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Background: Prolonged Sedentary behavior (SB) and lack of Physical Activity 
(PA) in the older population significantly increase the risk of chronic disease 
development. The use of mobile health (mHealth) apps may have a positive 
impact on older adults, helping to increase their physical activity levels and 
optimize body composition. However, the effectiveness of mHealth-based 
interventions and potential moderators in this population is not fully understood.
Objective: To assess the effectiveness of a mHealth-based intervention in 
promoting PA/moderate to vigorous physical activity (MVPA), reducing SB, and 
lowering body mass index (BMI) in older adults. The moderating effects of the 
mHealth intervention effects were also explored through subgroup analysis.
Method: This study searched Embase, PubMed, Web of Science, and Cochrane 
databases (as of June 2025) to include randomized controlled trials (RCT) 
evaluating the effects of mHealth on PA, MVPA, SB, and BMI in older adults. 
Standardized mean differences (SMD) and 95% confidence intervals (CI) were 
calculated using random effects models.
Results: A total of 14 RCTs were included (sample size = 2,511). mHealth 
intervention significantly elevated PA (SMD = 0.18, 95%CI: 0.01 to 0.35) and MVPA 
(SMD = 0.48, 95%CI: 0.20 to 0.75) and reduced SB (SMD = -0.55, 95% CI: −0.79 
to −0.32), but no significant improvement in BMI (SMD = −0.27, 95% CI: −0.79 
to 0.25). Subgroup analyses showed that: Commercial applications were better 
than research-based applications (PA: SMD = 0.18 vs. 0.07; MVPA: SMD = 0.70 
vs. 0.31); more than 3 behavior change techniques (BCTs) interventions were 
effective for MVPA enhancement (SMD = 0.49) and SB reduction (SMD = −0.77); 
and the use of a theory paradigm intervention was more effective on SB 
reduction (SMD = −0.77 vs. 0.38).
Conclusion: mHealth apps were effective in increasing PA/MVPA levels and 
reducing SB levels in older adults, but did not reach statistical significance in 
terms of BMI improvement. Through subgroup analyses, this study further 
found that commercial apps demonstrated greater strengths in promoting PA/
MVPA; meanwhile, integrating more than 3 BCTs synergistically promoted MVPA 
levels and reduced SB.

OPEN ACCESS

EDITED BY

Suraj Singh Senjam,  
All India Institute of Medical Sciences, India

REVIEWED BY

Lawrence D. Hayes,  
Lancaster University, United Kingdom
Amarjeet Singh,  
Shri Ram Murti Smarak Institute Of Medical 
Sciences, India

*CORRESPONDENCE

Ranran Xiang  
 521178526@qq.com

RECEIVED 24 July 2025
ACCEPTED 28 August 2025
PUBLISHED 01 October 2025

CITATION

Wang G, Xiang R, Yang X and Tan L (2025) 
Digital technology empowers exercise health 
management in older adults: a systematic 
review and meta-analysis of the effects of 
mHealth-based interventions on physical 
activity and body composition in older adults.
Front. Public Health 13:1661028.
doi: 10.3389/fpubh.2025.1661028

COPYRIGHT

© 2025 Wang, Xiang, Yang and Tan. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Systematic Review
PUBLISHED  01 October 2025
DOI  10.3389/fpubh.2025.1661028

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1661028&domain=pdf&date_stamp=2025-10-01
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1661028/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1661028/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1661028/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1661028/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1661028/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1661028/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1661028/full
https://orcid.org/0009-0000-0366-8434
mailto:521178526@qq.com
https://doi.org/10.3389/fpubh.2025.1661028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1661028


Wang et al.� 10.3389/fpubh.2025.1661028

Frontiers in Public Health 02 frontiersin.org

KEYWORDS

digital technology, mobile health applications, older adults, physical activity, fitness

1 Introduction

The global trend of population aging is increasing at an 
unprecedented rate. According to the latest report released by the 
United Nations, the global older population is expected to increase to 
1.4 billion by 2030, and by 2050, the number will exceed 2.1 billion 
(1). Studies show that older adults are sedentary for an average of 9.4 h 
per day (2) and fail to meet current Physical Activity (PA) 
recommendations (3). The combination of prolonged sedentary 
behavior (Sedentary Behavior, SB) and low levels of PA results in a 
significant imbalance between PA and SB. This imbalance is 
accompanied by a significant increase in the prevalence of chronic 
non-communicable diseases (e.g., cardiovascular diseases, diabetes, 
osteoporosis, sarcopenia, and obesity) (4–11), which puts a 
tremendous strain on an individual’s quality of life, the burden of care 
on the family, and the social health-care system (12–14). Numerous 
research studies suggest that regular PA is the most cost-effective 
non-pharmacological intervention to improve health in old age, 
effectively reducing the risk of chronic disease, enhancing muscle 
function, and reducing the incidence of falls (15, 16). However, it is 
worrying that traditional health promotion programs (e.g., 
community fitness classes, paper-based promotional brochures) have 
significant limitations in terms of coverage, continuity, immediate 
feedback, and adherence management, making it difficult to provide 
personalized feedback (17, 18).

Currently, mobile health (mHealth) technologies, covering 
wearables, smartphones, tablets, mHealth apps, smartwatches, and 
pedometers, have gained widespread use in healthcare (19). Applying 
the mHealth app to exercise health management for older adults 
shows significant potential for enhancement: (1) provide personalized 
services across time and space constraints (20); (2) use sensing data 
(e.g., accelerometers) to enable immediate feedback and enhance self-
efficacy (21); and (3) reach a wide range of people at low cost (22). 
However, there is a lack of systematic evaluation of the impact of 
stand-alone mHealth apps or apps that are part of coordinated 
interventions. In addition, research in this area has focused primarily 
on children, adolescents, and adults, with a notable lack of research in 
older populations. Although studies have examined the effectiveness 
of mHealth apps in promoting physical activity in different 
populations, there is significant heterogeneity in study design, 
intervention content, target populations, and outcome metrics, and 
findings vary (23–25). The study by Yerrakalva et al. (26), although it 
focused on older adults, was limited by the period, the limited amount 
of literature included, and the lack of inclusion of body composition 
as an outcome indicator, resulting in a lower overall quality 
of evidence.

In the field of research on mHealth app interventions, numerous 
theoretical frameworks, such as Self-Determination Theory (SDT), the 
Transtheoretical Model, the Health Belief Model, the Theory of 
Planned Behavior, and the Social Cognitive Theory (SCT), have been 
widely used to guide the design of relevant interventions (27). The 
number and type of Behavior Change Techniques (BCT) clusters are 
also seen as key factors influencing the effectiveness of mHealth app 
interventions (28). The standardized classification of BCT proposed 

by Migi et al. divides BCT into 16 clusters, including feedback and 
monitoring, rewards and threats, goals and planning, knowledge 
sharing, social support, and outcome comparison (29). Such 
categorization helps to clarify which BCT clusters are more effectively 
used in applications, which in turn promotes the promotion of PA and 
Physical Fitness (PF) (28). In summary, the effectiveness of mHealth 
app interventions is influenced by a variety of factors, including the 
type of app, intervention characteristics, theoretical paradigms, and 
BCT clusters. Despite the large number of reviews of mHealth 
app-based interventions in the existing literature, there are still 
significant gaps in the research.

The purpose of this study was to evaluate the effectiveness of a 
mHealth app-based intervention in promoting PA/moderate to 
vigorous physical activity (MVPA), reducing SB, and lowering body 
mass index (BMI) in older adults. Subgroup analyses were also 
conducted to explore the moderating effects of the mHealth 
intervention, such as the type of application, the theoretical 
framework, and the validity of the BCT clusters on the study’s findings. 
Provide targeted guidance recommendations for further advancing 
digital technology interventions for health promotion in older 
adult populations.

2 Methods

2.1 Registration and approval

This meta-analysis is reported following the PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses) guideline 
(30). The current study was registered with the International 
Prospective Register of Systematic Reviews (PROSPERO), registration 
number CRD420251062721.

2.2 Search strategy

This study aimed to identify relevant randomized controlled trials 
(RCTs) published until June 2025 by searching Embase, PubMed, Web 
of Science, and Cochrane databases. The search strategy used a 
Boolean logic search method combining subject-related terms and 
free words. Search terms included: (aged, older adult), (mobile health 
apps* or mHealth apps* or portable software apps*), (physical activity 
or PA or MVPA or sedentary behavior), and (Physical Activity or PA 
or MVPA or Sedentary Behavior or SB or physical fitness) (See 
Supplementary Table S2). In addition, references cited in previously 
relevant review literature were reviewed in this study to identify 
relevant literature that may have been omitted.

2.3 Inclusion and exclusion criteria

2.3.1 Inclusion criteria
The following inclusion criteria were adopted for this study: (1) 

Based on the World Health Organization’s definition of a healthy aging 
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stem population, the subjects selected for the study were those aged 
55 years and older (31), with no physical or cognitive dysfunction, and 
conditions such as overweight or obesity were not used as exclusion 
criteria. (2) Smartphone and tablet-based mHealth app interventions 
utilized in the study, which may include stand-alone apps or synergistic 
interventions. (3) The study design was an RCT. (4) The main outcome 
indicators included PA (mainly Steps), MVPA, SB, and BMI.

2.3.2 Exclusion criteria
Exclusion criteria were as follows: (1) literature not in English; (2) 

duplicate publications, basic studies, observational studies, reviews, 
and case series-type articles; (3) studies that were not available in full 
text and had incomplete data; and (4) exclusion of mHealth apps that 
used text message-only interventions or that did not support 
smartphone or tablet operating systems.

2.4 Study selection

After the literature search, the initial search results were imported 
into EndNote 20 (Thomson ResearchSoft) to remove duplicate articles. 
Predefined inclusion and exclusion criteria were applied to the 
literature. Two researchers independently completed screening the 
titles and abstracts of the search results to identify literature that met 
the inclusion criteria, and further searches were conducted to obtain 
the full text of these documents. Finally, the full-text literature 
was screened.

2.5 Data extraction and management

Extracts included study characteristics (authors, year, country), 
participant characteristics (country, sample size, age, and BMI, among 
others), intervention characteristics (intervention, type of mHealth, 
theoretical paradigm, BCTa clusters, frequency and periodicity of the 
intervention), and outcome indicators (PA, MVPA, SB, and BMI). 
Missing data were resolved by consulting a third researcher when 
inconsistencies arose during the data extraction process.

2.6 Risk of bias and quality assessment

The quality of research in RCTs was systematically evaluated using 
the Cochrane Collaboration’s risk of bias assessment tool, which 
covers seven key areas: random sequence generation, allocation 
concealment, blinding of participants and personnel, blinding of 
outcome assessment, incomplete outcome data, selective reporting, 
and other bias (32). Each item was assessed into 3 levels: low, unclear, 
and high risk of bias. Each study was assessed as a whole based on the 
7-item assessment, which was categorized into 3 levels: low risk of 
bias, unclear, and high risk of bias. Risk of bias figures will be generated 
by the software RevMan (Review Manager 5.3).

2.7 Statistical analysis

A meta-analysis of the included studies was conducted using a 
random effects model. For each outcome, we extracted the mean change 

(post-intervention minus pre-intervention) and standard deviation 
(SD) of the change in both the experimental group and the control 
group. However, if the mean and standard deviation were not reported, 
these results were calculated based on the standard error, median, range, 
and/or interquartile range (33, 34). In addition, the Get Data software 
is used to extract data from graphs when required. All data analyses 
were performed using Review Manager software version 5.3 or Stata 
software version 17.0, and standardized mean differences (SMDs) and 
95% confidence intervals (CIs) were calculated according to the 
random-effects model, with p < 0.05 defined as a significant difference 
(35). Statistical heterogeneity between studies was examined using the 
Cochran Q test; we assessed publication bias by examining funnel plots. 
We also performed sensitivity analyses to test the robustness of the 
pooled results by excluding trials at risk of assessment bias.

3 Result

3.1 Study selection

A total of 13,992 potentially relevant papers were identified after 
a comprehensive search of Embase (n = 2069), PubMed (n = 520), 
Web of Science (n = 4,316), and Cochrane (n = 7,087) databases. After 
removing duplicate references, 11,996 independent papers were finally 
screened. An initial review based on literature titles and abstracts was 
further narrowed down to 93 documents, which were subsequently 
reviewed in full text. Based on rigorous inclusion criteria, 14 kinds of 
literature were finally identified for inclusion in this research review 
(see Figure 1) (36–49).

3.2 Study characteristics

A total of 14 papers were included in this study, all of which were 
RCTs published between 2013 and 2025. The study sample size totaled 
2,511 participants, with the number of participants in each study 
ranging from 8 to 254. As shown in Supplementary Table S3, the basic 
characteristics of the included studies were as follows: the age range of 
participants was 58 to 77 years. Eleven of the studies targeted 
overweight or obese populations. Of the 14 studies, 4 were conducted 
in North America, 4 in Asia, 3 in Oceania, and 3 in Europe. mHealth 
includes 9 commercial apps and 5 research apps. Mobile health apps 
are based on several theoretical paradigms, including Self-Regulation 
Theory (SRT), SDT, and SCT. Different numbers or types of 
BCT-based clusters were identified in the study, ranging from 3 to 6 
clusters. Examples of BCT clusters applied include goal setting and 
planning, feedback, and monitoring. The intervention period ranged 
from 5 weeks to 24 months, with the most common training regimen 
being 3 times per week, and the frequency of interventions being 
predominantly 3 to 5 times per week, with a duration of approximately 
30 to 35 min per session. The primary outcome indicators included 
PA (represented by steps), MVPA, SB, and BMI.

3.3 Risk of bias

Based on the Cochrane Risk of Bias Assessment Tool, the 14 
included studies were systematically evaluated for quality and risk of 
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bias, and the results showed that 11 of them were at low risk of bias, 
while 3 studies were at high risk of bias. Figure 2 demonstrates the 
comprehensive results of the risk of bias assessment. Details of the risk 
of bias assessment for each study can be found in Figure 3.

3.4 Meta-analysis

3.4.1 PA
Figure 4 summarizes the effects of mHealth on PA. This study 

used a random-effects model to make summary estimates of 
intervention effects. There were eight trials involving PA data from 
1,279 participants. Overall, the mHealth intervention significantly 
elevated PA levels, with an effect size of 0.18 (95% CI: 0.01 to 0.35; 
p = 0.04; heterogeneity test p < 0.1).

3.4.2 MVPA
Figure  5 synthesizes the effect of mHealth on MVPA. Pooled 

effects were estimated in this study using a random effects model. A 
total of 921 participants from seven trials provided MVPA data. 
Overall, the mHealth intervention significantly increased MVPA 
levels, with an effect size of 0.48 (95% CI: 0.2 to 0.75; p < 0.01; 
heterogeneity test p < 0.1).

3.4.3 SB
Figure 6 presents the results of the pooled analysis of the effects of 

mHealth on SB. In this study, the pooled effects were estimated using 
a random effects model. A total of four trials involving 371 participants 
provided data on SB. Overall, exercise significantly reduced the level 
of sedentary behavior with an effect size of −0.55 (95% CI: −0.79 to 
−0.32; p < 0.01), and inter-study heterogeneity was not significant 
(p = 0.32).

3.4.4 BMI
Figure 7 presents the results of the pooled analysis of the effect of 

mHealth on BMI. Pooled effects were estimated in this study using a 
random effects model. A total of 775 participants from 4 trials 
provided BMI data. Overall, the effect of exercise on reducing BMI 
levels was not significant, with an effect size of −0.27 (95% CI: −0.79 
to 0.25; p = 0.31; heterogeneity test p < 0.1).

3.5 Subgroup analysis

3.5.1 Subgroup analyses for PA
Subgroup analyses for different types of mHealth revealed that 

commercial mHealth (SMD = 0.18, p = 0.02) demonstrated a more 
significant effect in elevating PA levels compared to research 
mHealth (SMD = 0.07, p = 0.59). Whether or not a theoretical 
paradigm was used did not show statistical significance with different 
numbers of BCT interventions, implying that existing subgroup 
classifications are unable to elucidate effect size variance 
(Supplementary Figure S1).

3.5.2 Subgroup analyses for MVPA
Subgroup analyses revealed that both mHealth interventions 

based on commercial (SMD = 0.70, p < 0.001) as well as interventions 
that included more than 3 BCTs (SMD = 0.49, p = 0.001) demonstrated 
significant effects. Of particular note, interventions based on the 
theoretical paradigm (SMD = 0.30, p = 0.02), as well as the 
non-reporting-theoretical-paradigm (NR) study group (SMD = 0.72, 
p < 0.001), showed significant differences. In contrast, interventions 
containing fewer than 3 BCTs failed to demonstrate statistical 
significance due to extreme heterogeneity (I2 = 89%) 
(Supplementary Figure S1).

FIGURE 1

Flowchart of the study selection.
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3.5.3 Subgroup analyses for SB
Subgroup analyses revealed that interventions based on theoretical 

paradigms (SMD = -0.77, p < 0.001) and interventions that included 
more than 3 BCTs (SMD = -0.77, p < 0.001) had significantly stronger 
effects compared to interventions in the NR cohort and with fewer than 

3 BCTs (SMD = -0.38, p = 0.009). Notably, the results of the test for 
differences between subgroups showed borderline significance 
(p = 0.08) and there was an overlap of data between the Theoretical 
Paradigm group and the Multi-BCTs group, and between the NR group 
and the Fewer BCTs group, which implies that the number of BCTs may 

FIGURE 2

Summary of the risk of bias assessment.

FIGURE 3

Risk of bias assessment results.

FIGURE 4

Forest plot of post-intervention PA value comparison between experimental and control groups. SD, standard deviation; Std, standardized; IV, inverse 
variance; CI, confidence interval.
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be a potential moderating variable contributing to differences in effect 
sizes (Supplementary Figure S1).

3.5.4 Subgroup analyses for BMI
Subgroup analyses revealed no significant effects (p > 0.05) for all 

intervention groups. Although the p-value for the NR and multiple 
BCTs groups was 0.01, their 95% confidence intervals crossed the null 
line and still lacked statistical significance (Supplementary Figure S1).

3.6 Publication bias and sensitivity analysis

A visual interpretation of the funnel plot 
(Supplementary Figure S2) did not show signs of publication bias. 
A sensitivity analysis of the five groups of studies revealed the 
robustness of the overall results after excluding studies on an item-
by-item basis (Supplementary Figure S3).

4 Discussion

This study comprehensively and integrally assessed the effect of 
mHealth interventions on PA, MVPA, SB, and BMI through a systematic 
review and meta-analysis. Results showed that mHealth-based 
interventions effectively elevated PA: (SMD = 0.18, 95%CI: 0.01 to 0.35) 
and MVPA (SMD = 0.48, 95%CI: 0.20 to 0.75) in older adults, while 
effectively reducing SB (SMD = −0.55, 95%CI: −0.79 to −0.32). 
However, its improvement in BMI did not reach statistical significance 
(SMD = −0.27, 95%CI: −0.79 to 0.25). Subgroup analyses showed 
significant variability in intervention effects: commercial-based 
applications were more effective than research-based applications in PA 
promotion (MVPA: SMD = 0.70 vs. 0.30), and strategies with more than 
3 BCTs showed synergistic gains in the modulation of MVPA and SB 
(SMD = 0.49 vs. −0.77), whereas theoretical-paradigm groups showed 
a specific advantage only for SB reduction (SMD = −0.77). These 
findings confirm the core value of digital technology in empowering the 

FIGURE 5

Forest plot of post-intervention MVPA value comparison between experimental and control groups. SD, standard deviation; Std, standardized; IV, 
inverse variance; CI, confidence interval.

FIGURE 6

Forest plot of post-intervention SB value comparison between experimental and control groups. SD, standard deviation; Std, standardized; IV, inverse 
variance; CI, confidence interval.

FIGURE 7

Forest plot of post-intervention BMI value comparison between experimental and control groups. SD, standard deviation; Std, standardized; IV, inverse 
variance; CI, confidence interval.
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health of the older adult, but also reveal the complexity and boundary 
conditions of the intervention effects.

In terms of facilitation mechanisms for PA and MVPA, this 
study found that commercial-based applications were significantly 
more effective than research-based applications. This phenomenon 
may stem from the fact that commercial products focus more on 
user experience design, e.g., enhancing motivation to participate 
through gamification elements (e.g., virtual medals, step 
leaderboards), whereas research applications tend to focus on 
functional completeness at the expense of interactive experience (23, 
50). The results challenge the conventional wisdom that evidence-
based design is necessarily superior to commercial products and 
suggest the critical role of practical design in the older population 
(23, 51). Of course, this could be attributed to the fact that mHealth, 
which is research-based, is still in the experimental stage, and its 
personalized design may not yet be fully developed (52).

The moderating effects of theoretical paradigms showed 
specificity (53). Interventions constructed based on SDT or SCT 
were particularly effective in reducing SB, possibly because 
theoretical frameworks are more adept at explaining intrinsically 
motivated-driven behavioral changes (e.g., autonomous choice of 
activity break rhythms) (54); However, their promotion of PA/
MVPA was not consistent, suggesting that high-intensity activity 
may require more direct external incentives (e.g., stage-based 
rewards) (55). This finding provides an important rationale for the 
theoretical fit of future intervention designs.

Notably, the number of BCTs integrated significantly affected 
intervention efficacy: interventions that included more than three 
BCTs (e.g., goal-setting, real-time feedback, social support) showed 
a significant advantage in improving MVPA and reducing SB, 
confirming the “synergistic efficacy of BCTs” hypothesis proposed 
by Michie et al. (29). It has been shown that clusters of multiple 
BCTs can build self-regulating neural circuits and that goal setting 
can activate the dorsolateral prefrontal cortex (DLPFC) to enhance 
executive function and prospective memory (56, 57); Real-time 
feedback can enhance the computation of reward prediction errors 
and enhance the perception of reward for effort through basal 
nucleus dopaminergic projections (58); Social support, in turn, 
stimulates empathic motivation via the mirror neuron system (59). 
When these techniques cover the whole cycle of “goal formation-
action monitoring-feedback regulation-strategy updating,” they can 
enhance the self-efficacy of older adults (56). Conversely, 
fragmented BCTs (≤3 BCTs) may result in a nonsignificant MVPA 
effect size due to failure to establish neurofunctional coupling (56).

It is thought-provoking that despite significant improvements 
in PA and SB, BMI did not show a synchronized decrease. This 
phenomenon may be attributed to the insufficient number of long-
term intervention cycles included in the current study, resulting in 
a slow rate of BMI reduction. Improvements in PA can be achieved 
in a relatively short period, whereas reductions in BMI may take a 
longer time to show changes (60). Secondly, the increase in MVPA 
may not yet have reached the intensity threshold that has a 
significant impact on body fat metabolism. Therefore, future 
research should focus on two key areas: first, extending the 
intervention cycle to verify long-term effects (given that most 
existing research cycles are shorter than 12 weeks); second, 
adjusting changes in intervention intensity, especially mobile health 
(mHealth) interventions aimed at muscle strengthening (the 
proportion of such current studies is less than 10%) (61).

5 Strengths and limitations

In this study, a large amount of credible and relevant literature was 
collected by searching Embase, PubMed, Web of Science, and Cochrane 
databases. The PRISMA guidelines were strictly followed during the 
study, and a two-person independent screening process was used to 
minimize selection bias. The current study is the first systematic review 
and meta-analysis to comprehensively include RCTs to assess the effects 
of mHealth interventions on PA, MVPA, SB, and BMI in older adults. 
In subgroup analyses, this study is the first to explore the moderators of 
mHealth intervention effects, including the type of application, 
theoretical paradigm, and BCT clusters on various indicators in older 
adults. Therefore, this study is highly robust and innovative.

Inevitably, this study still has certain limitations. First, since some 
primary studies did not specify the exact names of the intervention apps, 
subgroup analyses could not be conducted within individual app types. 
Second, although the PRISMA guidelines were strictly followed, the 
limited number of primary studies means that certain subgroup-analysis 
results may still be heterogeneous. Finally, because the outcome measures 
used in the primary studies were not reported in identical units, these 
discrepancies could bias the findings and potentially limit the effect sizes.

6 Conclusion

This study revealed that the mHealth intervention had a significant 
effect in elevating PA and MVPA levels in older adults and was 
effective in reducing SB, but did not reach statistical significance in 
terms of BMI improvement. Through subgroup analyses, this study 
further found that commercial applications showed greater advantages 
in promoting PA/MVPA; Integration of more than three BCTs can 
synergistically contribute to increased MVPA levels and reduced 
SB. Based on these findings, it is recommended to prioritize the use of 
established commercial applications that incorporate multiple BCTs 
in health coaching practices. Future studies should incorporate trials 
with a longer period. Meanwhile, it is recommended that “intervention 
tools” and “measurement tools” be  separated, and validated 
independent devices be used to evaluate the results so as to reduce bias.
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