Notably, there were 
pronounced gender disparities, with males exhibiting substantially 
higher ASIR, ASDR and DALYs than females. This sex-based gradient 
aligned with established tuberculosis epidemiology and likely reflects 
male-predominant risk factors such as smoking, alcohol consumption, 
occupational exposures (e.g., mining or migrant labor), delayed 
healthcare-seeking behaviors, and sub-optimal living conditions (8). 
Collectively, these factors heightened resistance risks (39, 40) and 
underscore the importance of implementing gender-sensitive 
interventions—particularly community-based active screening 
targeting male populations—to disrupt transmission asymmetries 
(41). The incidence number burden was concentrated among middle-
aged individuals, primarily those between 30 and 60 years of age (42), 
a trend that might be  related to frequent social interactions, 
occupational exposures, and histories of nonstandard treatment 
among young and middle-aged populations (8, 43). In contrast, the 
death burden was predominantly observed in the older adults, 
specifically among individuals aged 60 years and above. For instance, 
a study in South Korea reported that patients over 75 years of age had 
a death risk 68 times higher than those under 24, with individuals over 
65 accounting for 65% of total deaths (44). Additionally, DALYs 
peaked in the 45–60 age group, reflecting significant labor loss and 
socioeconomic impact (9). The burden among children under 14 years 
of age should not be underestimated. It was estimated that annually, 
between 25,000 and 32,000 children contract MDR-TB—accounting 
for approximately 3% of children’s tuberculosis cases—yet only 3–4% 
of these children receive standard treatment, resulting in a 21% death 

(45). Insufficient diagnostic capacity was a core issue, compounded by 
limited treatment options: while a 6–9-month short-course regimen 
was effective in adults, appropriate dosage forms and safety data for 
children were lacking (46). Strengthening the management of family 
contacts, developing child-friendly formulations, and incorporating 
children into pediatric clinical trials are essential strategies for 
reducing the disease burden in this vulnerable population (47).

Geospatial clustering analyses identified hyperendemic MDR-TB 
zones in sub-Saharan Africa, Central Asia, India, and Russia. In these 
regions, syndemic interactions with HIV/AIDS—reflected in 
co-infection rates of 20% in Africa—fragile health systems, poverty, 
and armed conflicts perpetuate transmission (48, 49). In South Africa, 
one-third of diagnosed TB cases discontinue treatment, thereby 
fueling the propagation of MDR-TB (50, 51). Moreover, in conflict 
zones such as Somalia, the collapse of healthcare infrastructure has 
created persistent hotspots through recurrent treatment interruptions 
(52). In contrast, European cold spots were associated with robust 
socioeconomic development and universal healthcare access. Through 
free treatment, transportation subsidies, and occupational protection 
policies in Europe and other regions, TB patients do not need to 
interrupt treatment due to economic pressure, effectively blocking the 
transmission chain of drug-resistant bacteria in the community (53). 
To mitigate the occurrence of MDR-TB, it was imperative to 
implement social protection and poverty reduction strategies in 
low-income regions with lagging socioeconomic development (54), 
alongside increased allocation of medical resources to local 
populations. Phlegm culture, genetic testing (such as Xpert MTB/
RIF), and second-line drug costs should be covered, encompassing the 

FIGURE 5

Statistical results of spatial clustering analysis. (A) Global spatial autocorrelation analysis; (B) Getis-Ord Gi* hotspot analysis.
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entire process from diagnosis to treatment. We strongly urged the 
international community to make targeted, strengthened, and 
sustainable investments in the region, such as enhancing diagnostic 
capabilities, promoting short-term programs, addressing HIV 
comorbidities, and providing social support.

The BAPC model projected a marginal 1.62% decline in global 
MDR-TB incidence by 2035, despite an anticipated increase to 480,000 
cases annually. These findings, which align with Sharma’s earlier 
projections (7), suggested that high-burden nations such as India and 
Russia will continue to experience rising incidence until 2040, driven 
by demographic expansion and the accumulation of drug-resistant 
reservoirs. The core engine of future global population growth is sub 
Saharan Africa (contributing over 50% of the new population), 
followed by South Asian countries such as India and Pakistan (55). 
This trend is driven by ultra-high fertility rates, a young population 
structure, and a lagging transition in fertility. The proportion of older 
adults aged 65 and above will continue to rise, expected to reach 16% 
by 2050 (56). This underscores the need to prioritize absolute disease 
burden metrics in MDR-TB surveillance, especially as the gap with the 
WHO’s “End TB” targets widens due to multi-factorial drivers 

including demographic growth, imbalanced healthcare resource 
distribution, and cross-border transmission of resistant strains (9, 57). 
Although a six-month short treatment regimen (BPaL/M) has 
demonstrated improved outcomes, its prohibitive cost has limited 
accessibility for MDR-TB patients in low-income settings (58). To 
address these challenges, it was recommended that the WHO and 
national governments develop targeted strategies for low-resource 
regions, consider implementing initiatives such as “government 
subsidies + healthcare” to alleviate catastrophic treatment costs and 
ensure comprehensive patient care and support (59). A study shows 
that the local government of the Republic of Congo has taken 
measures to strengthen molecular monitoring and control to manage 
drug-resistant TB (60). A study in Brazil shows that measures such as 
reducing population density and controlling HIV can reduce the 
incidence rate of drug-resistant TB (61).

This study has limitations. First, we relied on GBD estimated data, 
which may under- or overestimate the true MDR-TB burden due to 
variable data quality across countries. Second, the BAPC model 
assumes future trends mirror historical patterns, overlooking 
disruptive events like pandemics, conflicts, or medical breakthroughs. 

FIGURE 6

Spatial clustering distribution of MDR-TB incidence (2021). (A) Hotspot and coldspot distribution, (B) cluster analysis.
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Third, lacking global socioeconomic data restricts our analysis of 
factors driving disease burden disparities. Future work should 
integrate real-time surveillance with dynamic models and assess 
socioeconomic determinants of MDR-TB.

Conclusion

This first comprehensive spatiotemporal analysis spanning 
46 years reveals that the MDR-TB epidemic presents a far more 
formidable challenge to the End TB goals than previously 
appreciated. It is characterized by persistent geographical hotspots 
(notably in sub-Saharan Africa), a disproportionate burden among 
males, the older adults, and children, and a projected rise in 
absolute cases to 480,000 by 2035—despite a marginal decline in 
ASIR—driven by sustained population growth and aging, presents 
a far more formidable and enduring challenge to the End TB goals 
than previously appreciated from fragmented or shorter-term 
studies. Effectively mitigating this trend demands a paradigm shift: 
(1) Hyper-targeted resource allocation informed by spatial hotspot 
mapping to sub-Saharan Africa and other high-burden clusters; 
(2) Development and implementation of demographically-tailored 
interventions addressing the specific barriers faced by men (e.g., 
strengthen management and intervene in behavior), the older 
adults (e.g., active case finding in high-risk settings, integrated 
care), and children (e.g., improved diagnostics, child-friendly 

formulations, contact investigation); (3) Sustained investment in 
novel tools and strategies (shorter regimens, new drugs, vaccines); 
(4) Strengthen government commitments, provide patients with 
more economic support, implement “government subsidies + 
healthcare” initiatives to reduce the burden of diagnosis and 
treatment; (5) Carry out international regional cooperation to 
prevent and control MDR-TB through assistance programs. 
Resource allocation and effective healthcare interventions in the 
face of this persistent threat would galvanize more urgent, focused, 
and equitable global action.
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