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Background: Gastrointestinal (Gl) cancers account for 43.1% of cancer-related
deaths in China, with aging populations exacerbating this burden. While chronic
air pollution exposure is linked to Gl carcinogenesis, evidence on acute effects
remains limited. This study investigates short-term ambient pollutant exposure
and Gl cancer mortality in a coastal Chinese city with moderate pollution levels.
Methods: Using death registry data from Yancheng, China (2013-2022;
n = 104,216 Gl cancer deaths), we employed a time-stratified case-crossover
design combined with distributed lag nonlinear models (DLNM) to assess
associations between daily PM,s, PMy, SO, NO,, and Os; concentrations (lag
0-7 days) and mortality. Stratified analyses by age, sex, and cancer subsite were
conducted, with sensitivity analyses evaluating model robustness.

Results: A 10 ug/m? increase in PM,s, PMyo, and Oz was associated with acute
Gl cancer mortality, peaking at lag 0—-5 days (relative risk [RR] = 1.011, 95% ClI:
1.000-1.022 for PM,s; RR =1.009, 95% CI: 1.001-1.017 for PMy; RR = 1.008,
95% Cl: 1.001-1.016 for Os). The older males (>65 years) exhibited heightened
vulnerability, with maximal cumulative RRs of 1.018 (PM,;), 1.010 (PM,,), and
1.014 (Os). Esophageal cancer showed acute PM sensitivity (lag 0-4 days:
RR = 1.021 for PM;;), while colorectal cancer mortality correlated with delayed
O; effects (lag 0—-7 days: RR = 1.031). No associations were observed for SO, or
NO,. Sensitivity analyses confirmed model stability across pollutant co-exposure
adjustments and temporal confounders.

Conclusion: Short-term exposure to PM,s PMy, and Os elevates Gl cancer
mortality risk, particularly among the older males and upper Gl malignancies.
These findings highlight the need for revised air quality standards addressing
acute exposure thresholds and targeted protections for high-risk populations to
mitigate pollution-related cancer mortality.
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1 Introduction

Gastrointestinal (GI) cancer presents a significant global public
health challenge. According to the 2022 cancer mortality estimates
from the Global Cancer Observatory (GLOBOCAN), GI cancers at
specific sites constitute five of the top 10 causes of cancer mortality.
These include colorectal, liver, stomach, pancreatic, and esophageal
cancers, accounting for 9.3%, 7.8%, 6.8%, 4.8% and 4.6% of total
cancer deaths, respectively (1). China is expected to have 1.6 million
new cases and 1.11 million deaths from digestive system cancers,
representing 43.1% of all cancer-related deaths in 2022, with older
people most affected (2). With the advent of China’s aging population,
the burden of the expected future gastrointestinal cancer mortality
and morbidity will increase.

Mounting epidemiological evidence positions ambient pollutants
as critical modulators of carcinogenesis and tumor evolution, with
their multifaceted biological mechanisms now constituting a priority
research domain in environmental oncology. Environmental air
pollution encompasses various contaminants including gaseous
pollutants like sulfur dioxide (SO,), nitrogen dioxide (NO,), ozone
(03), and volatile organic compounds (VOCs) along with particulate
matter (PM) (3). These pollutants often occur together, posing health
risks to the population, particularly the harm of PM. The International
Agency for Research on Cancer (IARC) has classified PM as a human
carcinogen (4). Previous research has demonstrated a robust
correlation between the short-term effects of air pollution on all-cause
deaths and deaths from cardiovascular and respiratory diseases (5-8).
Epidemiological literature demonstrates chronic particulate matter
exposure exhibits dose-response relationships with both total and site-
specific gastrointestinal cancer mortality (9, 10). A meta-analysis of 20
cohort studies quantified this association, revealing that 80% (16/20)
of included research confirmed statistically significant associations
between prolonged PM, s/PM,, exposure and elevated GI cancer risk
(11). Notably, current evidence exhibits three critical limitations: (1)
paucity of investigations on acute (<7 days) pollution exposures’
impacts on digestive tract cancer outcomes; (2) absence of population-
level studies in regions with ambient pollutant concentrations below
WHO thresholds (e.g., Yancheng, China); (3) insufficient mechanistic
exploration of particulate-induced gastrointestinal carcinogenesis.
These knowledge gaps underscore the imperative for methodologically
standardized investigations addressing geospatial heterogeneity in
pollution exposure-response dynamics.

In this study, we analyzed death registry data from Yancheng City,
China for the years 2013-2022. The dataset included over 100,000 deaths
related to GI cancer. Our analytic framework combined a case-time-
control design with distributed lag nonlinear modeling (DLNM) within
a quasi-Poisson generalized additive model architecture to quantify

Abbreviations: Gl, Gastrointestinal; PM2.5, Particulate Matter <2.5 pm; PM10,
Particulate Matter <10 um; SO, Sulfur Dioxide; NO,, Nitrogen Dioxide; Os, Ozone;
DLNM, Distributed Lag Nonlinear Model; RR, Relative Risk; Cl, Confidence Interval;

df, Degrees of Freedom.
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concentration-response relationships between acute ambient pollutant
exposures (lag 0-7 days) and gastrointestinal cancer mortality outcomes.
Furthermore, we conducted stratified analyses by sex and age to explore
the potential moderating effects and identify potentially susceptible
populations. These findings not only helped identify high-risk susceptible
populations but also provided a crucial epidemiological foundation for
the development of effective preventive measures against GI cancer.

2 Materials and methods
2.1 Study area and population

Yancheng is a coastal city situated in the eastern part of China,
within the transitional belt from the subtropical to warm temperate
zones. It serves as a pivotal link between northern and southern
China, encompassing an area of 17,718 square kilometers with a
population of 6,689,700 in 2022. The average annual temperature is
recorded at 16.1 °C. Despite a decreasing trend over the past decade,
PM,; levels in Yancheng persistently exceed the World Health
Organization (WHO) air quality guideline (annual mean of 5 pg/m?)
by a substantial margin.

2.2 Daily mortality data

This study analyzed GI cancer mortality patterns using
de-identified records from Yancheng, China, spanning 2013-2022.
Mortality data were systematically collected through the municipal
Death Registration System under the supervision of Yancheng
Municipal Center for Disease Control and Prevention (CDC).,
covering all residential areas within the jurisdiction. GI cancer cases
were specifically identified using ICD-10 codes C15-C26. To ensure
data reliability, the CDC implemented multilevel quality control
protocols, including routine audits and validation processes for all
reported deaths. The surveillance framework adheres to standardized
cause-of-death  certification and

national procedures for

coding practices.

2.3 Daily air quality and meteorological
data

We extracted data on meteorological factors (temperature, relative
humidity, wind speed, barometric pressure) in Yancheng between
January 1,2013 and December 31, 2022 from the China Meteorological
Data Sharing Center', as well as daily average concentrations of five
ambient air pollutants, including PM,,, PM, 5, SO,, NO,, and O; (the
concentration of O; was the maximum 8-h moving average) in

1 http://data.cma.cn/
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Yancheng during the same period from the National urban air quality
real-time release platform® Air-pollution data obtained from this
monitoring system have been used extensively to evaluate the health
effects of air pollution both regionally and nationally (12, 13). The
2013-2022 timeframe was selected because 2013 marked a pivotal
year for air quality monitoring in China: the national ambient air
monitoring network was officially operationalized on January 1, 2013.
This network enabled 74 key cities (including Yancheng) to commence
standardized monitoring and real-time public disclosure of the 6
pollutants (including PM, ;) and AQI indices, ensuring high-quality,
consistent data from 2013 onward. The monitoring sites in Yancheng
were deployed following the Technical Specifications for Ambient Air
Quality Monitoring Network (HJ 664-2013), ensuring effective
representation of spatial variations in pollutant concentrations.

2.4 Statistical analysis

This study adopted a time-stratified case-crossover design to
control for both known (e.g., age, socioeconomic status, sex) and
unknown confounding factors by matching each death case to its
exposure status across different time periods (14, 15). Specifically, the
stratification variable “year-month-day of the week” was used to select
control periods (i.e., dates with the same year, month, and day of the
week) for each case, thereby eliminating interference from long-term
trends, seasonal variations, and weekday-related effects. Building on
this, a quasi-Poisson regression model was employed to analyze the
stratified data. This approach not only addresses overdispersion and
autocorrelation in daily GI cancer death counts but also ensures
robustness by conditionally adjusting for stratification variables
through a fixed-effects framework (16, 17). To further capture delayed
and nonlinear effects of environmental exposures, the study integrated
a Distributed Lag Non-linear Model (DLNM) to quantify the dynamic
impacts of exposure factors (e.g., air pollutants) across varying lag
periods (e.g., 0-7 days post-exposure) and to dissect their nonlinear
relationships with mortality risk. By combining these methods, the
model leverages the self-matching advantages of the case-crossover
design to control for confounders while utilizing the DLNM to flexibly
model complex temporal exposure-response patterns. This integration
enables a more precise assessment of the acute effects of environmental
factors on gastrointestinal cancer mortality (14, 15).

Specifically, the model uses the expected number of deaths due to
GI cancer on observation day ¢, denoted as E(Y}), as the dependent
variable. The log-linear formulation is expressed as:

Y, quasi-Poisson[E(Y,)]

Log[E(Y)] = a + P, +yT, + ns(Relative Humidity,
df = 3) + ns(Wind Speed,, df = 3) + ns(time,7*10) + stratum + dow + as
factor(holiday)

P,; and T, represent cross-basis functions of daily average
concentration for air pollutants and daily mean temperature,
respectively, which quantify the exposure-response relationships of
pollutants and temperature across varying lag days; The coefficients
p and y correspond to these functions, respectively; Natural cubic
splines (ns) with 3 degrees of freedom (df) are employed to control

2 http://www.cnemc.cn/sssj/
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for nonlinear confounding effects of relative humidity and wind
speed (18). The stratification variable (stratum) inherently adjusts for
seasonality and long-term trends by restricting comparisons to days
within the same year, month, and day of the week. The time-
stratified case-crossover approach inherently adjusts for temporal
confounders including weekly variations, seasonal cycles, and
longitudinal trends through its self-matching design framework.
Furthermore, to refine control over short-term temporal variations,
the model incorporates day-of-week effects (dow) to capture
mortality fluctuations linked to differences between weekdays and
weekends, and a categorical holiday variable to account for public
holidays. In the analysis of lagged exposure effects, the study
evaluates both single-day lags (lag0-lag7, corresponding to the
exposure day up to 7 days prior) and cumulative lags (lag01-lag07,
defined as moving averages of the current day and the preceding
1-7 days) to comprehensively assess the acute health impacts of
pollutants (19).

Single-pollutant models were established for PM, 5, PM,,, SO,,
NO,, and O;, independently assessing the lag-specific and
cumulative effects of each pollutant on GI cancer mortality per
10-unit increase in concentration. Subsequently, to address the
collinearity between air pollutants, multi-pollutant models were
constructed by excluding highly correlated variables (Pearson
correlation coefficient r < 0.8) based on statistically significant
pollutants identified in single-pollutant analyses. Relative risk (RR)
estimates and corresponding 95% confidence intervals (CI) were
employed to represent the lag-specific and cumulative exposure
impacts. Further, stratified analyses by age (<65 years vs. >65 years),
and sex (male vs. female) were conducted to reveal population
heterogeneity in risk distribution and identify potential high-
risk subpopulations.

We finally performed several sensitivity analyses to evaluate
the robustness of the results. Firstly, to evaluate model parameter
sensitivity, we systematically varied the df for the time variable in
single-pollutant models, testing a range of 6-10 df per year as
supported by prior methodological studies (20, 21). Secondly, to
address multicollinearity concerns, dual-pollutant models were
implemented using conditional inclusion criteria (Spearman’s
p < 0.7) to quantify confounding interactions between co-varying
Thirdly,
unprecedented environmental and healthcare disruptions caused

atmospheric  contaminants. recognizing  the
by the SARS-CoV-2 pandemic, we introduced binary dummy
variables (2020-2021 coded as 1 vs. other years as 0) into our
primary models to isolate and control for pandemic-related
confounding factors.

Analytical procedures were implemented in R version 4.2.2 (R
Statistical with

computational libraries: the ‘dlnm’ package for distributed lag

Foundation for Computing) specialized

nonlinear modeling, and ‘splines’ for nonparametric smoothing. A

two-tailed alpha level of 0.05 served as the prespecified statistical
significance threshold.

2.5 Ethics approval

Ethics approval was not required for secondary analysis of the
anonymous data in this study.
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TABLE 1 Summary statistics for air pollutants, meteorological parameters and Gl cancer daily deaths from January 2013 to December 2022 in

Yancheng, China.

Variables Mean SD Min P25 Median P75 Max Total
Daily air pollutants, pg/m?’

SO,, pg/m’ 12.61 11.11 2.00 6.00 9.00 16.00 102.00 -

NO,, pg/m’ 23.89 13.34 3.00 14.00 20.00 30.00 100.00 -

O;, pg/m?® 104.89 37.18 12.00 77.00 99.00 125.00 261.00

PM,, pg/m’ 74.58 51.77 0.00 40.00 60.00 95.00 588.00 -

PM, 5, pg/m’ 44.03 38.36 0.00 19.00 33.00 56.00 392.00 -
Meteorological factors

Temperature, °C 15.88 9.33 -9.10 7.70 16.40 23.90 34.70 -

Relative humidity, % 75.04 13.09 31.30 67.00 76.40 84.80 100.00 -

Pressure, Pa 1016.34 9.41 985.60 1008.20 1016.60 1023.80 1041.40 -

Wind speed, m/s 2.38 1.06 0.30 1.60 2.20 3.00 8.10 -
GI Cancer daily deaths, n

Total daily deaths 28.62 5.75 11 25 28 32 55 104,216

Esophagus cancer 8.57 3.02 0 6 8 10 21 31,198

Stomach cancer 8.04 2.95 1 6 8 10 21 29,298

Liver cancer 6.08 2.58 0 4 6 8 17 22,136

Colorectum cancer 2.98 1.83 0 2 3 4 12 10,846

Pancreas cancer 2.26 1.56 0 1 2 3 11 8,220
Gender

Male, n 18.74 4.59 6 16 18 22 41 68,247

Female, n 9.88 3.22 0 8 10 12 23 35,969
Age

>65 years 20.38 5.00 6 17 20 24 39 74,214

<65 years 8.24 3.19 0 6 8 10 21 30,002
Warm season 28.32 5.65 11 25 28 32 55 51,832
Cold season 28.91 5.82 14 25 29 33 51 52,384

The season was divided into warm (April to September) and cold (October to March).

NO,, nitrogen dioxide; O; ozone; PM,,, particulate matter with an aerodynamic diameter <10 mm; SO,, sulfur dioxide.

3 Results
3.1 Descriptive statistics

As shown in Table 1, there were 104,216 GI cancer deaths
identified in Yancheng from 2013 to 2022 averaging 28.62 deaths per
day. The majority of deaths died from esophagus cancer (29.94%),
stomach cancer (28.11%), and liver cancer (22.14%), while the number
of colorectum cancer (10.41%) and pancreas cancer (7.89%) deaths
was relatively small. A total of 68,247(65.49%) males and 35,969
(34.51%) females were among all GI cancer deaths. The number of
deaths per day attributed to GI cancer was 18.74 for males and 9.88
for females. In all cases of death caused by GI cancer, 71.21% of
patients were aged 65 or older, whereas 28.79% were younger than
65 years old.

The daily average concentrations of SO,, NO,, O;, PM,, and PM, 5
in Yancheng were 12.61 pg/m®, 23.89 pg/m’, 104.89 pg/m’, 74.58 pg/m’
and 44.03 pg/m’, respectively. During the study period, the daily
average temperature was 15.88 °C, the mean pressure was 1016.34 kPa,
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the mean wind speed was 2.38 m/s, and the relative humidity was
75.04%. The time-series patterns of ambient air pollution, daily GI
cancer deaths, and meteorological factors between 2013 and 2022 are
shown in Figure 1.

3.2 Spearman rank correlation analysis

Supplementary Table S1 presents Pearson correlation coefficients
among air pollutant concentrations. Significant inter-correlations were
observed (p < 0.001) among sulfur dioxide (SO>), nitrogen dioxide
(NO,), and particulate matter (PM,, and PM, ), while ozone (O;)
demonstrated associations exclusively with PM,, and NO; in the
analysis. Our research results indicated that temperature exhibits a
positive correlation with O3 concentration, yet a negative correlation
with PM, 5, PM,, SO,, and NO, concentrations (all p < 0.001). Relative
humidity also demonstrated a negative correlation with these five
pollutant concentrations (all p < 0.001). Furthermore, atmospheric
pressure was positively correlated with PM, 5, PM,, SO», and NO,
concentrations, and negatively correlated with O; concentration (all
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FIGURE 1

Temporal patterns of daily Gl cancer deaths and various environmental factors from 2013 to 2022.

p <0.001). Wind speed exhibited a negative correlation with PM, s,
PM,, O3, and NO, concentrations, but a positive correlation with SO,
concentration (all p < 0.01).

3.3 The short-term exposure to air
pollution and Gl cancer deaths

Figure 2 and Table 2 estimated lag-response and cumulative relative
risk of GI cancer deaths associated with a 10 pg/m’ increase in air
pollutant concentrations using a single pollutant model. For single-day
lags, significant positive associations were found between these
pollutants (PM, s and O;) and GI cancer deaths at lag 0, lag 1 and lag 2
(lag 0, lag 1, lag 2 and lag 3 days for PM,,), with all these pollutants
peaking on lag 0 day. For multi-day lags, significant positive associations
were also found between these pollutants (PM, 5, PM,, and O;) and GI
cancer deaths. The cumulative risk of GI cancer deaths was associated
with PM, 5 exposure, ranging from lag 0 day (RR =1.0031, 95%CI:
1.0001-1.0061) to lag 0-5 days (RR = 1.0112, 95%CI: 1.0001-1.0224).
PM,, exposure, from lag 0 day (RR = 1.0029, 95%CI: 1.0007-1.0051) to

Frontiers in Public Health

lag 0-6 days (RR = 1.0089, 95%CI: 1.0005-1.0174), was linked to an
increased cumulative risk of GI cancer deaths. O, exposure, from lag
Odays (RR=1.0024, 95%CIL: 1.0002-1.0045) to lag 0-5days
(RR = 1.0084, 95%CI: 1.0005-1.0163), also increased the cumulative risk
of GI cancer deaths. Moreover, the estimated cumulative relative risk of
GI cancer deaths associated with a 10 pg/m® increment in pollutant
concentrations all reached a maximum at lag 0-5 days for PM, 5, PM,,
and O;. There was no single-day or multi-day lag effect on SO, and NO,.

3.4 Subgroup analysis

Figure 3 and Supplementary Tables S2, S3 presented the results
of the analysis stratified by various age groups within the single
pollutant model. When categorized by age, the correlation between
GI cancer deaths and exposure to PM, 5, PM,, and O; was significant
exclusively in the older population (age >65 years). The highest
cumulative RR for PM,s was observed at a lag of 0-7 days
(RR =1.0175, 95%CI: 1.0011-1.0342), for PM,, at a lag of 0-5 days
(RR =1.0101, 95%CI: 1.0008-1.0195), and for O at a lag of 0-6 days

05 frontiersin.org
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(RR=1.0143, 95%CIL: 1.0040-1.0247). Additionally, we also
performed a stratified analysis by gender (Figure 4 and
Supplementary Tables S4, S5). We found that the statistically
significant correlation between exposure to PM, 5, PM,,, and O; and
GI cancer mortality was evident only in males. The association
between PM, s exposure and GI cancer deaths was strongest at a lag
of 0-7 days (RR = 1.0188, 95%CI: 1.0021-1.0359). For PM,, the peak
cumulative risk was at a lag of 0-4 days (RR=1.0116, 95%CI:
1.0029-1.0205), and the cumulative RR for O; peaked at a lag of
0-5 days (RR =1.0102, 95%CI: 1.0005-1.0199). No link with GI

Frontiers in Public Health

cancer mortality was identified for SO, and NO, in the subgroup
analysis. Furthermore, our stratified analysis of five GI cancers
revealed distinct anatomic and temporal susceptibility patterns to
airborne pollutants (Supplementary Tables S6-S10). Esophageal
cancer mortality exhibited multipollutant sensitivity, with PM,
demonstrating peak cumulative risk at lag 0-4 days (RR = 1.0216 per
10 pg/m? increase; 95% CI: 1.0035-1.0401), concurrent with PM10’s
maximal effect window during the same exposure period
(RR =1.0208, 95% CI: 1.0078-1.0340 per 10 pg/m’ increment).
Notably, O; displayed acute-phase toxicity in esophageal cancer,
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TABLE 2 Association between 10 pg/m? air pollution exposure and lagged Gl cancer mortality risk: single-pollutant model.

Lag days @ PM,; (RR [95%CI]) PM;j, (RR [95%CI]) SO; (RR [95%Cl]) NO; (RR [95%ClI]) Oz (RR [95%ClI])
Lag0 1.0031(1.0001,1.0061) 1.0029(1.0007,1.0051) 1.0026(0.9901,1.0152) 0.9877(0.9384,1.0395) 1.0024(1.0002,1.0045)
Lag 1 1.0026(1.0002,1.0050) 1.0023(1.0006,1.0041) 1.0026(0.9926,1.0127) 0.9950(0.9533,1.0385) 1.0020(1.0002,1.0037)
Lag 2 1.0021(1.0001,1.0041) 1.0018(1.0004,1.0032) 1.0026(0.9947,1.0106) 1.0024(0.9668,1.0394) 1.0016(1.0002,1.0030)
Lag3 1.0016(0.9999,1.0034) 1.0013(1.0001,1.0025) 1.0027(0.9962,1.0092) 1.0099(0.9777,1.0431) 1.0012(1.0000,1.0024)
Lag 4 1.0011(0.9994,1.0028) 1.0007(0.9995,1.0019) 1.0027(0.9965,1.0090) 1.0174(0.9849,1.0509) 1.0008(0.9996,1.0020)
Lag5 1.0006(0.9987,1.0026) 1.0002(0.9988,1.0016) 1.0028(0.9954,1.0102) 1.0249(0.9884,1.0627) 1.0004(0.9990,1.0018)
Lag6 1.0001(0.9977,1.0025) 0.9997(0.9979,1.0014) 1.0028(0.9935,1.0122) 1.0325(0.9892,1.0777) 1.0000(0.9983,1.0018)
Lag7 0.9996(0.9967,1.0026) 0.9991(0.9970,1.0012) 1.0029(0.9912,1.0147) 1.0402(0.9883,1.0948) 0.9996(0.9975,1.0018)
Lag 01 1.0057(1.0003,1.0111) 1.0052(1.0013,1.0092) 1.0052(0.9827,1.0281) 0.9828(0.8949,1.0792) 1.0044(1.0004,1.0083)
Lag 02 1.0078(1.0005,1.0152) 1.0071(1.0017,1.0124) 1.0078(0.9779,1.0387) 0.9851(0.8664,1.1201) 1.0060(1.0007,1.0113)
Lag 03 1.0094(1.0006,1.0184) 1.0083(1.0020,1.0147) 1.0105(0.9751,1.0473) 0.9949(0.8504,1.1639) 1.0072(1.0008,1.0135)
Lag 04 1.0105(1.0005,1.0207) 1.0091(1.0019,1.0163) 1.0133(0.9739,1.0543) 1.0121(0.8446,1.2129) 1.0080(1.0008,1.0152)
Lag 05 1.0112(1.0001,1.0224) 1.0093(1.0015,1.0171) 1.0161(0.9738,1.0602) 1.0373(0.8466,1.2711) 1.0084(1.0005,1.0163)
Lag 06 1.0113(0.9991,1.0237) 1.0089(1.0005,1.0174) 1.0190(0.9738,1.0663) 1.0711(0.8538,1.3437) 1.0084(0.9998,1.0170)
Lag 07 1.0109(0.9973,1.0248) 1.0080(0.9987,1.0174) 1.0219(0.9725,1.0738) 1.1141(0.8632,1.4380) 1.0080(0.9984,1.0177)

The bold number indicates the P < 0.05.
RR, relative ratio.

NO,, nitrogen dioxide; O; ozone; PM,, particulate matter with an aerodynamic diameter <10 mm; SO,, sulfur dioxide.

showing a significant mortality elevation at lag 0-2 days (RR = 1.0095,
95% CI: 1.0000-1.0192 per 10 pg/m’ increment). In contrast,
colorectal cancer mortality was uniquely associated with ozone
exposure, manifesting maximal risk at lag 0-7 days (RR = 1.0312,
95% CI: 1.0019-1.0614 per 10 pg/m’ increment). This divergence in
temporal dynamics—early particulate matter dominance in upper
gastrointestinal malignancies versus delayed ozone effects in lower
gastrointestinal sites — was further reinforced by null associations
observed in gastric, hepatic, and pancreatic cancers.

3.5 Sensitivity analysis

The robustness of the primary findings was systematically
evaluated through multiple approaches. First, varying degrees of
freedom (6-10 df per year) to adjust for long-term temporal
trends yielded notably stable results across all exposure-pollutant
models (Supplementary Tables S11-S14), demonstrating the
consistency of effect estimates under different smoothing
parameterizations. Furthermore, in two-pollutant models
adjusting for potential confounding by co-pollutants, the
associations between a 10 pg/m3 increase in PM, s, PM,,, SO,, NO,,
and O; concentrations and GI cancer mortality revealed no
substantial differences compared to single-pollutant models
(Supplementary Table S15). Additionally, the inclusion of dummy
variables to account for the SARS-CoV-2 pandemic period
revealed no substantial alterations in exposure-response
relationships compared to the main model
(Supplementary Table S16). Finally, we conducted additional
sensitivity analyses examining the cumulative lag effect of air
pollutants on GI cancer deaths over 0-21 days and found that the
cumulative relative risks (RRs) for PM, s, PM,,, SO,, NO,, and O,

(per 10 pg/m’ increase) showed no evidence of decline over the
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0-21 day period; instead, they remained stable or slightly
increased (Supplementary Table S17).

4 Discussion

Our study reveals novel associations between short-term exposure
to ambient pollutants and elevated GI cancer mortality in a coastal city
with moderate pollution. Acute-phase risks peaked at lag 0-5 days
(PM,s, PM,(, and O;), aligning mechanistically with pollutant-
triggered systemic inflammation and oxidative stress, despite
concentrations below WHO interim targets. These findings also
demonstrated that transient pollution spikes may accelerate GI cancer
mortality in vulnerable populations (e.g., the older population and
men). Anatomic-temporal divergence—acute upper GI effects versus
delayed lower GI impacts—highlights subsite-specific vulnerabilities,
addressing prior ecological studies’ lack of subsite stratification.

The association between air pollutants and GI cancer mortality
exhibits significant spatiotemporal heterogeneity. While evidence
on the short-term effects of air pollution on GI cancer mortality
remains limited, accumulating studies highlight significant
associations with long-term exposure to air pollution on GI cancer
mortality (22-26). Regarding the effects of PM,, discrepancies
exist between our findings and previous short-term exposure
studies: A Brazilian cohort demonstrated that each 10 pg/m’
increase in PM,s (lag 0-2 days) elevated mortality risks for
esophageal, gastric, and colorectal cancers by 4%, 5%, and 4%,
respectively (27), while a time-series study in Xian confirmed
PM,5’s association with gastric cancer mortality (RR = 1.0003) (28).
Although our results align directionally with these studies, the
effect magnitude is notably lower. Given the heterogeneity in
genetic profiles, socioeconomic conditions, climatic factors,
pollutant composition, and methodological approaches across
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existing investigations, current evidence remains insufficient to
confirm whether adaptive mechanisms contribute to attenuated
cancer mortality trends. Differences from the umbrella review (29)
stem from exposure time scales and methods: we focused on short-
term dynamic exposure (0-7 days) and acute mortality via time-
stratified case-crossover (controlling confounders), whereas it used
long-term static exposure (annual averages) and cohort studies for
chronic incidence effects.

Frontiers in Public Health

In terms of O;, this study provides novel evidence: Each 10 pg/
m’ increase in O; concentration at lag 0-5 days corresponds to a
0.84% elevation in GI cancer mortality risk. This finding echoes a
Brazilian nationwide case-crossover study linking 8-h O; exposure
to increased all-cancer mortality, including gastric cancer (30).
However, Chinese studies present conflicting results—while a
study conducted in Guangzhou revealed positive O;-all-cancer
mortality associations (31), the other two studies focusing on lung
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cancer showed null associations (32, 33). These inconsistencies
may arise from: (1) methodological variations (case-crossover vs.
time-series designs); (2) cancer-type specificity (all-cancer vs.
single-site analyses); and (3) sample size limitations. Notably, this
study pioneers verification of Os’s short-term health effects in a
moderately polluted city (Yancheng’s daily mean O;: 104.89 pg/
new evidence for regional air quality

m?®), offering

standard revisions.
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Regarding the lack of significant associations for SO, and NO,,
we attribute this primarily to Yancheng’s unique coastal atmospheric
conditions: (1) prevailing southeastern winds enhance pollutant
dispersion, yielding daily mean concentrations of 12.61 pg/m’ (SO,)
and 23.89 pg/m’ (NO,)—significantly lower than industrial clusters
like the Beijing-Tianjin-Hebei region; (2) marine-derived secondary
aerosols may alter pollutant chemical profiles, potentially mitigating
carcinogenicity (34). This low-concentration, low-variability exposure
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profile likely reduced statistical power, necessitating future multicenter
studies to validate these findings’ generalizability.

Although the potential mechanisms linking ambient air pollutants
to GI cancer mortality remain unclear, current research proposes a
multi-pathway hypothesis. Particulate matter harbors carcinogenic
constituents such as heavy metals and persistent organic pollutants,
with demonstrated potential to initiate oncogenic processes and
promote tumorigenesis through chronic exposure pathways. First,
pollutants such as PM, 5 can enter the GI tract through dual routes: On
one hand, inhaled PM, 5 partially crosses alveolar membranes into the
bloodstream and deposits in intestinal tissues via systemic circulation
(35); on the other hand, particles retained in bronchioles and alveoli
are phagocytosed by macrophages (36) and subsequently transported
to the upper GI tract through the mucociliary clearance mechanism
(37, 38), a process confirmed in human studies of nonsmokers (39).
Second, pollutants may directly disrupt intestinal barrier function:
PM, 5 synergizes with toxic gasses like SO, and NOx to induce tight
junction protein rearrangement in gut epithelial cells, increasing
intestinal permeability (40), while its heavy metals and carcinogens
may trigger localized oxidative stress and DNA damage. Third, the
synergistic effects of systemic inflammation and microbial dysbiosis:
PM exposure induces systemic inflammatory responses (40), and
animal studies show air pollution alters gut microbiota composition,
exacerbating susceptibility to mucosal inflammation (36, 41). This
dual impact is particularly critical in GI cancer patients, who already
exhibit chronic inflammation and microbial imbalance, potentially
accelerating cancer progression. Notably, upper GI cancers (e.g.,
esophageal and gastric cancers) may have unique exposure patterns
due to direct contact with PM cleared via mucus, though experimental
evidence validating this hypothesis remains lacking.

Emerging evidence suggests that short-term O; exposure may
elevate all-cancer mortality risk through interrelated pathways
involving hemostatic imbalance, neuro-inflammatory activation, and
systemic dysregulation. Short-term O; exposure induces a
hypercoagulable state by upregulating coagulation factor X while
suppressing anticoagulant proteins Z and ZPI, thereby increasing
thrombotic susceptibility (42). Additionally, inhaled Os triggers
sensory nerve stimulation in the respiratory tract, initiating local
reflex reactions and propagating signals to the central nervous system.
This neural activation disrupts autonomic function regulation,
potentially exacerbating cardiovascular stress and systemic
inflammation, which can lead to potential mortality (43).
Concurrently, Os; exposure promotes respiratory and systemic
inflammation, which synergizes with coagulation abnormalities to
amplify tissue damage and organ dysfunction and ultimately
contributes to mortality in cancer patients. Clinically significant
immune compromise in oncology populations, stemming from
underlying malignancy and iatrogenic factors, amplifies susceptibility
to airborne toxicants’ pathobiological effects, thereby elevating
mortality risks. Moreover, emerging evidence identifies dysregulation
of oncogenesis-associated mRNA/miRNA signatures following brief
(<2 h) low-concentration ambient pollutant exposures, suggesting
accelerated carcinogenic pathways (44).

Current evidence on the modifying factors that influence the
association between short-term exposure to air pollution and GI
cancers is limited. Therefore, we conducted subgroup analyses to
explore the potential modifying effects of sex, age, and tumor
type. Our analyses revealed that the relationship between PM, s,
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PM,, and O; and GI cancer mortality is more robust in the older
population, males, and patients with esophageal cancer. The
heightened vulnerability of older adults aligns with age-related
declines in immune resilience and increased comorbidity burden,
which may exacerbate pollutant-induced oxidative damage. Most
studies have found that women were more sensitive to the acute
effects of air pollution, but our results contrast with this
consensus, revealing stronger associations in males. This
discrepancy may arise from sex-specific exposure patterns: in
China, males exhibit a substantially higher smoking prevalence
(47.2% in males vs. 2.7% in females (45)), which likely synergizes
with air pollution to amplify acute cardiopulmonary stress and
cancer progression. Furthermore, the robust association observed
in esophageal cancer—a malignancy with rapid progression and
shorter survival—contrasts with weaker effects in gastric, hepatic,
and colorectal cancers. This is consistent with large cohort studies
in Europe (46, 47). For malignancies with prolonged survival
periods, such as gastric, hepatic, and colorectal cancers, patients
may survive for years post-diagnosis, with eventual mortality
often attributed to competing causes (e.g., cardiovascular events
or infectious complications). When mortality alone is utilized as
an endpoint, this approach may fail to capture cases where cancer
contributes indirectly to death, thereby leading to a potential
underestimation of the association between air pollutant exposure
and carcinogenesis (23, 48).

This study pioneers the investigation of short-term air pollution
effects on GI cancer mortality in a coastal area characterized by
moderate pollution. Utilizing a robust methodology (case-crossover
design combined with lagged modeling), it effectively controlled for
individual confounders while capturing acute exposure risks.
Furthermore, stratified analyses revealed higher susceptibility in the
the older males and identified site-specific responses—for example,
esophageal cancer was strongly linked to particulate matter, whereas
colorectal cancer exhibited sensitivity to ozone. Despite its innovation,
exposure misclassification from fixed-site pollution data may lead to
an underestimation of individual risks. Additionally, unmeasured
confounders (e.g., smoking, diet) and unclear biological mechanisms
limit causal interpretation. Moreover, the findings may lack
generalizability to high-pollution regions or other cancer types,
emphasizing the need for broader validation.

5 Conclusion

This study demonstrates that short-term exposure to PM,,
PM,(, and O; significantly increases the mortality risk of GI cancer
patients in a moderately polluted coastal area. We also identified
a higher susceptibility in males and the vulnerability of the older
population, consistent with sex-specific inflammatory responses
and age-related detoxification decline. The differences in
anatomical timing—acute effects of PM on upper gastrointestinal
cancers and delayed effects of O; on lower gastrointestinal
malignancies—reflect the observed patterns of pollutant
deposition. These results necessitate urgent updates to air quality
standards, emphasizing short-term exposure controls and targeted
protections for susceptible populations to improve the survival of
GI cancer patients.
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