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Background: Rapid urbanization in China has significantly reshaped the human 
settlement environment (HSE), bringing opportunities and challenges for public 
health. While existing studies have explored environmental-health relationships, 
most are confined to micro-level contexts, focus on single environmental 
dimensions, or assess specific diseases, thus lacking a comprehensive, macro-
level understanding.
Objective: This study aims to assess the associations between population 
health level and multidimensional HSE features at the provincial level in China 
and uncover nonlinear relationships and interaction effects underlying the 
association between HSE and population health level.
Methods: Using panel data from 31 Chinese provinces spanning 2012 to 2022, a 
composite Health Level Index (HLI) was constructed based on four core health 
indicators using the Entropy-TOPSIS method. 19 HSE indicators covering five 
dimensions—ecological environment, living environment, infrastructure, public 
services, and sustainable environment—were selected as explanatory variables. 
The study employed the XGBoost machine learning algorithm to model the 
relationship between HSE and HLI. SHAP values and Partial Dependence Plots 
(PDPs) were used to interpret feature importance, nonlinear relationships, 
threshold values, and interaction effects.
Results: XGBoost outperformed all benchmark models, confirming its strong 
predictive capacity. SHAP analysis identified six key features—number of medical 
institution beds (NMIB), urbanization rate (UR), mobile phone penetration rate 
(MPPR), road area per capita (RAPC), population density (PD), and urban gas 
penetration rate (UGPR)—as the most influential factors. Nonlinear relationships 
and threshold effects were observed between key features and population health 
level. PDP plots further revealed that optimal health levels are typically associated 
with high UR, high MPPR, high RAPC, and moderate NMIB, underscoring the 
importance of structural synergy over isolated infrastructure expansion.
Conclusion: This study provides robust evidence that the relationship between 
HSE and health is nonlinear, multidimensional, and highly interactive. Effective 
urban health governance requires coordinated development of urbanization, 
digital infrastructure, and public services, along with rational healthcare 
resource allocation. The findings offer actionable insights for health-oriented 
urban planning and policy formulation in rapidly urbanizing regions.
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1 Introduction

Urbanization has reshaped the global HSE, especially in fast-
growing economies such as China. As the world’s largest developing 
country, China’s urbanization level has risen rapidly over the decades, 
with a total of 694 cities at the end of 2023, compared to 129 cities at 
the start of the new China, according to the National Bureau of 
Statistics of China. By the end of 2023, the urbanization rate of China’s 
resident population was 66.16%, compared to 10.64% at the end of 
1949 (1).

The HSE refers to the living spaces inhabited by human 
populations. It is a geographical space closely associated with human 
survival and serves as a primary arena where humans utilize and 
transform nature (2). From a research perspective, the HSE is a 
multidimensional system, and the specific dimensions involved often 
vary depending on the research perspective. For example, some 
studies have evaluated the suitability of human settlements by 
integrating factors such as economic vitality, public services, 
infrastructure, topography, and climate conditions (3–5). Other 
scholars have focused on sustainability by incorporating elements like 
transportation, cultural resources, and living conditions into their 
assessments (6, 7). Additionally, certain studies have assessed the 
vulnerability of human settlements through dimensions such as the 
natural environment, social environment, and residential conditions 
(8, 9). At present, there is no universally agreed-upon set of evaluation 
indicators for human settlements; instead, indicator selection is 
typically determined by the specific research objectives, theoretical 
framework, and data availability.

At the same time of rapid urbanization, the contradiction between 
HSE and residents’ health is becoming more and more prominent. It has 
been shown that large-scale urban expansion has led to the shrinkage 
of green space (10), the intensification of the heat island effect (11), and 
the spread of air and water pollution (12, 13). These changes directly or 
indirectly impact the physical or mental health of the population, for 
example, leading to an increase in the incidence of respiratory diseases, 
chronic diseases (14–16), and psychological problems such as anxiety 
and depression, among others (17). Assessing the extent to which the 
HSE is associated with population health level and exploring the 
predictive relationships between them is becoming a hotspot of interest 
in the fields of health, environment, and urban studies.

Existing researches on environment and health risk is abundant, 
but in terms of research scale, are mainly focus on community, urban 
environment (18, 19), lack of research in macro scale such as 
provincial, national, and so on, and in terms of selection of 
environmental factors, are mainly focus on single social environment, 
natural and built environments (20–22), lack of comprehensive 
exploration of multidimensional environmental factors, and in terms 
of health impacts, are limited to focusing on the environmental 
impacts on the risks of a specific disease (23), and lack of focus on the 
overall health of the population. To address these gaps, this study aims 
to examine the relationship between multidimensional HSE factors 
and the overall health level of the population at the provincial scale in 

China, using interpretable machine learning techniques to uncover 
nonlinear relationships and interaction effects.

2 Data and methods

2.1 Data

The dataset of this paper is divided into two parts. In the first 
part, referring to previous studies (24–26), four indicators were 
selected to represent the health level of the population: incidence of 
class A and B notifiable infectious diseases, mortality of class A and 
B notifiable infectious diseases, human mortality, and average life 
expectancy. In China, notifiable infectious diseases are categorized 
into three classes—A, B, and C—according to their potential threat 
to public health, with severity decreasing from A to C; classes A and 
B, which together encompass 29 diseases (2 in class A and 27 in 
class B), include the most serious infectious diseases and are 
therefore widely adopted as core measures of population disease 
burden (27). Together with human mortality, these disease-related 
indicators capture both the prevalence and fatality of major health 
threats, while average life expectancy provides a broader perspective 
on long-term population well-being, reflecting the cumulative 
effects of healthcare quality, living conditions, and social 
development. This combination of short-term disease burden and 
long-term health outcomes has been extensively used in health 
evaluation studies (28), and the data are consistently available from 
official statistical sources, ensuring reliability and comparability 
across regions. Based on these indicators, the Entropy–TOPSIS 
method was applied to construct the HLI, which integrates multiple 
dimensions of health into a single, comprehensive measure. Details 
of the four selected indicators are presented in Table  1. In the 
second part, according to the needs of the study, partly referring to 
the indicators used in previous studies (29–31), the HSE was 
divided into five dimensions: ecological environment, living 
environment, infrastructure conditions, public service, and 
sustainable environment, and 19 secondary indicators were 
selected. All HSE data can be  directly obtained from the 
aforementioned public sources, except for four indicators—RAPC, 
number of sanitation vehicles per 10,000 population (NSV), PD, 

TABLE 1  Indicators related to the level of health of the population.

Indicator Unit Indicator 
Attribute

Incidence of Class A and B notifiable infectious 

diseases
1/100,000 −

Mortality of Class A and B notifiable infectious 

diseases
1/100,000 −

Human mortality % −

Average life expectancy Years +
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and UR—which were derived through calculation. The calculation 
methods for these four indicators are presented in Equations 1–4. 
The details of HSE indicators are shown in Table 2.

The first part of the data comes from the China Health Statistics 
Yearbook 2013–2023, where the missing years of average life 
expectancy are filled in by linear interpolation, a method chosen based 
on relevant studies supporting the linear growth trend of life 
expectancy (32, 33), thus ensuring the scientific validity and 
completeness of the data. In total, 279 provincial-level data points on 
average life expectancy were supplemented. The second part of the 
data was obtained from the National Bureau of Statistics of China, 
China Statistical Yearbook 2013–2023, and Statistical Bulletins of 
Chinese provinces. The final dataset consists of these two parts of data, 
covering 31 provinces in China for the period 2012–2022. This yields 
a balanced panel of 341 province-year observations, with a total of 
6,820 variable observations used in the analysis. The descriptive 
statistics of the variables are shown in Table 3.

	
=

−
Total Road AreaRAPC

Resident Population at Year End
	

(1)

	
= ×

−
Number of Sanitation VehiclesNSV 10,000

Resident Population at Year End
	

(2)

	

−
=

Resident Population at Year End
PD

Provincial Administrative Area 	
(3)

	
=

−
Urban PopulationUR

Resident Population at Year End
	

(4)

2.2 Method

2.2.1 HLI construction based on entropy-TOPSIS 
method

Various evaluation models, such as Fuzzy Comprehensive 
Evaluation (34), the Analytical Hierarchy Process (AHP) (35), and the 
Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) (36), have been utilized in recent studies. To scientifically 
quantify the population health level in each province in China, this 
study introduces the entropy weight method combined with the 
TOPSIS evaluation model to construct the HLI. While standard 
statistical techniques like Principal Component Analysis (PCA) or 
Factor Analysis could create weighted composites based on covariance 
structures (37), our study employs the Entropy-TOPSIS approach for 
several key advantages: 1. The entropy weight method objectively 
determines indicator weights based on information content rather 
than subjective expert judgment (38), avoiding potential bias inherent 
in AHP or equal weighting schemes; 2. Unlike PCA, which may lose 
interpretability through linear combinations of variables, entropy 
weighting preserves the original meaning of each health indicator; 3. 
TOPSIS provides intuitive relative rankings by measuring proximity 
to ideal solutions (39), making results more accessible for policy 
interpretation compared to factor scores; 4. The entropy weight 
method is used to avoid subjective bias, and the TOPSIS method is 
used to measure the relative closeness of the samples to the ideal 
solution, resulting in the formation of the HLI, which is both scientific 
and comparable. Prior to constructing the composite index, a 
correlation analysis was conducted on the four variables to ensure 
their appropriateness for inclusion, with the results presented in 
Figure 1. The results showed that the absolute values of the correlation 
coefficients between the variables were all below 0.6, indicating no 

TABLE 2  HSE indicator system.

Primary indicator Secondary indicator Unit

Ecological environment

Per capita park green area (PCPGA) m2

Chemical oxygen demand emissions (CODE) 104 tons

Sulfur dioxide emissions (SO₂ Emissions) 104 tons

Number of sanitation vehicles per 10,000 population (NSV) Units

Living environment

Urban water penetration rate (UWPR) %

Urban gas penetration rate (UGPR) %

Population density (PD) Persons/km2

Urbanization rate (UR) %

Infrastructure conditions

Number of public toilets per 10,000 people (NPT) Units

Road area per capita (RAPC) m2

Number of public transportation vehicles per 10,000 People(NPTV) Standard units

Mobile phone penetration rate (MPPR) Units/100 persons

Public service

Number of higher education students per 100,000 people (NHES) Persons

Public library floor area per 10,000 population (PLFA) m2

Number of medical institution beds per 10,000 People (NMIB) Units

Population served per postal service outlet (PSPSO) 104 persons

Sustainable environment

Daily urban sewage treatment capacity (DUSTC) 104 m3

Local financial environmental protection expenditure (LFEPE) 108 yuan

Per capita daily domestic water consumption (PCDDWC) Liters
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severe multicollinearity and supporting their suitability for 
constructing the composite index. The specific steps of the Entropy-
TOPSIS method are as follows:

Step 1: Matrix construction of raw data.
Assuming the research object contains m samples ( = 1,2, ,i m), 

4 core health indicators (Table 1) are selected to form the evaluation 
system, and the raw data matrix X  is defined as:

	

 
 
 =  
 
  

   

11 12 13 14

21 22 23 24

1 2 3 4m m m m

x x x x
x x x x

X

x x x x
	

(5)

Where: ijx  denotes the raw value of the j-th indicator for the 
i-th sample.

Step 2: Data standardization.
To ensure comparability and preserve the directional meaning of 

each indicator, positive and negative indicators are 
normalized separately.

(1) For positive indicators:

	

( )
( ) ( )

′ −
=

−

min

max min
ij j

ij
j j

x x
x

x x
	

(6)

(2) For negative indicators:

	

( )
( ) ( )

′ −
=

−

max

max min
j ij

ij
j j

x x
x

x x
	

(7)

The processing yields a normalized matrix ′X
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(8)

Step 3: Calculation of indicator weights based on the entropy 
weight method.

(1) Calculate the proportion of j-th indicator of the i-th  
sample:

	

′

′

=

=

∑
1

ij
ij m

ij
i

x
r

x
	

(9)

(2) Calculate the information entropy je for the jth indicator:

	 =
= − ∑

1

1 ln
ln

m

j ij ij
i

e r r
m

	
(10)

(3) Calculation of the indicator coefficient of variation jd :

	
= −1j jd e

	 (11)

TABLE 3  Descriptive statistics of variables.

Variable Sample size Mean Std. dev. Minimum Maximum

PCPGA 341 13.47 2.84 5.85 22.84

CODE 341 56.85 49.59 1.76 192.12

SO₂ emissions 341 33.05 35.35 0.11 174.88

NSV 341 1.95 1.64 0.12 15.02

UWPR 341 97.87 3.03 67.57 100.00

UGPR 341 93.78 9.22 29.79 100.00

PD 341 460.36 701.53 2.57 3925.87

UR 341 59.80 12.68 22.86 89.58

NPT 341 3.18 1.26 0.77 9.35

RAPC 341 5.97 2.29 1.14 13.71

NPTV 341 12.73 3.01 5.63 26.55

MPPR 341 104.63 24.07 57.30 189.46

NHES 341 2774.84 855.97 1133.00 5534.00

PLFA 341 118.51 48.23 45.66 335.80

NMIB 341 56.51 11.35 27.15 84.31

PSPSO 341 0.72 0.44 0.15 2.77

DUSTC 341 573.09 497.78 5.00 2971.30

LFEPE 341 155.81 100.91 17.21 747.44

PCDDWC 341 174.24 49.19 91.12 403.62

HLI 341 0.60 0.11 0.36 0.89
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(4) Determine the entropy weight jw :

	 =

=

∑
4

1

j
j

k
k

d
w

d
	

(12)

The weight results are shown in Figure 2.
Step 4: TOPSIS method.
(1) Construct the weighted normalization matrix V:

	

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′
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(2) Determine the ideal solution:

	

( )
( )

+

−

=

=





1 2

1 2

max , , ,

min , , ,

j j j mj

j j j mj
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(14)

(3) Calculate the distance from the sample to the ideal solution:

	

( )

( )

+ +

=

− −

=

= −

= −

∑

∑

4 2

1

4 2

1

i ij j
j

i ij j
j

D v S
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(15)

(4) Calculate the closeness iHLI

	

−

+ −
=

+
i

i
i i

DHLI
D D 	

(16)

FIGURE 1

Correlation coefficient matrix of health indicators.
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∈  0,1iHLI , with larger values indicating a higher health level of the 
province’s residents, and smaller values indicating a lower health level.

2.2.2 XGBoost model
XGBoost (eXtreme Gradient Boosting) is an optimized 

implementation of the Gradient Boosting Decision Tree (GBDT) 
algorithm, which builds a strong learner by integrating multiple weak 
learners to achieve highly accurate predictions. The algorithm 
performs well in classification and regression tasks dealing with 
structured data, and is particularly suitable for machine learning 
scenarios with high feature dimensionality and large sample sizes (40)

XGBoost builds an additive model composed of K  regression 
trees to predict an output ˆiy  for each sample i. The model prediction 
is defined as

	
( )

=
= ∈∑

1
x ,ˆ

K

i k i k
k

y f f 

	
(17)

where ∈x d
i   is the input feature vector and   is the space of 

regression trees. Each tree kf  maps xi to a leaf score.
The objective function, minimized at the t-th boosting iteration, 

combines a convex loss function l and a regularization term Ω that 
controls tree complexity:

	

( ) ( ) ( ) ( )−

=

 = + +Ω 
 ∑ 1

1

ˆ, x
n

tt
i t i ti

i
l y y f f

	
(18)

Using a second-order Taylor expansion around ( )−1ˆ t
iy , the 

objective approximates to

	

( ) ( ) ( ) ( )
=

 = + +Ω  
∑

2

1

1x x
2

n
t

i t i i t i t
i

g f h f f

	
(19)

where ( )
( )

−
− = ∂  

 
1ˆ

1,ˆt
i

t
i i iyg l y y  and ( )

( )
−

− = ∂  
 

1

12
ˆ ,ˆt

i

t
i i iy

h l y y  are the 

first and second derivatives of the loss. The regularization term 
typically includes the number of leaves T  and leaf weights jw :

	
( ) γ λ

=
Ω = + ∑ 2

1

1
2

T

j
j

f T w

	
(20)

This allows efficient tree structure optimization via greedy split 
finding and leaf weight calculation.

In this study, the XGBoost model was implemented in Python. 
The optimal parameters were obtained using a random search 
method, taking into account the computational efficiency (41). The 
dataset was divided into training and test data at a ratio of 8:2 using 
a fixed random seed (seed = 2025) to ensure reproducibility, with 
resampling conducted at the province-year level to maintain 
temporal and spatial independence and avoid data leakage across 
different provinces and years. The K-fold cross-validation method 
was used (the value of K was 5 in this study). This method involves 

FIGURE 2

Weigh of health indicators.
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partitioning the training data into five equal subsets and iteratively 
using one subset for validation while training on the remaining four, 
a process repeated five times to generate a comprehensive 
assessment of the model’s generalization performance and effectively 
avoid the overfitting problem of the model presented during the 
training process. The finalized key parameters for the XGBoost 
model were set as follows: learning rate 0.05; n_estimators 200; 
max_depth 3.

2.2.3 SHAP method
SHAP (SHapley Additive exPlanations) is based on the Shapley 

value theory from game theory, providing a unified interpretability 
framework for machine learning models (42). SHAP values provide a 
theoretically grounded measure of feature attribution by interpreting 
model output as an additive feature attribution:

	

φ φ
=

= +∑
d

i 0 j ij
j 1

y xˆ

	
(21)

Where φ =   0 ŷ  is the expected model output, and φj 
quantifies the contribution of feature j to the prediction for 
instance i.

Formally, the SHAP value φj is calculated as follows:

	 { }

( ) ( ) ( )φ ∪ ∪
⊆

− −
 = − ∑j S j S j S S

S j

S ! d S 1 !
f x f x

d! 	
(22)

where { }= …1, ,d  is the full feature set, S is a subset of features 
excluding j, and ( )S Sf x  denotes the model output when only features 
in S are present. This weighted average of marginal contributions 
satisfies properties of local accuracy, consistency, and missingness, 
ensuring fair and interpretable explanations.

2.2.4 Model evaluation method
This study uses three statistical metrics to evaluate model 

prediction performance: coefficient of determination (R2), root mean 
square error (RMSE), and mean absolute error (MAE). The specific 
formulas (Equations 23–25) are as follows:

	

( )

( )
=

=

−

= −

−

∑

∑

n
2

i i
2 i 1

n
2

i
i 1

ˆy y
R 1

y y
	

(23)

	
( )

=
= −∑

n
2

i i
i 1

1RMSE ˆy y
n

	
(24)

	 =
= −∑

n

i i
i 1

1M E y
n

ˆA y
	

(25)

Where:
iy  represents the actual value for the i-th sample.
iŷ  represents the predicted value for the i-th sample.

y  represents the mean of all actual sample values.
n represents the total number of samples.

3 Results and analysis

3.1 Model performance comparison

In this study, six machine learning algorithms—XGBoost, 
AdaBoost, Gradient Boosting Decision Trees (GBDT), LightGBM, 
Random Forest, and Lasso regression—were systematically evaluated 
and compared in terms of their predictive performance. The detailed 
numerical results are presented in Table 4, while the corresponding 
residual plots and fitting performance plots are illustrated in Figure 3, 
providing a visual representation of the models’ predictive accuracy 
and residual distributions.

Overall, XGBoost demonstrated the most robust performance 
among all models across multiple evaluation metrics, highlighting its 
superior ability to capture complex, nonlinear relationships within the 
data. In particular, on the test set, XGBoost achieved a coefficient of 
determination (R2) of 0.929, which was not only substantially higher 
than that of the conventional linear regression approach (Lasso 
regression, R2 = 0.824) but also exceeded the performance of other 
ensemble-based methods such as AdaBoost (R2 = 0.910) and GBDT 
(R2 = 0.917). Furthermore, XGBoost attained the lowest root mean 
square error (RMSE = 0.033) and mean absolute error (MAE = 0.026) 
on the test dataset, underscoring its high predictive accuracy, minimal 
bias, and strong generalization capability.

The residual plots in Figure 3 further reinforce these findings, 
showing that the residuals of the XGBoost model are symmetrically 
distributed around zero, with no apparent heteroscedasticity or 
systematic patterns, indicating an adequate model fit and effective 
mitigation of overfitting. Similarly, the fitting performance plots depict 
strong linear correlations between the predicted and actual values for 
both the training and test sets, with the majority of points closely 

TABLE 4  Model performance comparison.

Model Training set R2 Test set R2 Training set 
RMSE

Test set RMSE Training set 
MAE

Test set MAE

XGBoost 0.988 0.929 0.012 0.033 0.009 0.026

GBDT 0.983 0.917 0.014 0.035 0.011 0.029

Adaboost 0.974 0.910 0.018 0.037 0.015 0.031

LightGBM 0.941 0.881 0.026 0.042 0.021 0.036

Random forest 0.932 0.871 0.029 0.044 0.022 0.038

Lasso regression 0.792 0.824 0.050 0.052 0.041 0.043
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aligning with the 1:1 diagonal line, which represents perfect 
prediction. The inclusion of 95% confidence intervals provides an 
additional layer of interpretability, offering reasonable uncertainty 
bounds and further validating the reliability and robustness of the 
model’s predictions. Collectively, these results confirm that XGBoost 
not only delivers superior performance compared to traditional 
regression models and other ensemble methods but also maintains 
consistent accuracy and stability across different evaluation criteria, 
making it a compelling choice for predictive modeling in this context.

3.2 Feature importance analysis

SHAP values provide insights into both the direction (positive or 
negative) and the magnitude of each feature’s contribution to model 
predictions, offering a quantitative basis for identifying key influencing 
factors. Based on the SHAP mean absolute values, the importance 
ranking and distribution of 19 features in predicting the health level 

of the population are illustrated in Figure 4, while the percentage 
contribution of each feature is shown in Figure 5.

The SHAP summary plot and corresponding feature importance 
percentages reveal significant heterogeneity in the associations 
between various HSE features and population health. Among these, 
the top six most influential features— NMIB:23.52%, UR:12.18%, 
MPPR:11.71, RAPC:7.93%, PD:6.93%, and UGPR:6.92%—contribute 
substantially more than others, indicating their central role in 
reflecting health level.

In the SHAP summary plot, NMIB displays a counterintuitive 
distribution: higher NMIB is predominantly associated with negative 
SHAP values, whereas lower NMIB corresponds more frequently with 
positive SHAP values. This pattern is consistently observed across the 
other five models, as shown in Figure 6, providing further support for 
our finding. From the perspective of health demand, the number of 
hospital beds reflects the health status and healthcare needs of local 
populations. Regions with a high NMIB often experience greater 
disease burdens, higher prevalence of chronic illnesses, or more 

FIGURE 3

Performance of six models on the test and training sets.
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advanced population aging. These areas require more hospital beds to 
meet elevated inpatient service demands. Consequently, a high NMIB 
may signal relatively poor population health level—an observation 
similar to prior findings (43, 44). From a healthcare service model 
perspective, modern systems increasingly prioritize disease prevention 
and outpatient care, aiming to reduce unnecessary hospitalizations. 
Healthier regions tend to have more robust public health 
infrastructures and advanced medical technologies, enabling effective 
prevention and outpatient management, which in turn reduces 
inpatient demand. Thus, such regions may exhibit lower NMIB while 
maintaining a higher overall health level. Population structure is 
another relevant factor. Areas with older populations—who typically 
require more frequent inpatient care—demand greater hospital bed 
capacity. Conversely, younger populations have lower hospitalization 
needs, reflected in lower NMIB. This ‘demand response effect’ suggests 
that the evaluation of healthcare resource allocation should consider 
health needs and demographic structures rather than assuming ‘more 
is better’. Optimal resource distribution should ensure basic needs are 

met while improving efficiency and outcomes through smarter 
planning and service innovation (45).

UR demonstrates a clear gradient in the SHAP value distribution, 
transitioning from negative SHAP values at low urbanization levels to 
positive values at higher levels. This pattern reflects the progressive 
health-promoting association of urbanization. Urbanized areas 
typically benefit from more comprehensive healthcare facilities and 
public service systems. Urbanization also brings improved sanitation 
infrastructure—such as water supply, sewage, and waste 
management—significantly enhancing living conditions and health 
security. As noted by Ngounou, Oumbe (46), urbanization also 
positively affects education. Residents in highly urbanized areas are 
more likely to access health education, disease prevention information, 
and modern health concepts. Enhanced health literacy fosters 
healthier lifestyles, greater self-care awareness, and better disease 
prevention, contributing to long-term health improvements. Urban 
environments also offer cultural, recreational, and fitness facilities that 
promote physical and mental well-being (47).

FIGURE 4

Feature summary and importance plot.
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MPPR exhibits a clear polarization in its SHAP value distribution: 
low MPPR clusters around negative SHAP values, while high MPPR 
align with positive values. This underscores the role of the digital 
divide in health. Improved mobile phone penetration significantly 
enhances residents’ ability to access health-related information (48). 
In areas with high MPPR, residents can easily obtain disease 
prevention guidance, health behavior tips, and medical service 
information, contributing directly to better health literacy and 
behavioral improvements. In underserved regions, mobile internet 
acts as a vital supplement to traditional health education. From a 
healthcare access perspective, MPPR supports the development of 
digital healthcare services (49). The proliferation of telemedicine, 
online consultations, e-prescriptions, and mobile health apps helps 
mitigate healthcare resource imbalances, particularly enhancing 
service accessibility in under-resourced areas. Socially, mobile phones 
facilitate community engagement and social integration. Digital 
platforms enable participation in  local activities, access to social 
support, and maintenance of interpersonal relationships—all of which 
are beneficial to mental health and overall well-being. However, it is 
important to acknowledge the potential downsides of mobile 
technology (50). In areas with low MPPR, limited information access 
and service availability may hinder health improvement, reflecting the 
adverse effects of the digital divide.

RAPC demonstrates a complex, nonlinear pattern in the SHAP 
value distribution. High RAPC values appear at both positive and 

negative values of the SHAP value spectrum, while moderate values 
tend to cluster around positive SHAP values. This indicates the 
multifaceted associations between transport infrastructure and health 
level. Access to transportation is closely linked to healthcare 
accessibility (51). Efficient transportation networks reduce commuting 
burden and emergency response times. In medical emergencies, 
accessible roads improve ambulance response and increase survival 
rates. However, excessive road infrastructure may also lead to adverse 
health outcomes. Densely developed road networks can increase 
traffic volume, air pollution, noise, and accident risks (52–54). In 
urban cores, expanded road areas may reduce green space and public 
recreational areas, diminishing environmental livability. In addition, 
overreliance on motorized transport may discourage physical activity 
such as walking or cycling, negatively impacting physical and mental 
health (55). The nonlinear effects of RAPC emphasize the importance 
of urban planning. Health-optimized transport infrastructure should 
balance mobility, environmental quality, and quality of life through 
better network design, investment in public transport, and the 
promotion of green mobility.

PD exhibits a clear gradient in SHAP value distribution: low PD 
is associated with negative SHAP values, while high PD is associated 
with positive values. This pattern suggests that moderate population 
agglomeration contributes positively to health levels. From a public 
service economy of scale perspective, higher PD facilitates more 
efficient allocation of healthcare, education, and cultural resources. 

FIGURE 5

Percentage of feature importance.
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Densely populated areas often offer more specialized and diverse 
services, including segmented healthcare services, better educational 
access, and greater availability of sports and cultural amenities (56). 
From the perspective of social support networks, higher population 
density is significantly associated with an increase in social support 
(57). In communities with relatively concentrated populations, social 
interactions among residents are more frequent, community cohesion 
is stronger, and an effective social support system can be formed. This 
kind of social support network plays a significant role in maintaining 
mental health, disease prevention, and promoting healthy behaviors. 

However, excessive population density may result in environmental 
degradation (58). Thus, the analysis highlights the positive associations 
between moderate population agglomeration and health level rather 
than uniformly endorsing high-density development.

UGPR, an important indicator of clean energy adoption, shows a 
distinctly positive association with health level in the SHAP analysis. 
High UGPR values correspond to positive SHAP values, whereas low 
UGPR is associated with negative SHAP values, underscoring the 
significance of energy structure optimization for public health. Gas 
coverage’s contribution to health predictions is primarily associated 

FIGURE 6

SHAP summary plot for NMIB in other models.
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with improvements in air quality. Compared to traditional coal 
combustion, natural gas—being a cleaner fossil fuel—generates 
significantly fewer pollutants such as particulate matter, sulfur dioxide, 
and nitrogen oxides (59). Regions with high gas penetration have 
lower air pollution emissions and better air quality, thereby reducing 
the incidence of respiratory diseases. This is particularly important in 
northern regions where gas has replaced coal for winter heating. From 
an indoor air quality perspective, widespread gas use significantly 
improves the domestic environment. Traditional coal-based heating 
and cooking generate substantial indoor pollutants such as carbon 
monoxide and sulfur dioxide. Clean gas combustion reduces these 
risks dramatically (60), lowering residents’ exposure to hazardous 
indoor air. UGPR also reflects the modernization of urban 
infrastructure. High gas coverage requires comprehensive pipeline 
systems, safety protocols, and user-friendly service mechanisms, 
indicating advanced urban governance and public service quality.

3.3 Non-linear relationship and threshold 
effects analysis

To elucidate the complex nonlinear associations and potential 
threshold effects between the top six important features and HLI, this 
study employed locally weighted scatterplot smoothing (LOWESS) on 
SHAP value scatter plots to derive smoothed fitting curves. A 
smoothing span of 0.3 was determined through iterative 
experimentation and visual evaluation to balance the risks of 
overfitting and underfitting. A locally linear fitting method was 
adopted to enhance the robustness of the estimation. The threshold 
for each feature was defined as the point on the horizontal axis at 
which the fitted curve intersected the reference line corresponding to 
a SHAP value of zero. The uncertainty associated with these thresholds 
was quantified by constructing 95% confidence intervals using a 
bootstrap resampling procedure. The plots are shown in Figure 7.

Figure 7A reveals a distinct nonlinear relationship between NMIB 
and population health level, with a critical turning point at 60.21 (95% 
CI: 59.60–60.73) beds per 10,000 people. Below this threshold, 
increases in NMIB are associated with positive SHAP values, 
indicating that a higher availability of hospital beds contributes 
significantly to better health levels. This aligns with expectations, as 
adequate inpatient capacity ensures timely and effective treatment, 
thereby reducing morbidity and mortality rates. However, once NMIB 
exceeds approximately 60 beds per 10,000, SHAP values become 
negative. This phenomenon may reflect inefficient utilization of 
medical resources in certain provinces (61), or it may signal more 
severe public health challenges that require disproportionately greater 
healthcare infrastructure to manage.

Figure  7B illustrates the complex associations between 
urbanization and population health level, with a threshold at 65.73% 
(95% CI: 61.99–69.00). At a low urbanization level, SHAP values are 
negative, suggesting that early stages of urbanization are associated 
with a poorer health level. This may be correlated with increased 
environmental pollution, lifestyle shifts, and heightened social stress 
associated with rapid urban transition. Importantly, this negative 
association diminishes as urbanization progresses. After surpassing 
the threshold range, the SHAP values turn positive, indicating a 
reversal in the association. At this stage, the benefits of urban 
development—such as centralized medical resources, improved 

infrastructure, and higher educational attainment—begin to outweigh 
earlier disadvantages. Highly urbanized areas typically offer superior 
health systems, robust public health infrastructure, and greater health 
awareness, collectively contributing to improved population health 
levels. Overall, urbanization has played a positive role in the health 
level of the population, which is consistent with previous studies 
(62, 63).

Figure 7C identifies a distinct threshold effect at 123.21 (95% CI: 
116.24–145.08) units/100 persons. Below this level, the association 
between increasing MPPR and health level is limited, with SHAP 
values remaining relatively low. However, once MPPR exceeds this 
threshold, its positive contribution to health predictions becomes 
pronounced and stabilizes. This suggests a digital threshold pattern: 
when mobile connectivity reaches a certain saturation point, digital 
health services—such as telemedicine, health monitoring, and access 
to medical information—become widespread. The availability of these 
services is associated with improved healthcare accessibility 
and efficiency.

Figure 7D highlights an early threshold effect for RAPC at 3.99 
(95% CI: 3.75–4.25) m2 per person. Below this level, increases in 
RAPC are associated with negative SHAP values, possibly due to 
negative externalities such as pollution, noise, and disruptions linked 
to early-stage road construction. Once RAPC surpasses the threshold 
range, the relationship turns positive and remains relatively stable. 
This indicates that a certain level of transport infrastructure improves 
access to healthcare services and supports health-related mobility. 
However, it also underscores the need to balance improved 
accessibility with potential environmental and social costs 
of overdevelopment.

Figure 7E reveals a threshold effect of PD on health, with a key 
turning point at 517.38 (95% CI: 472.23–609.68) persons/km2, after 
which the health level increases until reaching a plateau at approximately 
1,250 persons/km2. In the low-density phase, increases in PD slightly 
reduce health level, as reflected in negative SHAP values. Beyond the 
threshold range, the association turns significantly positive, indicating 
that economies of scale associated with population concentration begin 
to show positive correlations with health level. Moderate population 
density facilitates efficient distribution of healthcare resources, scaled 
public health services, and stronger social networks. At around 1,250 
persons/km2, the fitted curve plateaus, and SHAP values stabilize at a 
high level, indicating a diminishing marginal effect of PD on health. This 
suggests an optimal density range where health benefits from population 
agglomeration. Several mechanisms may explain this plateau effect. 
Firstly, the allocation of medical resources and the public health service 
system in high PD areas are already relatively well-established. Further 
increases in population density are unlikely to yield significant marginal 
improvements in public health levels. Secondly, excessive PD may give 
rise to a range of negative factors, including intensified environmental 
pollution (64), heightened perception of stress (65), and an increased 
risk of infectious disease transmission (66). These adverse effects may 
offset some of the health benefits associated with population  
agglomeration.

Figure 7F reveals a high threshold of UGPR at 95.18 (95% CI: 
94.18–96.50) %. Before reaching this threshold, UGPR has a slight 
negative trend in SHAP values. However, once gas penetration exceeds 
the threshold range, its contribution to health predictions sharply 
turns positive. This inflection likely reflects network and quality effects 
of gas infrastructure.
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FIGURE 7

Nonlinear impacts and threshold effects of the HSE on HLI. (A) NMIB; (B) UR; (C) MPPR; (D) RAPC; (E) PD; (F) UGPR.
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3.4 Analysis of interaction effects among 
HSE features

The PDP plots (Figure 8) reveal complex interactive effects of 
NMIB, UR, MPPR, and RAPC on HLI. High HLI values are typically 
observed under conditions of high UR, high MPPR, and high 
RAPC. However, NMIB does not exhibit a simple positive relationship 
with HLI; instead, a reverse association is identified.

Specifically, in regions with relatively low NMIB but high UR 
(Figure 8A), HLI tends to be higher. This suggests that urbanization is 
associated with higher population health levels, potentially linked to 
improved living conditions, healthcare accessibility, public health 
infrastructure, and healthier lifestyles. A lower NMIB may indicate 
reduced health pressure or more efficient medical resource utilization 
in these areas.

In Figure 8B, higher HLI values are concentrated in regions with 
high MPPR and moderate-to-low NMIB, implying that robust digital 
infrastructure is associated with more efficient health management 
and service delivery, which may reduce dependency on large numbers 
of hospital beds. Conversely, in areas with low MPPR, even with a high 
NMIB, HLI remains suboptimal. This indicates that merely expanding 
healthcare infrastructure is not necessarily associated with higher 
health levels without adequate digital support.

Figure 8C shows that high HLI values primarily occur in regions 
with high RAPC and moderate-to-low NMIB. This demonstrates that 
sufficient transportation infrastructure is associated with improved 
medical accessibility and emergency responsiveness, which may 

be linked to lower health risks and reduced reliance on hospital beds. 
In contrast, limited road  infrastructure is associated with traffic 
congestion and delayed emergency response, potentially constraining 
the effectiveness of medical resources, regardless of bed availability.

Moreover, UR demonstrates significant synergistic interactions 
with MPPR and RAPC (Figures 8D–F). The combination of high UR 
and high MPPR is associated with higher HLI, potentially reflecting 
complementary effects of health information access and dissemination. 
Similarly, high UR paired with high RAPC is associated with higher 
health levels, potentially reflecting reduced urban congestion and 
medical service delays. The synergy between digitalization (MPPR) 
and physical infrastructure (RAPC) is also evident, where 
improvements in both simultaneously elevate the health level. High 
MPPR enhances the responsiveness and reach of health services, while 
high RAPC ensures spatial accessibility for medical resource allocation.

In summary, the PDP plots illustrate that NMIB does not simply 
reflect the adequacy of healthcare resources but also serves as a 
composite indicator of urban health risks, disease burden, and 
healthcare system efficiency. Improvements in HLI correlate with the 
coordinated contributions of multiple environmental factors. Solely 
expanding hospital capacity is not necessarily associated with higher 
health levels; it may reflect inefficiencies or reactive health governance. 
Optimal HLI levels are generally found in conditions characterized by 
high UR, strong digital infrastructure (MPPR), Well-developed 
infrastructure (RAPC), and moderate hospital bed supply. This 
highlights the importance of structural optimization and systemic 
synergy in urban health governance. Future health planning should 

FIGURE 8

PDP plots for NMIB, UR, MPPR, and RAPC. (A) NMIB & UR; (B) NMIB & MPPR; (C) NMIB & RAPC; (D) UR & MPPR; (E) UR & RAPC; (F) MPPR & RAPC.
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focus on the integrated development of urbanization, informatization, 
and infrastructure while improving the operational efficiency of 
healthcare systems and rational allocation of hospital beds to establish 
a multidimensional, coupled framework for health governance.

4 Conclusion and discussion

This study deciphers the intricate relationship between HSE and 
provincial health level in China through a machine learning-driven 
analytical framework. The findings reveal that this relationship is 
neither linear nor additive; instead, it is characterized by complex 
nonlinearities, threshold effects, and synergistic interactions across 
multiple environmental dimensions.

A key insight of the analysis is the prominent role of six core 
indicators—NMIB, UR, MPPR, RAPC, PD, and UGPR—in predicting 
HLI. Contrary to conventional assumptions, a higher NMIB, typically 
viewed as a sign of enhanced healthcare capacity, does not necessarily 
correlate with better health. SHAP and PDP analyses indicate a dual 
implication of NMIB: it reflects both healthcare supply and potential 
system inefficiencies or underlying health burdens. Excessive bed 
supply may suggest either increased disease prevalence or 
misallocation of medical resources.

The LOWESS curves further reveal distinct nonlinear patterns 
and threshold effects. For instance, UR begins to exert a positive 
influence on health only after surpassing the threshold range. PD 
exhibits two critical points—517.38 (95% CI: 472.23–609.68) and 
approximately 1,250 persons/km2—indicating that moderate 
population agglomeration is associated with higher health levels, 
while excessively high densities are linked with diminishing or even 
negative health outcomes. Similarly, MPPR and UGPR only 
demonstrate significant positive associations with health level once 
high threshold levels are exceeded.

Interaction analysis based on PDP plots underscores that health 
improvements are not strongly associated with isolated environmental 
factors, but rather with the coordinated optimization of multiple HSE 
dimensions. The joint presence of high UR, high MPPR, and high 
RAPC is associated with higher health levels. Synergistic effects 
between urbanization and digital infrastructure, as well as between 
urbanization and physical infrastructure, are linked with higher health 
levels. These findings highlight the importance of integrated, system-
level health governance that accounts for the interplay among various 
environmental components.

However, several limitations warrant attention. Although this 
study employs panel data (31 provinces over 11 years), the XGBoost 
model treats the data as pooled cross-sections, thus overlooking 
temporal dependencies and potential lagged effects. The model does 
not capture province-specific fixed effects, which may lead to biased 
estimations due to unobserved heterogeneity. While modeling 
temporal dynamics with tree-based methods remains challenging, 
future research could incorporate year dummies, lagged variables, or 
hybrid modeling techniques to better capture dynamic relationships.

Additionally, SHAP values provide transparent feature attribution 
but reflect statistical associations rather than causal mechanisms. As 
such, findings remain susceptible to unmeasured confounding. 
Readers should interpret the identified relationships—especially those 
involving complex variables such as NMIB, UR, MPPR, and RAPC—
as correlational patterns, not definitive causal pathways.

Given China’s vast regional diversity, exploring the heterogeneity 
of HSE–health relationships across different regions (e.g., eastern vs. 
western, urban vs. rural) could enhance the policy relevance of the 
findings. While this study does not conduct a stratified regional 
analysis due to data and methodological constraints, future research 
should explicitly address regional variation to better tailor policy 
recommendations. This limitation should be  acknowledged as an 
avenue for future exploration.

Finally, the use of provincial-level data, while effective in capturing 
macro-level trends, obscures intra-urban and individual-level 
variation. For example, disparities between urban neighborhoods or 
vulnerable population subgroups remain hidden. The HSE indicator 
system, though comprehensive across five dimensions, is constrained 
by data availability. It omits critical factors such as indoor 
environmental quality, housing conditions, mental health status, and 
subjective well-being—all of which are essential for a more holistic 
understanding of health.

Policy implications derived from this study offer valuable 
directions for improving health levels through more nuanced 
environmental and infrastructural planning. The findings underscore 
that health is shaped not by isolated environmental indicators but 
through complex, nonlinear interactions and threshold effects across 
multiple dimensions of HSE. Therefore, health-oriented policy should 
move beyond one-size-fits-all approaches and instead embrace 
integrated, system-level governance. For instance, coordinated 
investments in urbanization, digital infrastructure, and transportation 
systems can generate synergistic effects that substantially improve 
public health, particularly when these dimensions are jointly 
optimized. This has important implications for cross-sectoral 
planning—urban development, healthcare, technology, and 
transportation must be aligned to maximize health returns. Moreover, 
these insights can inform region-specific policy strategies. Provinces 
with a lower level of urbanization or digital infrastructure should 
prioritize foundational investments, such as expanding access to 
primary healthcare facilities, improving road connectivity, and 
enhancing digital inclusion. In contrast, highly urbanized regions—
especially those approaching or exceeding population density 
thresholds—should focus on managing urban congestion, mitigating 
pollution, and optimizing the distribution of healthcare resources to 
avoid inefficiencies or over-concentration. It is also crucial to 
recognize potential trade-offs. For example, excessive expansion of 
urban infrastructure without proper environmental safeguards may 
lead to resource misallocation, ecological degradation, or increased 
social inequality. Policymakers must therefore weigh short-term 
development gains against long-term health and sustainability  
outcomes.

Building upon the current findings, future research should aim 
to address several key limitations and deepen the understanding of 
the HSE–health nexus. First, methodological improvements are 
needed to better capture the temporal dynamics and fixed effects 
inherent in panel data. Incorporating lagged variables, time 
dummies, or adopting hybrid models that integrate tree-based 
algorithms with panel regression techniques may enhance causal 
inference and temporal sensitivity. Second, future studies should 
strive to mitigate unmeasured confounding by expanding the scope 
of environmental and health indicators. This includes integrating 
variables such as indoor air quality, housing conditions, noise 
exposure, green space accessibility, and subjective well-being 
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measures—factors currently absent due to data constraints but 
essential for a more holistic health assessment.

Moreover, future research should explore regional heterogeneity 
by conducting stratified analyses across geographic and socioeconomic 
divisions (e.g., eastern vs. western provinces, urban vs. rural areas). 
Such analysis would provide more context-sensitive insights and 
support differentiated policy interventions. Multi-scale data 
integration—linking provincial, municipal, neighborhood, and 
individual-level datasets—should also be prioritized. The use of high-
resolution environmental data from remote sensing, geospatial 
platforms, and community health surveys can significantly enhance 
spatial granularity and policy relevance.

Lastly, incorporating behavioral and psychosocial health 
dimensions—such as physical activity, dietary habits, and mental 
health status—will further enrich the analytical framework. These 
enhancements will collectively support the development of more 
targeted, equitable, and sustainable health and urban planning 
strategies in diverse settings.
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