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Introduction: Dysentery remains a significant notifiable Class B infectious
disease in China, exhibiting distinct spatial variations in incidence patterns. This
persistent geographical heterogeneity necessitates a systematic investigation
into the underlying influencing factors to inform targeted prevention and
control strategies.

Methods: Our analytical approach incorporated Moran's | index for spatial
autocorrelation analysis, multiple linear regression (MLR) for preliminary
assessment, and advanced spatial regression models including spatial error
model (SEM), geographically weighted regression (GWR), and multiscale
geographically weighted regression (MGWR). The analysis incorporated
socioeconomic, educational, healthcare, and demographic factors within a
unified spatial framework.

Results: The analysis revealed three key findings: (1) Significant spatial
clustering of dysentery incidence with identified high-risk concentration in the
Beijing-Tianjin region; (2) Superior performance of MGWR modeling in capturing
spatial heterogeneity compared to conventional methods; (3) Distinct regional
variations in dominant factors, with economic development most influential
in western China, education factors predominant in northeastern areas, and
healthcare resource availability showing strongest impact in the northeast but
minimal effect in southern regions.

Conclusions: The study demonstrates the value of multiscale spatial analysis in
understanding geographical disease patterns, revealing that dysentery incidence
in China is governed by different factors across regions.

KEYWORDS

dysentery incidence, influencing factors, multiple linear regression, spatial error model,
geographically weighted regression, multiscale geographically weighted regression

1 Introduction

As a notifiable Class B infectious disease in China, dysentery shows pronounced spatial
aggregation and geographical disparities in incidence rates. Nationwide epidemiological
surveillance data reveal pronounced regional aggregation, with persistently high-incidence
areas centered on the Beijing-Tianjin-Hebei urban cluster (I, 2), while provinces like
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Hunan and Zhejiang in the Yangtze River basin also demonstrate
elevated disease risk (3, 4). This spatial heterogeneity manifests
more precisely at finer scales, evidenced by significant local
hotspots such as the Hangzhou Bay urban belt in Zhejiang (4)
and mountainous areas of western and southern Hunan (3). Such
complex spatial patterns not only reflect the multidimensional
transmission mechanisms but also underscore the necessity for
investigating underlying determinants.

Existing studies have revealed multidimensional driving
factors influencing the spatial distribution of dysentery. At the
socioeconomic level, per capita GDP demonstrates significant
explanatory power (5), likely attributable to improved sanitation
infrastructure and enhanced healthcare accessibility resulting
from economic development. The impact of educational level
is particularly prominent. Studies have shown that individuals
with lower educational attainment face a significantly higher risk
of infection (6, 7). This association is even more pronounced
among children (8), reflecting the critical role of health literacy in
disease prevention.

The uneven distribution of medical resources also exerts
considerable influence (5). However, population density has a
dual effect: it can potentially facilitate transmission by increasing
the frequency of contact (1, 2), while simultaneously generating
protective effects through enhanced public health investments (9).
Additionally, larger household size elevates risk by increasing close
contact opportunities (10, 11), and sanitation disadvantages in
low-income areas (1) coupled with environmental pressures from
rapid urbanization (9) have been conclusively linked to disease
prevalence. These associations are particularly evident in highly
urbanized regions like the Beijing-Tianjin-Hebei area (1).

Methodologically, spatial econometrics offers a suite of
innovative analytical techniques. While Multiple Linear
Regression (MLR) identifies global risk factors, it fails to
account for spatial autocorrelation (12, 13). Spatial lag
models (SLM) incorporate spatial weight matrices to capture
spillover effects from neighboring areas (14, 15), while spatial
error models (SEM) address spatial dependence in the error
terms (16, 17). Geographically weighted regression (GWR)
advances the field by relaxing spatial stationarity assumptions
to reveal local spatial heterogeneity (18, 19). The more recent
Multiscale Weighted Regression (MGWR),
which allows variable-specific bandwidths, has demonstrated

Geographically

superior performance in provincial-scale analyses (20, 21),
by simultaneously identifying both broad-scale and localized
determinants (22, 23).

It is precisely to address the complex and multiscale
nature of dysentery’s spatial drivers that this study develops a
multidimensional approach. Building upon this methodological
foundation, we construct an integrated spatial analytical
framework that systematically combines MLR, SEM, SLM,
GWR, and MGWR. This comprehensive strategy is designed
to disentangle the intricate spatial distribution patterns of
dysentery incidence across China. By integrating global, local,
and multiscale perspectives, the framework enables a more
robust examination of the underlying driving mechanisms at the
provincial level, thereby offering deeper insights for targeted public
health interventions.
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TABLE 1 Key factors selected for analysis.

Variable Factors

Economic development GDP per capita

Education level Number of college students per 100,000 persons

Healthcare resources Number of hospital beds per 1,000 persons

Population structure Population density

Family structure Average household size

Consumption level Household consumption expenditure per capita

Urban-rural structure Urbanization rate

2 Methods
2.1 Data

Building upon the theoretical framework established in
the background section and considering data availability,
this study selected seven core influencing factor indicators
(detailed in Table 1) covering multiple dimensions including
economic development, education level, population structure,

family structure, healthcare resources, consumption level,
and wurban-rural structure. The analysis units comprised
31  provincial-level  administrative  regions  (including

provinces, autonomous regions, and municipalities directly
under the central government) of mainland China. All

data were obtained from authoritative statistical sources:
dysentery incidence data in 2022 were extracted from the
China Health Statistical Yearbook, while other explanatory
variables were sourced from the officially published China

Statistical Yearbook.

2.2 Spatial distribution characteristics
analysis

The study first employed Geographic Information System
spatial visualization techniques to construct a thematic map
of dysentery incidence across 31 provincial-level administrative
regions in mainland China. By transforming provincial incidence
data into intuitive spatial distribution maps, the regional variations
in disease incidence intensity were clearly presented.

2.3 Spatial autocorrelation analysis

This
methods to systematically evaluate the spatial distribution

research adopted spatial autocorrelation analysis

characteristics of dysentery incidence from the following

two dimensions.

2.3.1 Global spatial autocorrelation analysis
The
quantitatively assess the spatial autocorrelation of dysentery

study employed Global Moran’s I index to
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incidence rates.
(Equation 1) (24):

The mathematical expression is as follows

; Wi (xi — Xx) (Xj - f)
I=—>- (1)
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Where n represents the sample size, wjj denotes the elements
of the spatial weight matrix, x; and Xj are observed values, and X
is the mean value. The spatial weight matrix is represented by the
elements w;;.

The Moran’s I index ranges from —1 to 1, where positive
values (I > 0) indicate positive spatial autocorrelation (clustering
of similar values), negative values (I < 0) represent negative
spatial autocorrelation (dissimilar adjacent values), and values
approaching zero (I &~ 0) suggest random spatial distribution. All
results were verified for statistical significance using Z-test (p <
0.05) (25).

2.3.2 Local Moran's index (LISA)

The Local Indicators of Spatial Association (LISA) method was
applied to examine spatial correlation patterns between provincial
administrative regions and their neighboring areas. Using the same
variable definitions as the global Moran’s I, The computational
formula is expressed as (Equation 2) (26):

n (xi — f) Z W,']' (I’l]' — ﬁ)
I= = )

Pl

The LISA analysis identified four characteristic spatial patterns:
high-high clusters (HH, indicating adjacent high-incidence areas),
low-low clusters (LL, indicating adjacent low-incidence areas),
high-low outliers (HL, high-incidence areas surrounded by low-
incidence areas), and low-high outliers (LH, low-incidence areas
surrounded by high-incidence areas). All identified spatial patterns
were statistically significant (p < 0.05) and were visualized through
spatial mapping to effectively demonstrate the geographical
variations in dysentery incidence (27).

2.4 Multiple linear regression (MLR)

The study employed MLR to analyze influencing factors
of dysentery incidence, with the basic model formulation
(Equation 3) (28):

Y=P8+BXi+BXo+...+BpXp+e (3)

Where Y represents the incidence rate of dysentery, X1
through Xp denote the influencing factors, B0is the constant term,
Blthrough B, are the variable coefficients, and ¢ is the random
error term, which follows a normal distribution with a mean of 0
and a variance of %, Model evaluation included R? for explanatory
power, Akaike Information Criterion (AIC) as well as the log-
likelihood value for model comparison, and Variance Inflation
Factors (VIF; threshold = 5) for multicollinearity assessment (29).
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2.5 Global spatial regression models

2.5.1 Spatial error model (SEM)

The SEM addresses spatial autocorrelation in regression
residuals through its dual-component structure. The model
specification consists of two components (Equations 4 and 5):

Y=Xg+u (4)
Uu=Aw,+¢ (5)

Where X1 denotes the spatial error autocorrelation coefficient,
and W, represents the spatial lag effect of the error terms. By
incorporating spatial dependence in error terms, SEM effectively
resolves estimation bias caused by ignored spatial autocorrelation
in conventional regression (30).

2.5.2 Spatial lag model (SLM)

The SLM characterizes spatial interaction effects through a
spatially lagged dependent variable: its mathematical formulation
is expressed as (Equation 6) (31):

Y=pWy+Xg+e (6)

Where p quantifies the intensity of spatial dependence, W
defines spatial relationships via the weight matrix, Wy represents
the weighted average influence from neighboring areas, X is the
matrix of explanatory variables, 8 denotes the coeflicient vectors,
and ¢ is the random error term. This model accounts for spatial
spillover effects, overcoming limitations of traditional regression
that neglect spatial dependence.

2.6 Local spatial regression models

2.6.1 Geographically weighted regression (GWR)

GWR represents an innovative spatial analysis approach
that addresses the limitation of spatially invariant parameters
in traditional regression models, effectively revealing spatial
heterogeneity in variable relationships. The model incorporates
spatial location information into the regression equation, allowing
coefficients to vary geographically. Its basic formulation is
expressed as (Equation 7) (26):

Yi = Bo (ui, vi) + Z Br (ui, vi) xi + &; (7)

k=1

Where (u, vi) denotes the spatial coordinates of sample
points and By (u;, vi) represents location-specific regression
coefficients. The model employs Gaussian kernel functions and
distance-decay methods to construct spatial weight matrices,
estimates parameters through weighted least squares, and optimizes
bandwidth selection using cross-validation (CV) techniques.
Compared with conventional methods, GWR provides more
precise characterization of spatial variations in explanatory variable
effects, offering refined analytical capabilities for spatial data.
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2.6.2 Multiscale geographically weighted
regression (MGWR)

MGWR, as an important extension of GWR, introduces
variable-specific bandwidth parameters (byx) to differentially
characterize the spatial scales of various explanatory variables. Its
basic formulation is Equation 8:

m
Y; = Bo (ui» vi, bwo) + Z B (uis vio bwic) xix + €;
k=1

(8)

Where each explanatory variable x; corresponds to an
independent bandwidth parameter byy. This design enables more
accurate capture of spatial heterogeneity in each variable’s influence
range. For parameter estimation, MGWR employs an iterative
back-fitting algorithm for optimization, determines optimal
bandwidth combinations through CV criteria, and constructs
spatial weight matrices based on Gaussian kernel functions (32).
Compared with conventional GWR, key advantages of MGWR
include: (1) effectively addressing parameter estimation bias caused
by single bandwidth through variable-specific bandwidth settings;
(2) precisely identifying differential spatial influence ranges among
explanatory variables; and (3) significantly improving model
accuracy in analyzing complex spatial dependence relationships.

10.3389/fpubh.2025.1663473

These characteristics establish MGWR as a more reliable and
precise methodological tool for spatial heterogeneity analysis,
particularly suitable for research scenarios where explanatory
variables exhibit varying spatial scales of influence.

2.7 Software

This study adopted a multi-platform collaborative approach
for spatial statistical analysis. Spatial data processing and
visualization were conducted using ArcGIS 10.2 software,
encompassing analytical procedures such as spatial autocorrelation
testing, and multicollinearity diagnostics. The construction and
parameter estimation of conventional regression and spatial
econometric models (SLM/SEM) were performed in the GeoDa
1.22 environment, while the analysis of GWR and its multiscale
extension (MGWR) was implemented using the specialized
MGWR2.2 software. The foundational geographic data were
sourced from the National Platform for Common Geospatial
Information Services [Map Review No.: GS (2024)0650], with all
statistical tests employing two-tailed testing at a significance level
of @ = 0.05.

Dysentery incidence rate(1/

[ 1002-157
[ 11.58-3.10
[ 1311-539
B 5.40-9.11
Bl oi2-3184 )
[ ] Unstudied area

FIGURE 1
The spatial distribution of dysentery incidence in China (2022).
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3 Results

3.1 Descriptive and spatial autocorrelation
analysis results

As shown in Figure 1, there was significant spatial heterogeneity
in the incidence of dysentery across Chinese provinces in
2022. Geographically, Tianjin recorded the highest incidence rate
nationwide at 31.84 per 100,000, while Shanghai had the lowest
rate (0.02 per 100,000). Moran’s I index analysis (I = 0.203,
p < 0.001) indicated a significant spatial clustering pattern in

10.3389/fpubh.2025.1663473

dysentery incidence. LISA cluster analysis (Figure 2) identified
specific local patterns, most notably a high-high cluster centered in
the Beijing-Tianjin region, demonstrating clear spatial aggregation
and geographical disparities in disease distribution.

3.2 Results of MLR

Results In the preliminary analysis phase, this study employed
VIEF to diagnose multicollinearity among explanatory variables. The

LISA cluster map
.| Not Significant
I 11igh-High Cluster
* | High-Low Outlier
| Low-High Outlier
B Low-Low Cluster

[ | Unstudied area )

FIGURE 2
LISA cluster map of dysentery incidence (2022).

A

0 145290 580 870 1,160
- e emmm e Viles

TABLE 2 Results of the SEM and MLR.

Model fit
Coefficient Coefficient

Intercept —0.0387 0.8691 —0.0000 1.0000
GDP per capita —0.3917 0.0961 —0.2593 0.3999
Number of college students per 100,000 persons 0.4164 0.0185 0.4584 0.0324
Number of hospital beds per 1,000 persons —0.5395 0.0022 —0.4742 0.0288
Population density 0.0780 0.6888 0.0262 0.9183
Average household size —0.2117 0.3138 —0.0558 0.8030
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results revealed significant multicollinearity between household
consumption expenditure per capita, urbanization rate, and other
variables (VIF > 9). After excluding these two variables, the VIF
values of the remaining variables all fell within an acceptable range
(VIE < 4).

Using the optimized variable set, MLR analysis identified
only two statistically significant predictors: the number of
college students per 100,000 persons and the number of
hospital beds per 1,000 persons (Table2). Notably, spatial
autocorrelation testing of the model residuals reached a
significant level (p = 0.01), providing a theoretical basis

TABLE 3 Goodness-of-fit of the four models.

Modelfit ~MGWR GWR  SEM MR
Moran’s I —0.072 0.189 —0.024 0.190
(p=0705 | (p=0035 | (p=0927) (p=001)
R? 0.584 0.318 0.392 0.305
AIC 79.874 90.317 84.959 87.682
Log likelihood —30.391 —38.066 —36.480 —37.841

10.3389/fpubh.2025.1663473

for subsequent
(Table 3).

adoption of spatial regression models

3.3 Results of global spatial regression
models

This study constructed SLM and SEM for analysis. The results
showed that the spatial error coefficient (A = 0.428, p = 0.035) was
more significant than the spatial lag coeflicient (Wy = 0.34, p =
0.099), indicating that the SEM was more suitable for this study.

After controlling for spatial effects, both the number of college
students per 100,000 persons and the number of hospital beds per
1,000 persons remained statistically significant (p < 0.05), with
their significance further enhanced compared to MLR (Table 2).
Model comparisons revealed that the SEM exhibited improved
R?, higher log-likelihood values, and lower AIC, confirming its
superiority (Table 3).

Residual tests indicated that the SEM effectively eliminated
spatial autocorrelation, addressing the spatial dependence bias
inherent in traditional regression models and ensuring the
reliability of the research findings (Table 3).

Regression coefficient of,
GDP per capita

| -1.7316
. 1-1.3585

7} Not significant
|| Ustudied area

FIGURE 3
The spatial distribution of regression coefficient of GDP per capita.

B -0.9683 \

180 360 720 1,080 1,440

Miles

<
4
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3.4 Results of local spatial regression
models

This study systematically compared model fitting performance
by constructing both GWR and MGWR. The results demonstrated
that the MGWR model exhibited superior explanatory power
regarding the relationship between dysentery incidence and
influencing factors, with significantly better fitting performance
than both GWR and SEM. Notably, the GWR model not only
underperformed SEM in fitting effectiveness but also showed
significant residual spatial autocorrelation (Table 3). Consequently,
this study ultimately adopted the MGWR model with its multiscale
analytical advantages for in-depth analysis.

The MGWR model results revealed that among the five core
explanatory variables, three demonstrated statistically significant
impacts on dysentery incidence (p < 0.05) with distinct spatial
heterogeneity characteristics.

Firstly, per capita GDP showed significant negative correlation
with incidence only in western China, while its effect was
nonsignificant in central and eastern regions (Figure 3).

10.3389/fpubh.2025.1663473

Secondly, the number of college students per 100,000 persons
exhibited positive effects, most pronounced in eastern areas
(particularly in northeastern provinces) and relatively weaker in
western regions (especially Xinjiang and Tibet; Figure 4).

Thirdly, regarding healthcare resources, hospital beds per
1,000 persons demonstrated significant negative effects, particularly
prominent in northeastern China, while southern regions (e.g.,
Guangdong, Guangxi, Yunnan, Guizhou) showed no statistically
significant impact (Figure 5).

However, neither population density nor average household
size showed statistically significant effects on dysentery incidence
across all regions.

Further spatial analysis indicated superior model fit in eastern
regions (e.g., northeastern provinces, Beijing, Tianjin), where local
R? values were generally higher, suggesting strong explanatory
power of selected variables for incidence variation. However, the
model showed relatively poorer performance in western provinces
(e.g., Yunnan, Tibet), implying potential needs for incorporating
additional influencing factors to enhance explanatory capability in
these areas (Figure 6).

Regression coefficient of
Number of college students
per 100,000 persons

| 0.4508-0.4538
| 0.4539-0.4564
1 0.4565-0.4585
B 0.4586 - 0.4604
B 0.4605 - 0.4625
|:| Ustudied area

FIGURE 4

The spatial distribution of regression coefficient of number of college students per 100,000 persons.

1,440
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Regression coefficient of
Number of hospital beds per
1000 persons

|| -0.8469--0.7857
| -0.7856--0.6224
] -0.6223--0.4695
B -0.4694 - -0.4036
B -0.4035--0.3548

W//A Not significant
E’ Ustudied area

FIGURE 5

The spatial distribution of regression coefficient of number of hospital beds per 1,000 persons.

130 260 520 780 1,040

[ - Miles

3.5 Sensitivity analysis

The sensitivity analysis revealed that bandwidth selection
critically influenced MGWR model outcomes. Comparative
evaluation of MGWR models constructed under AIC. and CV
criteria (Table 4) showed that while the AIC.-based model achieved
slightly better goodness-of-fit, its residuals still exhibited significant
spatial autocorrelation. Therefore, the CV-based MGWR model
demonstrated better robustness and proved more suitable for this
study’s data analysis.

4 Discussion

This established a analytical
framework for dysentery incidence using four methodological
approaches: MLR, SEM, GWR, and MGWR. The MLR
model first identified key influencing factors; the SEM model
confirmed the significant role of spatial dependence; the GWR

study comprehensive

model revealed the spatial heterogeneity characteristics of
influencing factors; and finally, the MGWR model further
enhanced the model’s

explanatory power and predictive

accuracy through multiscale analysis. This sequential analysis

Frontiersin Public Health

not only elucidated the mechanisms influencing dysentery

incidence but also identified regional variations in these
factors, providing a scientific basis for targeted prevention
and control measures.

Empirical results from the MGWR analysis GDP per capita
demonstrated a significant negative effect on dysentery incidence
in western China. This finding aligns with the conclusions
of Zhan et al. (33), confirming the positive role of economic
development in disease prevention and control. Potential
mechanisms include: economically developed regions possess
more robust healthcare resource allocation (5); and higher GDP
levels facilitate improvements in public health infrastructure (e.g.,
water supply and sewage systems) (34). Notably, this negative
effect is particularly pronounced in western regions with relatively
weaker infrastructure, whereas in eastern regions, where baseline
sanitary conditions are already better, the marginal effect of
economic factors appears more limited.

The study also revealed the number of college students per
100,000 persons exerted a significant positive on disease incidence.
Existing research (5, 35) suggests that the communal living patterns
of college students (e.g., sharing tableware and sanitation facilities)
may increase disease transmission risks. This effect is particularly
pronounced in northeast regions with high concentrations of
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Local R?
0.5829-0.5839

0.5840-0.5850

0.5851-0.5855

Ustudied area

FIGURE 6
The spatial distribution of local R?.

0 130 260

520 780 1,040

TABLE 4 Comparison of model fit between AIC. and CV criteria in MGWR.

Model fit MGWR (CV) MGWR (AIC.)
Moran’s [ —0.072 (p = 0.705) —0.370 (p = 0.003)
R? 0.584 0.836

AIC 79.874 57.669

Log likelihood —30.391 —15.957

universities, likely due to higher population density and increased
contact frequency.

Hospital beds availability showed a negative effect on
dysentery incidence. Increased bed numbers may enhance
healthcare accessibility, enabling timely hospitalization of patients
and thereby reducing transmission risks (36). The inhibitory
effect of hospital beds on dysentery incidence was stronger in
northeastern China, which can be attributed to several region-
specific factors: relative bed shortages, weaker primary healthcare
systems, population outflow alleviating actual medical pressure,
and potentially more effective inpatient isolation during cold
weather conditions.

Notably, population density showed no significant influence
on dysentery incidence. Previous studies (9) suggest this may
reflect how robust public health interventions (e.g., vaccination

Frontiersin Public Health

programs and sanitation infrastructure) in high-density areas
effectively counteract the potential risks of population aggregation.
Additionally, research (37) has demonstrated that hot and
humid climates significantly increase dysentery incidence-
such strong climatic effects may overshadow the influence of
population density.

Additionally, household size showed no statistically significant
effect on dysentery incidence. This finding aligns with previous
research (38), potentially because other stronger determinants
like sanitation conditions may have overshadowed the role of
household size.

Methodologically, this study contributes to the field by
innovatively integrating multiple advanced spatial econometric
approaches—including MLR, SEM, GWR, and MGWR—to
establish a comprehensive analytical framework for identifying
determinants of dysentery incidence. This multi-model synergistic
approach helps overcome the limitations associated with traditional
single-model analyses. By effectively capturing multiscale spatial
heterogeneity, the framework provides a useful methodological
reference for health geography research and supports the
development of regionally tailored public health strategies.

Nevertheless, several limitations should be acknowledged: First,
regarding data, the use of provincial-level analysis units due to
official statistics availability constraints may insufficiently capture
finer-scale (e.g., county/city-level) spatial variations. Meanwhile,
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the exclusion of certain important explanatory variables (e.g.,
environmental factors like temperature and humidity) due to data
unavailability might partially compromise the comprehensiveness
of findings. Second, methodologically, while the cross-sectional
design effectively reveals spatial association patterns, it carries
inherent limitations in causal inference. Finally, the models have
not accounted for temporal dynamics of key factors like population
mobility and prevention policies, which might affect in-depth
understanding of dysentery transmission mechanisms.

5 Conclusion

This study systematically investigated the spatial distribution
patterns and influencing factors of dysentery incidence in China
using multiscale spatial analysis methods. The findings reveal
significant spatial heterogeneity in dysentery incidence across
China, with a distinct high-incidence cluster identified in the
Beijing-Tianjin region. Methodologically, MGWR demonstrated
superior analytical performance compared to traditional spatial
regression approaches, enabling more precise identification of the
spatial variation characteristics of various influencing factors.

Substantial regional differences in dominant factors affecting
dysentery incidence. Economic development level showed
significant influence in western regions, while educational factors
played a particularly prominent role in northeastern China. The
impact of healthcare resource allocation also exhibited marked
regional variations, with the most pronounced effects observed
in northeastern areas. These findings provide novel insights into
understanding the spatial patterns of dysentery transmission in
China and offer scientific evidence for developing targeted regional
prevention and control strategies.
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