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Background: Large language models (LLMs) are increasingly accessed by lay 
users for medical advice. This study aims to conduct a comprehensive evaluation 
of the responses generated by five large language models.
Methods: We identified 31 ophthalmology-related questions most frequently 
raised by patients during routine consultations and subsequently elicited 
responses from five large language models: ChatGPT-4o, DeepSeek-V3, Doubao, 
Wenxin Yiyan 4.0 Turbo, and Qwen. A five-point likert scale was employed 
to assess each model across five domains: accuracy, logical consistency, 
coherence, safety, and content accessibility. Additionally, textual characteristics, 
including character, word, and sentence counts, were quantitatively analyzed.
Results: ChatGPT-4o and DeepSeek-V3 achieved the highest overall 
performance, with statistically superior accuracy and logical consistency 
(p < 0.05). Existing safety evaluations indicate that both Doubao and Wenxin 
Yiyan 4.0 Turbo exhibit significant security deficiencies. Conversely, Qwen 
generated significantly longer outputs, as evidenced by greater character, word, 
and sentence counts.
Conclusion: ChatGPT-4o and DeepSeek-V3 demonstrated the highest overall 
performance and are best suited for laypersons seeking ophthalmic information. 
Doubao and Qwen, with their richer clinical terminology, better serve users with 
medical training, whereas Wenxin Yiyan 4.0 Turbo most effectively supports 
patients’ pre-procedural understanding of diagnostic procedures. Prospective 
randomized controlled trials are required to determine whether integrating 
the top-performing model into pre-consultation triage improves patient 
comprehension.
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1 Introduction

Advances in deep learning have enabled large language models (LLMs) to achieve 
substantial breakthroughs in natural language processing, demonstrating broad utility 
across text generation, semantic comprehension, translation, and inferential reasoning (1, 
2). Recently, generative artificial intelligence has exhibited considerable promise within the 
healthcare sector, particularly in standardized examination simulation and clinical 
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documentation, thereby invigorating contemporary medical 
practice (3–5). Advanced LLMs, exemplified by ChatGPT and 
DeepSeek, are now systematically deployed across diverse medical 
specialties and have demonstrated early efficacy in disease 
recognition, diagnostic support, and evidence-based clinical 
decision-making (6–8). LLMs have demonstrated high diagnostic 
accuracy and decision-making efficacy in subspecialties such as 
neuro-ophthalmology, glaucoma, and thyroid eye disease, 
underscoring their substantial application potential (9–11). 
Furthermore, large language models such as Qwen, Doubao, and 
Wenxin Yiyan exhibit substantial translational promise across 
clinical and research workflows (12, 13). These systems enhance 
healthcare service efficiency, mitigate clinician workload, and foster 
patient health literacy and equitable access to care (14).

Nevertheless, the deployment of LLMs in clinical settings faces 
several challenges, among which ‘model hallucination’ is 
particularly pronounced (15, 16). Such models may produce 
outputs that are structurally coherent yet factually erroneous, a 
limitation arising from outdated training corpora and restricted 
access to contemporary medical guidelines, ultimately 
compromising the comprehensiveness and authority of their 
knowledge bases (17, 18). Although initiatives such as DeepSeek 
seek to mitigate the black-box problem through enhanced 
transparency and interpretability, the medical community retains 
circumspection regarding their reliability (19, 20). The growing 
utilization of LLMs for unsupervised health self-diagnosis may 
expose lay users to inaccurate or unsafe information, thereby 
amplifying potential harms (21, 22). Besides, ophthalmology 
necessitates exceptionally high diagnostic precision, as even 
marginal deviations can adversely affect patient prognosis (23). 
Therefore, comprehensive performance evaluations within 
ophthalmological contexts are urgently required prior to their 
widespread clinical adoption (24). Existing studies focus primarily 
on different versions of ChatGPT, leaving a scarcity of comparative 
analyses across models (25).

This study systematically evaluates five LLMs (ChatGPT-4o, 
DeepSeek-V3, Qwen, Doubao, and Wenxin Yiyan 4.0 Turbo) and 
focuses on their responses to ophthalmology-related questions from 
patients. Model outputs will be comprehensively assessed across five 
domains: accuracy, logical consistency, coherence, safety, and content 
accessibility. Additionally, quantitative text metrics (character, word, 
and sentence counts) will be extracted from Chinese-language outputs 
to elucidate their practical utility for patient education and clinical 
decision support.

2 Method

2.1 Ethical statement

This cross-sectional evaluation compared responses generated by 
five LLMs to 31 frequently encountered consultation questions in 
ophthalmology. The questions were derived from routine clinical 
inquiries collected by healthcare providers during patient encounters. 
Crucially, the study involved no patient-level data or personally 
identifiable information, thereby fully preserving individual 
anonymity and privacy.

2.2 Model selection

We purposefully selected five state-of-the-art LLMs: ChatGPT-4o, 
DeepSeek-V3, Qwen, Doubao, and Wenxin Yiyan 4.0 Turbo. Selection 
criteria encompassed recent benchmark performance, public 
accessibility, the developers’ institutional credibility, and demonstrated 
suitability for medical question-answering.

2.2.1 ChatGPT-4o
ChatGPT-4o1 is OpenAI’s newest transformer-based large-scale 

language model. It leverages deep-learning techniques to deliver 
advanced generative and comprehension capabilities, and its 
multimodal architecture ensures robust performance across 
heterogeneous input modalities, encompassing text and images.

2.2.2 DeepSeek-V3
DeepSeek-V32 is engineered for high-performance information 

retrieval and open-domain question answering, integrating deep-
learning and reinforcement-learning techniques to optimize retrieval 
efficiency and accuracy.

2.2.3 Qwen
Qwen3 is a conversational LLM optimized for interactive question-

answering, emphasizing user engagement and real-time feedback.

2.2.4 Doubao
Doubao4 is specifically optimised for Chinese-language tasks, 

employing multi-layer attention mechanisms to capture nuanced 
semantics and cultural contexts.

2.2.5 Wenxin Yiyan 4.0 Turbo
Wenxin Yiyan 4.0 Turbo5 is tailored for Chinese natural-language 

processing, exhibiting strong generative and semantic-
understanding capabilities.

2.3 Study design

We conducted a cross-sectional benchmarking study evaluating how 
the five selected LLMs respond to 31 frequently asked consultation 
questions covering retinal diseases, macular degeneration, glaucoma, dry 
eye and associated procedures. Questions were classified as definitional, 
causal, comparative, or procedural and reflect typical patient queries.

On 6 March 2025, two investigators jointly recorded the answer 
generated by each model in a single submission. Each question was 
submitted separately through the online platforms corresponding to 
the five models. No system prompts were provided, and responses 
were generated de novo from the query. Following response generation, 
the chat histories were manually reset to prevent carryover of context.

All outputs were independently verified by two researchers and 
transcribed into a Microsoft Excel spreadsheet. Character, word, and 

1  https://openai.com/index/hello-gpt-4o/

2  https://chat.deepseek.com/

3  https://qwen.org/chat

4  https://www.doubao.com/chat/

5  https://yiyan.baidu.com/
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sentence counts were automatically derived using the online text 
analytics tool Xiezuocat.6

Two board-certified vitreoretinal attending physicians with 
equivalent seniority (each with ≥5 years of subspecialty experience) 
independently rated each response across five domains: accuracy, logical 
consistency, coherence, safety, and content accessibility, using a five-
point Likert scale (1 = poor, 5 = excellent). Detailed scoring criteria and 
the full question list are provided in the Supplementary material. All 
interactions were conducted within a controlled online environment 
following standardized operating procedures to maximize reproducibility.

2.4 Data analysis

All analyses were conducted in SPSS software (version 27.0). 
Inter-rater consistency of total scores was assessed with the intraclass 
correlation coefficient (ICC). Normality was evaluated using the 
Shapiro–Wilk test. Normally distributed continuous variables were 
expressed as mean ± SD; non-normally distributed variables as 
median (IQR). Homogeneity of variances was evaluated using Levene’s 
test. Parametric comparisons among the five models employed 
one-way analysis of variance (ANOVA); non-parametric analyses 
utilized the Kruskal–Wallis H test. Where significant differences were 
detected, Bonferroni-corrected post-hoc pairwise comparisons were 
performed. p < 0.05 was deemed statistically significant.

3 Results

3.1 Comparative performance of five LLMs

The ICC between the two raters was 0.87. Table 1 summarizes the 
median scores of the five LLMs across five domains: accuracy, logical 
consistency, coherence, safety, and content accessibility. Accuracy: 
ChatGPT-4o and DeepSeek-V3 attained the maximum median score 
of 5.0, significantly surpassing the remaining models (H = 50.90, 
p < 0.05). Logical consistency: Likewise, ChatGPT-4o and 
DeepSeek-V3 achieved a median of 5.0, significantly exceeding the 
others (H = 29.82, p < 0.05). Coherence: Scores differed modestly; 
nevertheless, ChatGPT-4o and DeepSeek-V3 exhibited marginally 
higher stability (H = 11.69, P<0.05). Safety: ChatGPT-4o scored 

6  https://xiezuocat.com/

highest (4.0), whereas Doubao and Wenxin Yiyan 4.0 Turbo recorded 
the lowest (3.0), with significant between-group differences (H = 52.30, 
p < 0.05). Content accessibility: ChatGPT, DeepSeek-V3 and Wenxin 
Yiyan 4.0 Turbo performed best (4.0), while Qwen and Doubao scored 
lower (3.0); these differences were statistically significant (H = 12.54, 
p < 0.05). Detailed differences are provided in Table 2 and Figure 1.

3.2 Output length characteristics

Table 3 and Figure 2 present descriptive statistics for character, 
word, and sentence counts. Qwen produced the longest responses 
(1,380.58), significantly exceeding ChatGPT-4o (826.48) and 
DeepSeek-V3 (636.90) (p < 0.05). Wenxin Yiyan 4.0 Turbo generated 
916.45 words, approximating ChatGPT-4o. Similarly, Qwen yielded 
the highest token count (639.16), substantially surpassing 
DeepSeek-V3 (314.45) and ChatGPT-4o (417.55) (p < 0.05). Doubao 
and Wenxin Yiyan 4.0 Turbo produced fewer tokens (428.03 and 
465.00, respectively). Qwen also generated the greatest number of 
sentences (53.06), significantly exceeding DeepSeek-V3 (33.16) and 
ChatGPT-4o (36.00) (p < 0.05). Conversely, Doubao and Wenxin 
Yiyan 4.0 Turbo produced the fewest sentences (20.97 and 32.90, 
respectively). Collectively, Qwen generated significantly more 
characters, words, and sentences than all other models (p < 0.05). 
Comprehensive pairwise comparisons are presented in Table 3 and 
Figure 2.

4 Discussion

As LLMs are increasingly adopted in ophthalmology, where 
diagnostic precision is paramount, their accuracy, safety, and clarity 
directly affect clinical decision support and patient education (26). 
Patients now commonly seek online health information and may 
obtain LLM-based advice without clinician oversight; therefore, these 
systems must meet rigorous quality standards before 
healthcare implementation.

Our findings demonstrate statistically significant inter-model 
heterogeneity, with ChatGPT-4o and DeepSeek-V3 achieving superior 
overall performance. Consistent with earlier reports (23, 27), 
ChatGPT-4o exhibits near-expert proficiency in ophthalmological 
question-answering, while DeepSeek-V3 matches ChatGPT-4o in 
accuracy; both significantly outperform the remaining three models. 
This superiority may be attributable to: (1) the increased complexity 
of open-ended questions relative to prior multiple-choice formats; (2) 

TABLE 1  Performance scores of five large language models across accuracy, logic, coherence, safety, and content accessibility.

Metric Chat GPT-4o DeepSeek-V3 Qwen Doubao Wenxin 
Yiyan 4.0 

turbo

H-value p-value

Accuracy 5.0 (4.0,5.0) 5.0 (4.0,5.0) 4.0 (4.0,5.0) 4.0 (3.0,4.0) 4.0 (4.0,4.0) 50.90 <0.05

Logic 5.0 (4.0,5.0) 5.0 (5.0,5.0) 4.0 (4.0,5.0) 4.0 (4.0,4.0) 4.0 (4.0,5.0) 29.82 <0.05

Coherence 4.0 (4.0,5.0) 4.0 (3.0,4.0) 4.0 (4.0,5.0) 4.0 (4.0,4.0) 4.0 (4.0,4.0) 11.69 <0.05

Safety 4.0 (4.0,4.0) 3.0 (3.0,4.0) 4.0 (3.0,4.0) 3.0 (2.0,3.0) 3.0 (3.0,4.0) 52.30 <0.05

Content 

accessibility

4.0 (3.0,5.0) 4.0 (3.0,5.0) 3.0 (3.0,4.0) 3.0 (2.0,4.0) 4.0 (3.0,5.0) 12.54 <0.05
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delayed updates in competing models; and (3) advanced algorithmic 
architectures and curated training corpora employed by ChatGPT-4o 
and DeepSeek-V3.

Coherence scores were comparable across models, yet 
ChatGPT-4o and Qwen exhibited marginally superior stability 
(28), suggesting that architectural heterogeneity influences 
medical reasoning construction. We  additionally assessed the 
inclusion of disclaimers intended to mitigate medical and legal 
risk. ChatGPT-4o and Qwen frequently appended disclaimers 
(e.g., “seek prompt medical attention” or “consult a qualified 
clinician”), indicating stronger safety-control mechanisms than 
their counterparts.

When addressing different query types, all models provided 
comprehensive descriptions of disease-related content, particularly 
for definitional questions. For diagnostic tasks, DeepSeek-V3 and 
Wenxin Yiyan 4.0 Turbo supplied extensive clinical context and 
complication analyses, whereas ChatGPT-4o remained concise yet 
superficial (14). Previous studies have not reported that Doubao and 
Qwen display broader stylistic variation than other models (29), 
whereas ChatGPT-4o, although clear and concise, shows limited 
stylistic flexibility.

Upon addressing the query “How does diabetes induce retinal 
damage?,” ChatGPT-4o first defined diabetic retinopathy and 
summarized its pathophysiology, then listed preventive measures 
(glycemic control, annual retinal screening, optimization of lipids and 
blood pressure, smoking cessation, limited alcohol intake, and 
supplementation with lutein, vitamins C and E, and ω-3 fatty acids). 
DeepSeek-V3 more deeply into the underlying molecular mechanisms 

while simultaneously elaborating on disease progression and clinical 
manifestations. Qwen and Doubao concentrate on a hierarchical 
analysis of pathological mechanisms, whereas clinical management 
recommendations are comparatively sparse. Wenxin Yiyan 4.0 Turbo 
first described the disease, then detailed relevant examinations such 
as optical coherence tomography. The examples of this study indicate 
that ChatGPT-4o and DeepSeek-V3 are better suited for the general 
public seeking disease information, whereas Qwen, Wenxin Yiyan 4.0 
Turbo, and Doubao employ more complex medical terminology that 
benefits clinical trainees but may hinder comprehension among 
non-specialists. Such complexity may impede information 
acquisition, emotional support, and interpersonal rapport among 
patients (30, 31).

Converging evidence from our multi-dimensional assessment 
described above suggests that the observed balance of accuracy, 
conciseness, and safety renders these models operationally viable for 
eye-care pathways.

Previous studies have demonstrated that ChatGPT demonstrates 
diagnostic accuracy comparable to, or even exceeding, that achieved 
by ophthalmology residents in distinguishing primary from secondary 
glaucoma (10). This study further demonstrated that ChatGPT-4o 
rapidly identified patients requiring immediate referral versus routine 
follow-up, consistent with earlier studies (32). Within hierarchical 
diagnostic and treatment settings, chatbots demonstrate a superior 
capacity to identify acute and severe conditions (33), substantially 
enhancing patient satisfaction and the overall care experience (34). In 
circumstances where a patient cannot attend a hospital or clinic in 
person, or requires expeditious triage to ascertain the urgency of 

TABLE 2  Pairwise comparisons between models.

Comparison Accuracy Logic Coherence Safety Content 
accessibility

Characters Words Sentences

ChatGPT-4o vs. 

DeepSeek-V3

1.000 1.000 0.010* 0.002* 1.000 0.091 0.037* 1.000

ChatGPT-4.o vs. 

Qwen

0.063 1.000 1.000 1.000 1.000 0.002* 0.006* 0.312

ChatGPT-4o vs. 

Doubao

0.000* 0.000* 0.866 0.000* 0.072 1.000 1.000 0.000*

ChatGPT-4o vs. 

Wenxin Yiyan 4.0 

turbo

0.000* 0.431 0.927 0.002* 1.000 1.000 1.000 1.000

DeepSeek-V3 vs. 

Qwen

0.032* 0.234 0.195 0.057 0.848 0.000* 0.000* 0.077

DeepSeek-V3 vs. 

Doubao

0.000* 0.000* 1.000 0.065 0.021* 0.083 0.017* 0.002*

DeepSeek-V3 vs. 

Wenxin Yiyan 4.0 

turbo

0.000* 0.078 1.000 1.000 1.000 0.001* 0.000* 1.000

Qwen vs. Doubao 0.060 0.077 1.000 0.000* 1.000 0.003* 0.014* 0.000*

Qwen vs. Wenxin 

Yiyan 4.0 turbo

1.000 1.000 1.000 0.052 1.000 0.180 0.369 0.058

Doubao vs. 

Wenxin Yiyan 4.0 

turbo

1.000 0.231 1.000 0.071 0.121 1.000 1.000 0.004*

* denotes statistical significance at the 0.05 level.
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professional medical attention, LLMs can be  leveraged to provide 
case-specific recommendations (34).

The application of LLMs in ophthalmology is rapidly 
expanding across medical education, clinical support, research, 
and patient education (35). However, persistent challenges 
(inconsistent performance, algorithmic bias, hallucinations, data-
privacy risks, and ethical dilemmas) remain (36). Patients with 
ophthalmic concerns should continue to consult certified 
eye-care professionals, ensuring adequate human oversight in 
clinical decision-making (26, 37). Future initiatives must 
prioritize iterative model refinement and interdisciplinary ethical 
governance to ensure responsible clinical deployment (24, 25). 
Empirical evidence confirms that well-crafted prompts enhance 

both output accuracy and contextual relevance (38–40), although 
prompt variation exerts limited influence on accuracy, it 
substantially modifies textual readability (41, 42). Consequently, 
readability remains pivotal for effective patient communication 
even when accuracy gains are marginal.

LLMs trained with domain-specific ophthalmological expertise 
outperform those trained on general corpora (43). Future validation 
pipelines for ophthalmology-focused LLMs should span multi-center, 
multi-tier institutions and establish an iterative cycle of fine-tuning, 
validation, and governance. Interdisciplinary experts in 
ophthalmology, law, and ethics will craft an adaptive governance 
framework, while curated multi-center datasets drive continuous 
model refinement. The integration of this model into medical 

FIGURE 1

Pairwise comparisons between models. (a) Accuracy comparison; (b) Logic scores; (c) Coherence scores; (d) Safety scores; (e) Content accessibility scores.

TABLE 3  Response lengths of five large language models to 31 ophthalmology related queries.

Metric Chat GPT-4o DeepSeek-V3 Qwen Doubao Wenxin Yiyan 
4.0 turbo

H-value p-value

Characters 826.48 ± 240.62 636.90 ± 213.66 1380.58 ± 584.93 833.29 ± 285.08 916.45 ± 237.45 41.94 <0.05

Words 417.55 ± 115.32 314.45 ± 96.95 639.16 ± 247.72 428.03 ± 140.17 465.00 ± 114.65 42.29 <0.05

Sentences 36.00 ± 13.63 33.16 ± 12.689 53.06 ± 25.77 20.97 ± 7.71 32.90± 11.80 41.52 <0.05
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education platforms can be used to generate immersive virtual patient 
cases that significantly bridge the gap between theory and clinical 
practice (44), while alleviating the healthcare burden in resource-
limited regions (45, 46). We therefore recommend that the platform 
adopt a two-pronged strategy: first, encourage physicians to participate 
as cohesive teams to leverage peer-learning and collaborative 
mechanisms for enhancing overall service quality; second, embed 
robust privacy-preserving safeguards within personalized services so 
that patients can fully benefit from precision medicine without 
concerns about data security.

Our study has several limitations. First, each query was presented 
only once without priming or real-world outcome validation, 
potentially underestimating model capabilities. Second, analyses were 
restricted to Chinese-language responses, limiting generalizability. 
Third, we focused on the most common ophthalmic conditions, which 
may not fully capture the breadth of LLM functions. Future work 
should incorporate diverse, real-time datasets and develop validated 
tools for assessing linguistic complexity in Chinese LLMs to improve 
reliability, and should expand evaluation to additional models to clarify 
domain-specific strengths and limitations.

5 Conclusion

This study systematically evaluated five mainstream LLMs on 
ophthalmology question-answering tasks, revealing inter-model 
differences in accuracy, logical consistency, coherence, safety, and 

content accessibility. ChatGPT-4o and DeepSeek-V3 consistently 
outperformed the others, particularly in accuracy and logical 
consistency. Qwen produced the longest and most lexically rich 
outputs. Qwen, Wenxin Yiyan 4.0 Turbo, and Doubao employed 
complex medical terminology that may hinder comprehension among 
non-specialists. Continued technological advances and mitigation of 
current limitations will substantially enhance the clinical utility 
of LLMs.
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