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Women working in high-altitude (HA) mining environments are exposed to
chronic intermittent hypoxia (CIH), a physiological stressor resulting from
rotating work shifts between sea level and elevations typically above 3,000
meters above sea level (m.a.s.l). CIH involves repeated exposure to hypobaric
hypoxia, imposing significant biological, psychological, and social demands.
Despite increasing female participation in the mining sector, the long-
term cardiovascular risks specific to women in these conditions remain
poorly characterized. This mini-review introduces the Gender-Integrated
Biopsychosocial Model (GBM). This conceptual framework integrates biological,
psychological, and social dimensions to examine how sex hormones, emotional
burden, and gendered occupational exposures shape cardiovascular and
autonomic responses to CIH. Unlike existing models that primarily reflect
male physiology, the GBM emphasizes the role of natural cycling hormonal
fluctuations, contraceptive use, menopause, and structural inequities in
modulating cardiovascular adaptation. By advancing a multidimensional, sex
and gender informed perspective, the GBM offers a novel approach to
understanding women’s health in extreme environments and highlights the need
for occupational and environmental physiology research to recognize gender
not merely as a biological variable, but as a determinant of cardiovascular risk.
This article contributes to the understanding of environmental and occupational
hazards in extreme workplaces by introducing an integrative model that
addresses gendered exposures and physiological responses under chronic
intermittent hypoxia.
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Introduction

Women working in high-altitude (HA) mining operations in
Chile are exposed to intricate physiological, psychological, and
social stressors, attributable to the 7 × 7-day rotating shift schedule.
This schedule alternates between work at elevations exceeding
3,000 m.a.s.l. and rest at sea level. Such a pattern serves as an
empirical model of chronic intermittent hypobaric hypoxia (CIH),
a condition acknowledged in Decree No. 28 (1). Regarding its
hazards to the cardiopulmonary and neurological systems, research
involving male miners has demonstrated immediate elevations in
blood pressure (BP) and heart rate (HR), along with a reduction
in oxygen saturation during initial exposure at high altitude
(HA) (2), with numerous cases surpassing diagnostic hypertension
thresholds under 24-h ambulatory monitoring (3). However, these
findings have seldom been generalized to women, as they may
exhibit different cardiovascular responses owing to hormonal,
emotional, and social factors.

Although traditional cardiovascular risk factors (e.g.,
hypertension, obesity, smoking, physical inactivity) are
prevalent among miners (4). Research has not sufficiently
addressed how these risks manifest in women under sex-specific
exposures. Factors such as menstrual cycle, contraceptive
use, work-family conflict, perceived discrimination, and
symbolic violence in male-dominated settings may exacerbate
cardiovascular strain. Despite increased female participation
in mining (15% as of 2022), equity gaps persist, especially
in access to data on workload, work shift patterns, and job
roles (5, 6).

To address these intersecting challenges, we introduce a
Gender-Integrated Biopsychosocial Model (GBM), grounded in
George L. Engel’s original framework (7), and adapted to the
environmental and gendered context of high-altitude mining.
This model conceptualizes cardiovascular risk as a dynamic
product of: (a) biological factors: hormonal regulation and
reproductive history, cardiovascular and cardiac autonomic
responses, and physical workload and nutritional status under
hypoxia; (b) psychological factors: mental workload, emotional
strain and coping perception, and circadian and neuroendocrine
stress; and (c) social factors: work-family balance, workplace
dynamics, and structural barriers to women’s health.

The GBM provides a novel interdisciplinary framework for
evaluating how these dimensions interact under conditions of
CIH. It also establishes a foundation for developing interventions
aimed at improving cardiovascular health from a gender-equitable
and context-sensitive perspective. The GBM synthesizes biological,
psychological, and social determinants to explain cardiovascular
risk in women exposed to CIH, providing a structured framework
for the review, as illustrated in Figure 1.

The aim of this mini-review is to introduce and contextualize
the GBM as a guiding framework for future research design,
facilitating a deeper understanding of cardiovascular risk in women
exposed to CIH, with a particular focus on sex- and gender-
specific mechanisms that are still critically understudied within
environmental and occupational physiology. Table 1 consolidates
the main sex-based (biological) and gender-based (sociocultural)
determinants of cardiovascular risk encompassed within the
GBM framework.

Biological dimension

Working at high altitudes encompasses a broad spectrum
of risks, both climatic, ranging from frostbite to heat stroke,
and occupational, including fatigue and circadian rhythm
disturbances, which can affect individuals irrespective of
gender or age. The focus will be on how sex and gender
differences markedly influence cardiovascular biology and
disease progression. In specific underlying conditions such as
hypertension, obesity, and diabetes, women frequently display
unique epidemiological profiles; however, clinical guidelines
continue to underrepresent sex-specific considerations in diagnosis
and treatment (8–10). In HA mining environments, women
continue to be underrepresented in physiological research, thereby
constraining our comprehension of their adaptations to CIH
(11). In the GBM model (Figure 1), the biological dimension is
organized into three primary subcomponents: hormonal status
and reproductive history, cardiovascular and autonomic function,
as well as physical workload, nutritional status, and food intake.
These elements are further elaborated upon in this section under
more specific thematic subtitles.

Women’s cardiovascular risk profile

Cardiovascular (CV) risk profiles differ between women and
men due to sex-specific factors. Women face additional risks
related to their reproductive history, such as adverse pregnancy
outcomes, including preeclampsia and gestational diabetes (12, 13).
Conditions such as polycystic ovary syndrome, early menopause,
and autoimmune diseases further increase the risk (14, 15).
Traditional risk factors such as diabetes and smoking confer greater
relative risks in women (16, 17), and the menopause transition
accelerates vascular and metabolic changes (18). Recognizing these
factors facilitates the early identification of women at high risk
and enables the implementation of targeted prevention strategies
(19). Their presence may exacerbate cardiovascular strain in
combination with environmental stressors such as CIH.

Hormonal regulation and
cardiovascular response

Hormonal regulation plays a crucial role in cardiovascular
physiology, autonomic function, and body composition, directly
impacting cardiovascular risk. Estradiol (E2) facilitates vasodilation
via nitric oxide (NO) synthesis, thereby enhancing endothelial
function and reducing blood pressure (20–22). Conversely,
progesterone (P4) and androgens promote sodium retention,
sympathetic nervous system activity, autonomic imbalance,
and an increase in visceral adiposity and waist circumference,
thereby collectively elevating cardiovascular risk (23–26).
E2 has demonstrated vasoprotective and hypotensive effects
across multiple vascular beds (22, 27, 28). In eumenorrheic
women, hormonal fluctuations throughout the menstrual cycle
substantially influence cardiovascular autonomic regulation.
The follicular phase, characterized by elevated (E2), favors
parasympathetic dominance, resulting in relative bradycardia
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FIGURE 1

Gender-Integrated Biopsychosocial Model (GBM) of cardiovascular risk in women exposed to chronic intermittent hypoxia. This conceptual model
illustrates three interrelated dimensions: Biological, Psychological, and Social, each comprising key subcomponents that contribute to cardiovascular
risk in women working under conditions of chronic intermittent hypoxia (CIH), such as high-altitude mining. Biological factors include hormonal
regulation and reproductive history, cardiovascular and autonomic responses, workload, nutritional status, and food intake. Psychological factors
involve mental workload, emotional strain, and circadian or neuroendocrine stress. Social factors encompass work–family balance, gendered
workplace dynamics, and structural barriers to women’s health. Created in https://BioRender.com.

and hypotension. Conversely, the luteal phase, marked by
increased (P4), encourages sympathetic activation, leading to
higher blood pressure (BP), increased HR, reduced heart rate
variability (HRV), and heightened cardiovascular strain (27, 29–
31). Furthermore, androgen-dominant conditions, such as the use
of oral contraceptives (OCs) exhibiting high androgenic activity or
menopause without the administration of hormone replacement
therapy (HRT), are correlated with estrogen deprivation, persistent
sympathetic activation, reduced vasodilation, and increased
autonomic imbalance (32).

Conversely, women generally demonstrate a higher total fat
mass at a specific body mass index (BMI), primarily characterized
by gluteofemoral adipose tissue accumulation. In comparison, men
exhibit greater fat-free mass (FFM) but possess a higher amount of
visceral adipose tissue (VAT), which is a significant risk factor for
CVD (33). Nonetheless, increased androgen levels in females (such

as obesity, PCOS, and post-menopause) may modify their typical
fat deposition patterns, increasing VAT and waist circumference
(WC), thereby increasing cardiovascular risk (26, 34–36).

Therefore, it is essential to comprehensively consider
hormonal profiles, contraceptive use, and menopausal status
when evaluating cardiovascular risk, particularly in women
exposed to CIH at HA. We hypothesize that variations
in hormonal status substantially influence cardiovascular
and autonomic responses in women subjected to CIH.
States characterized by estrogen dominance are presumed to
promote cardiovascular adaptation, whereas states dominated
by progesterone and androgens may elevate cardiovascular
strain during exposure to hypobaric hypoxia. Figure 2
summarizes the hypothetical responses corresponding to
hormonal status relevant to high-altitude occupational exposure
in women.
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TABLE 1 Sex-based (biological) and gender-based (sociocultural) determinants of cardiovascular risk in women exposed to chronic intermittent hypoxia
according to the Gender-Integrated Biopsychosocial Model (GBM).

GBM dimension Sex-based determinants (Biological) Gender-based determinants (sociocultural)

Biological • Hormonal regulation and reproductive history (menstrual cycle
phase, pregnancy, menopause, contraceptive use) (12, 27, 29).

• Cardiovascular and autonomic responses to hypoxia (blood pressure
regulation, heart rate variability) (3, 30, 33).

• Body composition and fat distribution (visceral adipose tissue, waist
circumference) (33, 34).

• Nutritional status and micronutrient balance (iron homeostasis)
(38, 40).

–

Psychological • Neuroendocrine stress reactivity (HPA axis, cortisol response) (53).
• Sleep and circadian rhythm sensitivity to hypoxia (51).

• Mental workload related to job demands and decision-making
latitude (46, 50).

• Emotional coping and perceived control (influenced by caregiving
responsibilities, social support) (47, 49).

• Sleep disruption linked to work–family conflict (59, 61).

Social – • Work–family balance and caregiving roles (48, 62).
• Gendered workplace dynamics in male-dominated environments

(e.g., discrimination, overperformance pressure) (63, 67).
• Structural barriers to women’s health (lack of gender-specific PPE,

menstrual hygiene facilities, pregnancy/menopause support)
(54, 67).

Workload, nutrition, and food intake
sex-based responses to hypoxia

Workload and nutritional status critically interact with
hormonal and reproductive factors to modulate cardiovascular and
reproductive strain in women working at HA. Mining activities
generally entail extended periods of standing, manual exertion, and
continuous physical effort in cold, dry, and hypoxic environments.
These operations impose considerable physiological stress owing to
decreased oxygen availability resulting from a hypobaric setting. In
comparison to men, women consistently demonstrate higher HR,
increased ventilatory responses, and greater perceived exertion at
comparable levels of workload (30, 37). These characteristics are
further influenced by the menstrual cycle, wherein increased P4
levels during the luteal phase enhance sympathetic activity and
ventilatory drive, thereby intensifying cardiovascular burden (27).

Nutritional status considerably impacts physiological
adaptation to HA. Inadequate energy intake and deficiencies
in micronutrients, especially iron, can compromise vascular
function, intensify oxidative stress, and disturb hormonal
equilibrium. Women residing at altitude are susceptible to iron
depletion, which adversely affects both cardiovascular performance
and reproductive health (38, 39). Furthermore, the menstrual
cycle influences iron homeostasis by connecting hormonal
fluctuations to nutrient metabolism (38, 40). Both iron deficiency
and overload are associated with adverse reproductive outcomes,
underscoring the sensitivity of female fertility to nutritional
balance (41, 42). Importantly, these nutritional factors align
with hormonal influences on body composition, particularly
leading to increased VAT and WC in androgenic profiles (obesity,
PCOS, post-menopause). This central fat redistribution directly
contributes to heightened cardiovascular risk, as previously
described (26, 34).

Despite these well-established links, current occupational
health frameworks seldom account for sex-specific nutritional,
cardiovascular, and hormonal interactions. An integrated approach

is necessary to safeguard the wellbeing and optimize the
performance of women operating in extreme environments, such
as high-altitude mining.

Hypertension, a prominent cardiovascular risk factor among
the Chilean population, has been extensively documented in male
miners exposed to CIH (3, 43). Nevertheless, limited research has
assessed the interaction between workload intensity and nutritional
status with sex-specific mechanisms in influencing blood pressure
regulation among women engaged in employment HA.

Pregnancy and CIH exposure

Although Chilean occupational health regulations explicitly
prohibit pregnant women from working at altitudes exceeding
3,000 meters above sea level (1). There is no unified international
legal framework governing pregnancy and occupational
exposure to high altitudes. Nonetheless, international clinical
and mountaineering guidelines generally advise against prolonged
work or physical exertion at elevations exceeding 2,500–3,000
meters, particularly beyond 20 weeks of pregnancy and in the
presence of risk factors such as anemia, hypertension, or a history
of pregnancy complications (70, 71, 74). These recommendations
are grounded in evidence indicating that hypobaric hypoxia has
the potential to impair maternal–fetal oxygen exchange, elevate the
risk of pre-eclampsia, and contribute to fetal growth restriction,
especially in women who are not chronically acclimated to
high altitude.

In the rare event that a pregnant worker is unintentionally
exposed to CIH such as during unrecognized pregnancy or
in countries without occupational restrictions, the combined
hemodynamic load of pregnancy and the hypoxic stress
of high-altitude work could exacerbate oxygen supply
demand mismatches in the maternal circulation (44), a
non-atherothrombotic ischemic event associated with increased
morbidity and mortality. This pathophysiological mechanism
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FIGURE 2

Hypothetical effects of sex hormones on Blood Pressure (BP), Heart Rate Variability (HRV), and body composition in women exposed to Chronic
Intermittent Hypoxia (CIH). This diagram illustrates proposed cardiovascular, autonomic, and body composition responses across different hormonal
profiles in women. Estrogen-dominant states [e.g., follicular phase, low-androgenic oral contraceptives (OCs), menopause with hormone
replacement therapy (HRT)] promote vasodilation, enhanced HRV, decreased visceral adipose tissue (VAT), and waist circumference (WC), collectively
contributing to improved cardiovascular adaptation. Conversely, progesterone-dominant or androgenic conditions (e.g., luteal phase, androgenic
OCs, menopause without HRT) increase sympathetic nervous activity, reduce HRV, and elevate VAT and WC, thereby increasing cardiovascular strain.
“Transient” BP changes refer to short-term elevations typically observed during luteal-phase hormonal shifts. “Sustained” BP indicates chronic or
long-lasting elevations associated with persistent hormonal environments in women residing at high altitude.

is recognized in humans as a precipitant of Type 2 myocardial
infarction. Clinical studies have shown that hypoxemia and
anemia, both relevant to CIH, are independent predictors of worse
outcomes in Type 2 MI. While no direct data exist for pregnant
women under CIH, the overlap of these risk factors underscores
the importance of early pregnancy detection, careful cardiovascular
risk assessment, and adherence to preventive measures even in
settings without legal prohibitions.

Psychological dimension

Despite operating within a secure environment concerning
gender equality and mutual sexual respect, women employed in
the HA mining sector encounter a multifaceted set of psychological
stressors that may augment cardiovascular risk. These encompass
elevated cognitive demands, emotional stress associated with
work–family conflicts, social isolation, and disturbances in sleep

patterns. Such factors interact with neuroendocrine and autonomic
systems, resulting in increased sympathetic activity and impaired
BP regulation, which are indicative of cardiovascular dysregulation.

Mental workload

A notable construct is mental workload, which pertains
to the cognitive and emotional demands imposed by the
work environment. Extended 12-h shifts, night work, and
critical decision-making under pressure, particularly in hypoxic
conditions, may lead to cognitive fatigue and impair executive
functioning (45). According to the Demand-Control-Support
model (46), Psychological strain intensifies when employees
encounter high demands, limited autonomy, and minimal
social support. These factors interact with neuroendocrine and
autonomic systems, resulting in increased sympathetic activity and
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impaired BP regulation, which are characteristic of cardiovascular
issues dysregulation.

Emotional coping and perceived
control

Women engaged in HA mining frequently encounter
a conflict between their professional roles and caregiving
responsibilities. Although this conflict is mediated by social factors,
its psychological impacts are significant. Emotional tension,
feelings of guilt, and diminished perceived control, especially
among single mothers or individuals with limited familial support,
can accumulate and manifest as chronic stress responses (47, 48).
From a psychological standpoint, Bandura’s theory of self-efficacy
(49) highlights the protective role of perceived control in buffering
these effects. Nevertheless, within male-dominated hierarchical
settings, women frequently report diminished self-efficacy and
limited decision-making autonomy (50).

These emotional stressors activate the hypothalamic-pituitary-
adrenal (HPA) axis, thereby initiating the general stress response, or
general adaptation syndrome (GAS). This leads to elevated cortisol
levels, sympathetic overactivation, and vagal withdrawal. Such
neuroendocrine imbalance disrupts cardiovascular homeostasis,
fostering vascular inflammation, endothelial dysfunction, and
heightened blood pressure variability, particularly during sleep and
early morning hours.

Circadian and neuroendocrine stress

Sleep disturbances represent among the most widespread
psychological and physiological stressors encountered in
high-altitude environments. High-altitude exposure adversely
affects REM sleep and overall sleep efficiency, with a notably
greater impact observed in women, who demonstrate increased
susceptibility to these effects (51). Poor sleep quality is correlated
with diminished parasympathetic activity and heightened
cardiovascular stress (52). Recent evidence indicates that
psychological stress at HA may also influence neuroendocrine
pathways implicated in mood regulation and circadian physiology,
notably the tryptophan–serotonin–melatonin axis, which is
affected by hypoxic exposure. In women, sex-specific differences
in serotonin synthesis and the modulatory role of estrogen amplify
these modifications (51). Hypoxia-induced insomnia, coupled
with diminished levels of serotonin and melatonin, may result in
compromised thermoregulation and synaptic plasticity, thereby
disrupting memory consolidation and emotional regulation. This
sequence creates a neurobehavioral feedback loop in which stress,
insomnia, and mood instability reinforce each other, exacerbating
autonomic dysregulation and elevating cardiovascular workload
over time.

Together, these psychological stressors facilitate cardiovascular
dysregulation via persistent activation of the HPA axis,
autonomic imbalance, and disruption of circadian rhythms.
This neuroendocrine imbalance promotes vascular inflammation,
endothelial dysfunction, and blood pressure dysregulation, which
are fundamental mechanisms in the pathogenesis of cardiovascular

disease (53). Within the GBM framework, these mechanisms
emphasize the importance of assessing mental workload, coping
capacity, and sleep quality as pivotal determinants of cardiovascular
risk in women subjected to CIH.

Social dimension

Psychosocial wellbeing, defined as the interaction among
emotional, cognitive, and social functions, is integral to both mental
and physical health. In high-altitude mining, social determinants
of health include hierarchical workplace relationships, gendered
role expectations, and the organization and social interpretation of
work (54, 55). These environments are characterized by chronic
intermittent hypoxia (CIH), extreme isolation, and rotational or
fly-in, fly-out (FIFO) work schedules (4, 56). For women, these
structural and cultural conditions may amplify the psychological
stressors described above, particularly work–family conflict, limited
decision-making autonomy, and reduced social support. While the
physiological mechanisms, such as autonomic imbalance, vascular
inflammation, and blood pressure dysregulation, are discussed in
the psychological dimension, here we emphasize that the origin and
persistence of these responses are strongly shaped by social context.
Moreover, prolonged exposure to gendered workplace dynamics
and inadequate health infrastructure may also impact reproductive
health through hormonal disruptions and fertility-related issues
(57, 58).

Work-family balance

Women in mining work report higher levels of work-family
conflict compared to men (59, 60). Extended work shifts,
camp-based rotations, and FIFO arrangements may lead to
extended periods of separation from children and family members.
The logistical challenges of caregiving, whether involving bringing
children into camp settings lacking childcare services or leaving
them behind, can induce ongoing stress characterized by persistent
feelings of guilt, anxiety, and emotional strain, particularly
among single mothers who lack reliable caregiving support
(47, 48, 61, 62). These stressors are not solely psychological; they
trigger neuroendocrine responses derived from the general stress
response, which elevate allostatic load and potentially increase
cardiovascular strain over time.

Gendered workplace dynamics

A secondary approach concerns the challenges related to
workplace dynamics in predominantly male mining environments,
which are generally characterized by isolated settings (63–66).
Women frequently observe the necessity to exert exceptional
effort to establish credibility, encounter limited access to decision-
making roles, and endure scrutiny concerning their reproductive or
maternal status (48, 50, 67). These conditions promote persistent
hypervigilance, emotional suppression, and even burnout—factors
directly correlated with elevated sympathetic tone, reduced HRV,
and an increased risk of hypertension (55).
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Structural barriers to women’s health

Certain infrastructural deficiencies and policy shortcomings
may further exacerbate women’s vulnerability to stress. Numerous
mining sites are inadequately equipped with gender-specific
protective equipment, menstrual hygiene amenities, and
comprehensive healthcare support, particularly during pregnancy
or menopause (54, 67). Even when women develop coping
strategies, they often do so independently, in isolation, and
without specialized institutional support. Such circumstances
exert pressure to internalize and somatize systemic stressors as
individual burdens, thereby increasing perceived helplessness
and diminishing psychosocial resilience. Consequently, this may
elevate cardiovascular risk (54, 67). Together, these social stressors
do not operate independently; they interact dynamically with
biological (e.g., hormonal) and psychological (e.g., sleep, mood)
factors, collectively contributing to an elevated risk of persistent
hypertension and cardiovascular dysregulation in women subjected
to CIH.

Prognostic implications of CIH in
women

Prolonged exposure to chronic intermittent hypobaric hypoxia
(CIH) may predispose women to cardiovascular changes that
extend beyond immediate adaptation. Evidence from human
studies involving rotating-shift workers subjected to high-altitude
CIH indicates elevations in asymmetric dimethylarginine (ADMA),
a biomarker of endothelial dysfunction and a predictor of hypoxia-
induced pulmonary hypertension (72). These alterations, together
with persistent hypoxaemia, surges in hypertension, and elevated
sympathetic activity, facilitate a mismatch between oxygen supply
and demand (68), a key pathophysiological mechanism in Type 2
myocardial infarction (44, 73).

Type 2 myocardial infarction, a non-atherothrombotic
ischemic event, generally exhibits a poorer prognosis in women,
particularly when hypoxaemia and anemia are present, conditions
commonly observed in workers exposed to CIH. Furthermore,
sex-specific factors such as iron deficiency, autoimmune disorders,
hormonal fluctuations, and microvascular dysfunction may
augment cardiovascular risk in this population women (69).
Despite the absence of epidemiological data directly linking
CIH to Type 2 myocardial infarction in women underscores
the necessity for sex-specific preventive strategies, occupational
monitoring, and longitudinal surveillance to facilitate early
detection of cardiovascular deterioration among female workers at
high altitudes.

Integrative perspective

The interaction between hormonal, psychological, and social
determinants under chronic intermittent hypoxia (CIH) reveals
a complex, mutually reinforcing pathway to cardiovascular
dysregulation in women. Hormonal status, whether marked by
estrogen dominance, progesterone predominance, or androgenic
profiles, modulates vascular tone, autonomic balance, and

metabolic efficiency (27, 29). These biological responses are
not isolated; they are amplified or attenuated by psychological
stressors such as mental workload, circadian disruption, and
emotional coping demands, which in turn activate neuroendocrine
pathways (e.g., HPA axis) that further influence blood pressure
regulation and vascular function (51, 53). Social stressors, including
work–family conflict, gendered workplace dynamics, and structural
barriers to health, provide the environmental context in which
these physiological and psychological responses occur (61, 67).
Within the GBM framework, these domains converge to shape
cardiovascular adaptation or maladaptation, underscoring the
necessity for integrated, context-specific preventive strategies in
high-altitude occupational settings.

Illustrative case scenario

Consider the case of a 38-year-old female mining operator
working on a 7 × 7 shift rotation between sea level and
3,500 m.a.s.l., currently in the luteal phase of her menstrual cycle
and using a combined oral contraceptive with moderate androgenic
activity. During her high-altitude shift, elevated progesterone levels
promote sympathetic activation, increasing heart rate and blood
pressure, while hypobaric hypoxia imposes additional ventilatory
and cardiovascular load (3, 27). Concurrently, she faces extended
12-h night shifts, high cognitive demands, and fragmented
sleep due to circadian misalignment, compounding autonomic
imbalance (51). Socially, she experiences persistent work–family
conflict, being separated from her young children during rotation,
and perceives subtle gender bias in task assignments (48, 67). In
combination, these factors create a scenario of elevated allostatic
load, reduced heart rate variability, and transient nocturnal
hypertension, conditions that, if sustained over years, may increase
her risk for endothelial dysfunction and Type 2 myocardial
infarction (44, 69). This example illustrates how the GBM
framework can be operationalized to identify risk profiles and guide
targeted interventions in women exposed to CIH.

Conclusion

Despite increasing interest in the health implications of
CIH, most studies in the high-altitude mining populations
have predominantly employed cross-sectional comparisons
between individuals working at varying elevations. These research
designs have seldom incorporated female participants and
frequently neglect factors such as hormonal status, psychosocial
burden, and occupational heterogeneity. Consequently, the
fundamental mechanisms underlying cardiovascular risk in
female workers subjected to real-world CIH exposure remain
inadequately understood.

This mini-review presents the GBM as a conceptual framework
for comprehending cardiovascular risk among women working
at high altitudes. By integrating biological aspects (such as
hormonal fluctuations and reproductive health), psychological
factors (including emotional burden and sleep disturbances),
and social dimensions (notably gendered workplace dynamics
and caregiving roles), the GBM offers a contextually sensitive
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and equity-informed perspective for assessing cardiovascular
adaptation under environmental stress.

Future research must progress beyond mere cross-sectional
snapshots. There is an urgent need for longitudinal cohort
studies to investigate how sex hormones, autonomic function,
emotional stress, and structural inequities interact over time to
influence the development of cardiovascular risks in women
throughout their working lives. This is especially imperative
given that female participation in high-altitude mining tasks
is recent but rapidly increasing, while the long-term health
implications remain largely unknown. The generation of sex-
and gender-stratified physiological data, employing within-
subject designs, and including targeted assessments of hormonal
and psychosocial variables will be essential for advancing
precision health methodologies and establishing equitable
occupational health guidelines. Additionally, this model may
inform occupational health policies and tailored surveillance
strategies for women working in other high-altitude sectors
such as astronomical observatories, military deployment, and
border control.
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