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Background: Shift work in emergency care settings disrupts circadian rhythms 
and sleep, increasing health risks and performance. A key aspect of addressing 
these challenges lies in predicting the burden of shift work to develop safer 
schedules. This study introduces the Shift Load Index (SLI) as an advanced and 
sensitive metric for quantifying recovery constraints and examined its association 
with objective sleep outcomes in emergency healthcare professionals.
Methods: A two-phase observational field study was conducted with 72 nurses 
and physicians from two French emergency departments. In the theoretical 
validation phase, 140 work shifts were analyzed using the SLI and compared 
to validated FAID Quantum fatigue scores. In the behavioral validation phase, 
weekly actigraphy data from 35 participants were analysed to assess time in bed, 
total sleep time, and Sleep Regularity Index (SRI). We employed generalized linear 
mixed-effects models to assess the association of SLI with sleep outcomes.
Results: SLI scores significantly predicted FAID Quantum scores (all p < 0.001). 
Emergency healthcare professionals obtained on average 6h 09 min of sleep 
for 8h09min in bed, with irregular sleep patterns (mean SRI = 52%). Higher SLI 
scores were associated with reduced time in bed (β = −33.19, p < 0.001), shorter 
sleep (β = −18.30, p < 0.001), and lower SRI (β = −1.06, p < 0.001). SRI and total 
sleep time, as independent factors, together explained 48% of SLI variance 
(including random effects, 18% by fixed effects only).
Discussion: Higher shift load is associated with both reduced sleep quantity 
and regularity. The SLI provides a useful tool to assess recovery burden, with 
potential applications in optimizing shift schedules and informing fatigue risk 
management strategies for emergency healthcare professionals.
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1 Introduction

Over 15% of the active French workforce engage in night shifts, 
with the healthcare sector heavily relying on these workers (1). The 
demanding nature of shift work schedules, coupled with insufficient 
individual coping mechanisms, often leads to significant sleep 
disruption and circadian misalignment among emergency healthcare 
professionals (EHP); (2–4). Beyond the health concerns for the 
individuals themselves, insufficient sleep in EHPs has serious 
implications for professional performance and patient safety. There is 
well-documented evidence linking sleep disruption in EHPs to an 
elevated risk of medical errors, underscoring the critical need for 
effective fatigue management strategies (5–9). Despite existing 
regulations aimed at reducing the risks associated with shift work in 
healthcare (10, 11) the persistence of these issues points to the need 
for innovative solutions.

One limitation lies in the incomplete understanding of the 
dynamics between individual sleep patterns and the sleep 
opportunities provided by specific work schedules. Clarifying this 
relationship is crucial, as recovery management is a shared 
responsibility that hinges on the interplay between individual 
vulnerability factors (e.g., chronotype, sleep hygiene, and shift work 
tolerance) and institutional scheduling policies (9, 12, 64).

A key aspect of addressing these challenges lies in predicting the 
burden of shift work to develop safer schedules. This study applied an 
adapted Shift Load Index (SLI), originally derived from Gander’s 
fatigue risk matrix developed for the New Zealand healthcare sector 
(13, 14). Although the matrix proposed by Gander and colleagues is 
ecologically useful and practical compared to more complex 
algorithms, it has not yet been directly validated against objective 
sleep–wake data in field conditions. The SLI streamlines traditional 
biomathematical models by focusing specifically on recovery 
opportunities within shift schedules, excluding more complex factors 
like sleep cycles or traveling across time zones (15, 16). Grounded in 
Borbély’s two-process model for sleep regulation, the SLI captures the 
cumulative effects of homeostatic and circadian processes, known to 
effectively predict sleepiness without extensive data inputs (17).

Sleep duration and sleep regularity are particularly vulnerable to 
the erratic timing of rotating shift work. Actigraphy-based studies 
within the healthcare sector consistently reported that EHPs obtain 
less than the recommended 7 hours of sleep, particularly during 
night shifts (18–21). While some healthcare professionals achieve 
adequate recovery through extended rest periods, this often comes 
at the cost of increased sleep variability and delayed compensatory 
rest (8, 22).

A recent consensus of the National Sleep Foundation highlights 
the impact of sleep timing variability on health and performance (23) 
and mounting evidence suggests that sleep regularity may be  a 
stronger predictor of long-term health outcomes, including mortality 
risk, than sleep duration alone (24). In this context, the Sleep 
Regularity Index (SRI) has emerged as a valuable metric for 
quantifying variability in sleep timing and duration (24, 25). By 
quantifying deviations from regular sleep–wake patterns, the SRI 
provides critical insights into the effect of rotating shifts on sleep 
stability. However, to our knowledge, it has not yet been specifically 
applied to capture vulnerability in shift workers.

Despite the relevance of both SLI and SRI, their relationship has 
yet to be systematically examined in the healthcare context. Given the 

potential impact of shift work on health and performance, further 
investigation is warranted. Indeed, in combination, the SLI and SRI 
present complementary perspective on recovery management among 
shift workers: the former indexing the structural demands of shift 
schedules, and the latter capturing their behavioral consequences on 
sleep stability.

Our investigation aims to clarify how shift-work schedules affect 
sleep patterns and evaluates individual sleep vulnerability. 
We introduce the SLI as an advanced metric for quantifying recovery 
constraints calibrated to European working-time regulations and 
validate it, both theoretically and behaviorally applied to the 
emergency department context. Theoretically, we  assess the SLI’s 
capacity to reproduce predictions from the established FAID Quantum 
sleep-regulation model. Behaviorally, we test the hypothesis that the 
SLI covering a week schedule predicts two key objective sleep 
parameters over that week: sleep quantity (time in bed and total sleep 
time) and regularity (indexed by the SRI). By examining these 
dynamics, we aim to identify typical shift adaptation patterns within 
the French Emergency Department, contributing to safer scheduling 
practices and establishing individual adaptation margins.

2 Materials and methods

2.1 Study design and setting

The monocentric study REST (Recovery optimization in 
Emergency medicine addressing Stress adaptation Techniques) was 
approved by the Ethics Committee for the Protection of Individuals 
(2021-A03171-40) and was preregistered on ClinicalTrials.gov 
(Identifier: NCT05251246). REST was designed to measure the impact 
of a recovery intervention on EHP and data used for this naturalistic 
observational study was derived from the baseline measures. Data 
were collected for 2 weeks from staff working rotating shifts in two 
emergency departments of a university hospital of Lyon, France. The 
shift system requires nurses to rotate 12-h shifts (7:00 to 19:00 the day 
shift and 19:00 to 7:00 the night shift) and physicians to rotate between 
10.5-h day shifts (8:00 to 18:30) and 14-h night shifts (18:30 to 8:30).

2.2 Selection of participants

In total, 72 volunteer EHPs were enrolled. Exclusion criteria were 
non-full-time staff (work time less than 80%) or staff that had worked 
less than a year in an emergency department. Participants were fully 
informed about the study and provided their voluntary, written 
informed consent to participate.

2.3 Data collection

Between February and November 2022, we  collected both 
schedule data and objective sleep data, with shift rosters for SLI 
computation provided by emergency department and ambulance 
administration. The study was conducted in 2 phases: In the first 
phase (February–July 2022), we tested our index in a preliminary 
group of participants (early-stage subset) by comparing it to 
established risk measures (theoretical validation). In the second phase, 
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following the completion of participant enrollment in November 2022 
(REST protocol), we assessed the index’s relationship with objective 
sleep data collected at the pre-intervention stage for the full study 
sample (behavioral validation). Participants completed questionnaires 
at baseline (study inclusion) and again at the end of the sleep 
monitoring period. Demographic variables captured included sex, age, 
BMI, relationship status, presence of young children (≤ 5 years), shift-
work experience, and commute time.

2.4 Chronotype

Diurnal preference was determined by the Morningness 
Evenigness Questionnaire MEQ (26). This validated questionnaire is 
comprised of 19 items. The total score ranges from 16 to 86 and 
defines the chronotype: scores ranging from 16 to 30 indicate extreme 
eveningness preference (E*); scores from 31 to 41 indicate evening 
preference (E); scores from 42 to 58 are categorized as neutral (N); 
scores from 59 to 69 indicate morning preference (M); and scores 
from 70 to 86 indicate extreme morning preference (M*).

2.5 Shift load index

The SLI is a validated predictive scoring system originally 
developed by Gander et al. (13, 14) to assess, based on planned work 
schedules, the imposed risk of limited recovery opportunities. For the 
present study, we adapted the SLI to the French shiftwork system and 
extended it by including a specific rating for the degree to which work 
hours conflict with typical social hours (evenings, weekends) 
recognizing that such conflicts may increase social pressure and 
further reduce sleep opportunities (27). These adaptations are detailed 
in a publicly available preprint (28). The SLI score generated for a 
work schedule of one week comprises 8 items, (Table 1); each with 
predefined cut-off scores to define 3 different risk levels: 0 (low risk), 
1 (medium) or 2 (high). The higher the shift load, the greater the 
misalignment between work schedules and biological or social 
rhythms. Accordingly, higher risk levels represent less opportunity for 
recovery and restorative sleep. The total SLI score (ranging from 0 to 
16) is obtained by summing the risk levels across all items. If possible, 

we also recommend including a ninth item in an extended version of 
the index to account for cumulative fatigue arising from the previous 
week. In the theoretical validation phase, the SLI score was computed 
based on two-week work schedules, allowing the use of the extended 
version rated on all nine items. In contrast, for the behavioral 
validation phase, the score was calculated from one-week work 
schedules to match the available behavioral data, and thus was rated 
on eight items only. Ratings were generated for each day using a 
dynamic sliding window approach, whereby each day’s score reflects 
recovery opportunities within the preceding seven-day period. This 
method enables a continuous and temporally sensitive assessment of 
recovery risk.

2.6 Theoretical validation

To validate the adapted SLI against an established 
biomathematical model commonly used in 24/7 industries, 
we included FAID Quantum scores for cross-measure comparison 
(29). The FAID Quantum scores are widely used biomathematical 
models in 24/7 industries. FAID Quantum estimates fatigue and 
alertness based on schedules derived from work / non-work hours 
and provides 2 primary metrics: (i) FAID-FATIGUE Score: Predicts 
on-duty physical fatigue based on the Fatigue Audit InterDyne 
algorithms; (0–100+; higher scores indicate higher predicted 
fatigue). Scores above 80 represent an established risk threshold 
validated by FAID Quantum; for comparison, a typical office week 
yields a score of approximately 41; (ii) FAID-ALERTNESS Score: 
Predicts on-duty sleepiness based on the Karolinska Sleepiness 
Scale (KSS) integrating the Three-Process Model of Alertness (1–9; 
higher scores indicate higher predicted sleepiness). The scores were 
obtained for work shifts only and not for days off.

2.7 Behavioral validation

Objective sleep data were obtained using an actigraphy device 
(Actiwatch 2; Philips  - Respironics, Murrysville PA, USA). 
Participants wore the wrist device for 3 weeks and were asked to 
press a button to indicate bed time, defined as the moment when 

TABLE 1  Shift Load Index (SLI) items and risk levels for assessing a one-week work schedule.

Category Items Risk factor 0 – Low risk 1 – Moderate risk 2 – High risk

Work
1 Hours Worked <40 h week 40-48 h week >48 h week

2 Long shifts 1 shift 2–3 shifts >3 shifts

Rest

3 Longest Recovery Period ≥48 h ≤24 h 0

4 Short Breaks 0 1 ≥2

5 Days fully rested >1 1 0

Night
6 Night shifts 0 1–2 >2

7 Biological sleep hours <8 h lost 8 h lost >8 h lost

Social life 8 Social hours <8 h lost 8-13 h lost >13 h lost

Long shifts >10 h. Longest recovery period assesses the consecutive time to disconnect and recover, similar to a typical weekend period. Short breaks <11 h. Biological sleep hours assumes one 
complete night of biological sleep amounts to 8 h between 23:00–7:00; hours lost refers to the cumulated hours of night time sleep duration during 1 week below 56 h (7 nights * 8 h), 8 h lost 
≈ 1 complete night. Social hours are assumed to occur between 18:00 and 22:00 on weekday evenings and between 9:00 and 22:00 on weekends; hours lost refers to cumulated social hours 
below 46 h, 8 h lost ≈ two social evenings, 13 h lost ≈ a weekend day.
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they attempted to fall asleep and again in the morning to indicate 
when they got out of bed (get up time). Sleep onset and Sleep 
Offset were defined the moment the subject fell asleep and woke 
up. Actigraphy monitors the activity level based on an 
accelerometer with data being collected at a frequency of 32 Hz 
and segmented to 30-s epochs. Data was analyzed using the 
Philips Actiware software version 6.0.1. Sleep regularity (SRI), 
total sleep time (TST) and time in bed (TIB) were measured 
whenever the sleep–wake pattern of an EHP included seven 
consecutive days of recording; all sleep types were cumulated 
(nighttime sleep, daytime sleep, sleep obtained at work, and naps, 
regardless of timing or setting). TST refers to the time asleep 
between the moment the EHP has fallen asleep (sleep onset) until 
the time they wake up (sleep offset), so any disrupted sleep 
(nocturnal awakenings) decreases the sleep quantity. TIB refers 
to the time the participant spends in bed from bedtime to get up 
time and represents the overall sleep opportunity.

SRI quantifies the regularity of sleep–wake patterns by comparing 
sleep/wake patterns over consecutive days (25, 30). It expresses the 
likelihood that any two time-points 24 h apart are in the same sleep or 
wake state. The SRI ranges from 0 (random pattern) to 100 (perfectly 
regularity) and is sensitive to naps, sleep fragmentation and 
non-consecutive data. Established cut-offs from larger cohorts exist 
for interpreting SRI scores as irregular, intermediate, or regular sleep 
patterns, typically based on the lowest and highest quintiles of the 
score distribution (30, 31). The SRI is computed with the following 
formula (Equation 1):

	 ( ) ( )1
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(1)

where M is the number of daily epochs, N is the number of days, 
si,j = 0 for sleep and si,j = 1 for wake, and δ(si,j, si + 1,j) = 1 if si,j = si + 1,j 
(meaning the epochs separated by 24 h are in the same state) and 
0 otherwise.

2.8 Data analysis

First, during the theoretical testing phase, the extended 9-item 
Shift Load Index (SLI) was compared to FAID Quantum scores, as 
FAID Quantum is also typically applied to two-week schedule data 
for comprehensive fatigue risk profiling. A generalized linear 
mixed-effects model (GLMM) was used, controlling for shift type 
and accounting for clustering by subject as a random effect 
(32–34).

Subsequently in the behavioral validation phase, the basic 8-item 
SLI was applied to objective sleep data over 1 week. Demographic 
group comparisons for sleep variables (SRI, TST, TIB) were conducted 
using t-tests or ANOVA, as appropriate. Sleep–wake patterns over 
time were visualized using locally estimated scatterplot smoothing 
(Loess). The predictability of sleep variables based on SLI scores was 
further tested with GLMMs, applying a sliding window approach with 
day-level data clustered by subject. Models were adjusted for 
demographic covariates, commute time, chronotype, and shift work 
experience. Model residuals were visually inspected using probability 

plots to assess normal distribution. A significance level of 0.05 was 
applied throughout.

Finally, to assess how sleep regularity and duration jointly predict 
shift-load scores, we performed an exploratory multivariable mixed-
effects regression controlling for subject with daily SLI as the 
dependent variable and SRI and TST entered simultaneously 
as predictors.

3 Results

3.1 SLI – theoretical validation

In the theoretical testing phase, schedule analysis included 140 
shifts worked by 55 EHPs (Figure 1, flow chart), with each participant 
providing repeated measures (two to three shifts each). Night shifts 
accounted for 51% of the shifts. The risk distribution across the 
extended Shift Load Index (SLI) with its 9 items is illustrated in 
Figure 2. While most SLI items exhibited varied risk levels, those 
related to rest opportunities generated minimal risk within 
this sample.

A total of 21% of shifts (n = 29) yielded SLI scores above 9, 
indicating elevated risk for insufficient recovery. The average 
FAID-FATIGUE score was 56.4 (± 24.3), with 19.5% of shifts 
demonstrating a peak score above the established threshold of 80. 
The average FAID-ALERTNESS score was 6.3 (± 1.8; corresponds 
to “some signs of sleepiness”), with 20.3% of shifts showing a 
peak KSS score of 8 or above (“sleepy, but some effort to 
keep awake”).

Given the variability of these outcomes across shift types, shift 
type was included as a random effect in the GLMM.

The GLMM showed that SLI was a significant predictor of both 
FAID-FATIGUE (β = 3.91, p < 0.001) and FAID-ALERTNESS 
(β = 0.02, p < 0.001), highlighting the impact of shift load on predicted 
fatigue and alertness levels. When SLI items were analyzed individually 
in separate models, the explanatory power increased substantially by 
adding shift type (R2 = 70 ➔ 88% for FAID-FATIGUE; R2 = 51 ➔ 99% 
for FAID-ALERTNESS). Detailed item-level findings are provided in 
the preprint (28).

3.2 SLI – behavioral validation

The SLI in its eight item version was further assessed using 
objective sleep data from a subsample of 35 EHP (21 nurses, 14 
physicians) each providing at least 7 consecutive 24 h recordings 
(totaling 360 observations; Figure  1). As shown in Table  2, 
participants SLI, TIB, TST, and SRI along with group comparisons 
by sex, profession, partner status, presence of young children, and 
chronotype are summarized. Descriptively, Figure 3 shows that 
TIB and TST declined with increasing SLI-leveling off at moderate 
loads before dropping further at high loads. SRI was stable at low 
SLI, dipped mid-range, then rebounded at high SLI, forming an 
inverted-U.

To assess the influence of shift scheduling on sleep outcomes, 
GLMMs were constructed with SLI as a predictor and subject as a 
random effect (Figure 4). SLI significantly predicted TIB and TST 
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(respectively β = −0.53, p < 0.001, marginal R2 = 5% and β = −0.29, 
p < 0.001, marginal R2 = 2%). indicating that for each one-point 
increase in SLI, TIB decreased by approximately 32 min and TST by 
17 min. SLI also significantly predicted lower sleep regularity 
(β = −1.06, p < 0.001), with a marginal R2 of 5%. With every increase 
of one point in the risk index, SRI decreased by approximately 1%. As 
a control, GLMMs with subject as a random effect showed that SRI 

exhibited only a non-significant trend with TIB (β = −0.24, p = 0.053; 
marginal R2 = 2%) and no association with TST (β = 0.02, p = 0.894), 
confirming that sleep regularity and sleep duration were not 
meaningfully associated.

The associations between shift load and individual sleep remained 
robust after adjusting for sex, age, BMI, weekly sport hours, young 
children, couple status, profession, shift experience, commute time and 

FIGURE 1

Flow chart of participant inclusion in the REST study up to baseline, showing screening, eligibility, and final sample sizes.

FIGURE 2

Distribution of risk levels across the nine items of the extended Shift Load Index, with bars representing the proportion of shifts at each risk category for 
each item.
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TABLE 2  Shift Load Index scores and objective sleep data.

Variable Subgroup n % SLI
(risk score)

TIB
(hh:mm)

TST
(hh:mm)

SRI
(%)

M SD M SD p M SD p M SD p

All 4.06 2.67 8:07 0:55 6:12 0:50 51.9% 12.1%

Sex Male 34% 3.86 2.83 8:18 0:47 6:15 0:58 51.0% 10.4%

Female 66% 4.16 2.58 8:03 0:58 ** 6:10 0:46 n.s. 52.4% 12.9% n.s.

Profession Physician 40% 4.21 2.94 7:48 0:44 6:08 0:48 56.5% 12.5%

Nurse 60% 3.96 2.46 8:20 0:59 *** 6:15 0:52 n.s. 48.7% 10.8% ***

Site ED 1 40% 4.09 2.11 8:21 1:00 6:41 0:44 51.0% 13.6%

ED 2 60% 4.05 2.92 7:59 0:52 *** 5:57 0:46 *** 52.4% 11.3% n.s.

Status Couple 57% 3.71 2.65 8:14 0:49 6:27 0:43 55.3% 11.3%

No couple 43% 4.57 2.62 7:57 1:03 * 5:50 0:52 *** 47.2% 11.6% ***

Young 

Children Yes

23%

4.06 2.44 8:05 0:58 6:16 0:42 54.4% 11.1%

No 77% 4.06 2.73 8:07 0:55 n.s. 6:10 0:52 n.s. 51.2% 12.3% *

Chronotype Morning 17% 4.08 2.80 7:41 0:43 5:58 0:39 54.3% X8.5%

Neutral 71% 4.06 2.64 8:13 0:58 6:15 0:51 52.2% 12.9%

Evening 11% 4.06 2.61 8:21 0:41 *** 6:15 1:04 * 44.0% 10.4% *

SLI, Shift Load Index; TIB, Time in Bed; TST, Total Sleep Time; SRI, Sleep Regularity Index. All key variables were measured for a consecutive week, multiple weeks per subject were report in a 
sliding window approach. Weekly sleep volume was computed into a 24 h average. For dependent sleep variables group comparisons were performed with t-tests or ANOVA. (n = 360) 
*p < 0.05. **p < 0.01. ***p < 0.00.

FIGURE 3

Associations between shift load and sleep measures. (A) Time in bed (TIB) versus Shift Load Index (SLI). (B) Total sleep time (TST) versus SLI. (C) Sleep 
Regularity Index (SRI) versus SLI. Blue lines show LOESS-smoothed trends. Generalized linear mixed models (controlling for subject) were all significant, 
indicating that higher SLI predicts reduced sleep quantity and regularity. Subjective zoning overlays guide visual interpretation.
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chronotype. In the adjusted models, the effect of SLI on TIB and on 
TST remained significant (respectively β = −33.19, p < 0.001, marginal 
R2 = 15% and β = −18.30, p < 0.001, marginal R2 = 20%), as did the 
effect of SLI on SRI (β = −1.06, p < 0.001; R2 of 21%). Further, none of 
the covariates independently predicted these outcomes.

3.3 Shift adaptation framework

Following the predictive value of SLI on behavioral sleep 
parameters, we plotted SRI against TST, with point color indicating 
the observed SLI (Figure 5). The exploratory multivariable regression 
of SLI on SRI and TST yielded a fitted prediction surface:

	 = − − +_ 0.0851 0.0805 11.7760SLI pred SRI TST 	 (2)

GLMM revealed that SRI and TST were both significantly 
associated with SLI, yielding a total explanatory R2 of 48%, with fixed 
effects accounting for 18% of the variance. This interindividual 
variance in shift adaptation can be  captured by calculating each 
individual’s residual (Observed SLI – Predicted SLI), we can identify 
those who fall outside the model’s confidence bounds (CI 95% 
[−0.516, 0.664]), highlighting participants who significantly 
outperform or underperform relative to their peers. For example, a 
positive residual signifies that a person handled a higher shift load 

than their sleep patterns would predict, indicating better adaptation 
to demanding schedules. Approximately 42% had residuals below 
−0.516, signifying worse adaptation and heightened sleep vulnerability.

4 Discussion

This study investigated the impact of shift load on sleep patterns 
among emergency healthcare professionals (EHPs), with a particular 
focus on the role of recovery limitations in predicting sleep duration and 
regularity. Higher Shift Load Index (SLI) scores, reflecting greater shift-
related strain, were significantly associated with shorter sleep duration 
and reduced sleep regularity, even after accounting for chronotype and 
shift work experience. These findings underscore the substantial 
challenges EHPs face in preserving restorative sleep under demanding 
schedules, contributing to circadian rhythm misalignment and 
heightened risk of insomnia (35). In our study, EHPs spend 
approximatively 8 h in bed but effectively sleep for only 6 h underscores 
the widespread issue of chronic sleep debt among this population. These 
sleep disturbances have been associated with a spectrum of health 
issues, such as obesity (36) and an increased susceptibility to mental 
health disorders (37). Our results underline the critical need for effective 
management of work- rest cycles in healthcare environments to protect 
and promote both the well-being of professionals and the safety 
of patients.

FIGURE 4

Conceptual model of shift-load effects on sleep. Schematic illustrating significant (solid arrows, *** p < 0.001) and non-significant (dashed arrow) 
pathways between SLI, TIB, TST, and SRI.
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4.1 Validation of the shift load index

The Shift Load Index (SLI) was developed by adapting a 
pre-existing risk assessment matrix to align with French work 
regulations, specifically targeting recovery opportunities within 
emergency department shift schedules. The SLI incorporates key 
factors such as working hours, shift length, night shifts, and the loss 
of biologically and socially meaningful time. In doing so, the 
present work extends the original Australasian scheme by 
calibrating it to European regulations and incorporating a social-
rhythm component, thereby capturing aspects of circadian and 
social disruption not accounted for in earlier models. Interestingly, 
recovery periods contributed minimally to risk scores in this 
cohort, likely due to strict regulatory constraints. During the 
theoretical validation phase, the SLI demonstrated strong predictive 
validity for fatigue, aligning with results from two established 
biomathematical models: the Three Process Model of Alertness and 
the FAID model. While the former focuses on immediate sleep–
wake patterns and daytime sleep, the latter accounts for cumulative 
fatigue over a week, integrating both physiological sleep pressure 
and social pressures. The SLI’s alignment with both models 
reinforces its ecological validity, particularly in identifying high-
risk shifts for fatigue accumulation. Importantly, unlike the original 
scheme, which relied exclusively on self-reported fatigue and 
questionnaire data, our study addresses the missing field validation 
of this type of streamlined index against objective sleep metrics. 
Across models, every fifth shift in our cohort presented a heightened 
risk in terms of recovery and alertness. In comparison, a recent, 
larger study of British anesthesia residents reported only 12.7% of 
shifts exceeding elevated FAID fatigue thresholds, compared to our 
19.5%, suggesting that French emergency department working 

hours may pose a higher burden (38). However, it should be noted 
that the Roche et al. study included residents and a much larger 
number of shifts, while our analysis focused only on full-time 
nurses and physicians, which may affect direct comparability.

Our findings indicate that maintaining adequate sleep becomes 
increasingly challenging as shift load intensifies, with SLI scores of 6 
or above associated with significant sleep disruption. Given its robust 
associations with objective sleep metrics, SLI appears to be a reliable 
and practical rating system offering practical advantages for hospital 
management, risk assessment and application in real-world 
field settings.

4.2 Shift adaptation

Our proposed framework on shift adaptation lays the 
groundwork for a more nuanced understanding of the interplay 
between work schedules and individual differences in sleep 
response. While the SLI effectively captured sleep deficits 
associated with shift demands, our analysis revealed that 
approximately one-third of the variance in sleep adaptation was 
attributable to individual factors. This underscores the existence, 
within this challenge, of a modifiable margin for individual 
adaptation or vulnerability to shift schedules. Sleep behavior is 
highly individual and varies across schedules, suggesting that 
while work schedules have a tangible impact, adaptation can vary 
significantly depending on the risk profile, for instance morning 
type, age and family obligations intervene with shift adaptation 
(35). Recognizing this potential for adaptation supports the 
development of more personalized strategies for shift scheduling 
and fatigue management.

FIGURE 5

Shift adaptation framework. Scatterplot of SRI (%) versus average TST (h), with points colored by SLI on a Viridis scale (bright yellow = low shift load; 
dark purple-blue = high shift load). Dashed horizontal line at 7 h denotes the minimum recommended TST (65); dashed vertical line at 60% SRI marks 
the lowest quintile cutoff (61–64%) from non–shift-working cohorts (13, 30, 31).
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Building on this, the shift adaptation framework provides a 
conceptual basis for translating SLI outputs into actionable 
strategies. In practice, it could help identify vulnerable populations 
for targeted fatigue management, inform schedule design by 
highlighting high-risk sequences, and support occupational health 
monitoring at both the individual and organizational level. At 
present, the framework remains conceptual, and future studies 
should evaluate its value in diverse hospital systems while 
examining whether integrating SLI-based adaptations can reduce 
fatigue, improve sleep efficiency, and enhance clinical 
performance. The personalized shift adaptation framework seeks 
to pave the way for substantial improvements in clinical 
performance and organizational health.

4.3 Sleep regularity index

Sleep regularity is increasingly recognized as a critical 
determinant of physical and mental health (23, 24). It is closely 
modulated by lifestyle and environmental factors such as light 
exposure, food intake, and behavioral routines (39–41). In the 
context of emergency departments, exposure to artificial brightly 
light during night shifts may further disrupt circadian rhythms, 
complicating efforts to maintain consistent sleep regulation (42, 
43). Although the SLI effectively captured overall sleep 
disruption, the specific analysis of sleep regularity revealed a 
U-shaped curve, largely driven by the frequency of night shifts, 
consistent with previous simulation studies (25). However, high 
SRI scores under high shift load may not necessarily reflect 
healthy sleep behavior, but rather stable, biologically inverted, 
and ultimately unhealthy patterns. Our findings are not 
surprising in that they confirm, both theoretically and in the 
field, that shift work produces irregular sleep patterns (25, 44). 
Critically, however, this is the first study in emergency healthcare 
professionals to quantify the extent of reduced sleep regularity 
with the SRI: the majority of participants fall below the 20% 
lowest-quintile cutoff established in non–shift-working 
populations. This stark shift relative to normal cohorts highlights 
the substantial health constraints imposed by these 
demanding schedules.

4.4 Clinical implications

Our findings suggest that sleep deficits among EHPs stem more 
from reduced sleep efficiency than insufficient time in bed, 
emphasizing the need for interventions that enhance both sleep 
quantity and quality (45, 46). Beyond work schedules, environmental 
factors are increasingly recognized as key determinants of sleep health. 
Variations in thermal comfort, noise, light exposure, and air pollution 
can compromise sleep initiation and maintenance and may 
differentially increase vulnerability, particularly in urban 
environments such as in our study sample (47, 48). Our observations 
align with Borbély’s two-process model of sleep regulation, which 
highlights the importance of addressing both sleep duration and 
regularity (49, 50). In high-stress environments like emergency 
departments, chronic sleep disruption may exacerbate compassion 

fatigue and burnout as well as general health, further underscoring the 
need for targeted sleep interventions (51, 52).

4.5 Organizational implications

The consequences of sleep deprivation extend beyond individual 
health, affecting both care quality and institutional costs. Fatigue-
related medical errors alone cost health care systems billions annually 
(53), while high turnover rates in emergency services, driven by shift 
work and workplace stressors, cost an estimated 6,000 euros per 
departure (54). Institutional strategies must therefore move beyond 
mere scheduling adjustments to implement systemic workload 
monitoring, optimize staffing models, and foster a culture that 
proactively addressed fatigue risks (44, 55). Addressing critical 
incidents, workplace violence, and understaffing may further 
alleviate chronic stress and prevent burnout (56) as health 
problem (57).

4.6 Interventions to mitigate risk

Despite well-documented risks associated with shift work-related 
sleep disruption, evidence-based interventions remain underexplored. 
Our findings suggest that individual variability may outweigh shift 
schedule impacts, highlighting the need for targeted strategies on both 
organizational and individual levels (9, 58). Importantly, emerging 
evidence points to a genetic basis for individual vulnerability to sleep 
loss. Specific polymorphisms have been associated with differential 
responses to sleep deprivation in terms of cognitive performance, 
alertness, and subjective fatigue (59, 60).

At the organizational level, implementing programs that 
include sleep hygiene education, stress management training, and 
light exposure protocols can help mitigate sleep disruption and 
circadian misalignment (61). Additionally, tailored guidance on 
sleep practices, coping strategies, and shift-specific recovery 
techniques on an individual and chronotype level may significantly 
improve sleep quality and reduce fatigue, especially in high-stress 
settings like the emergency departments (62, 63). Orchestrated 
efforts have the potential to reduce sleep deprivation in 
healthcare settings.

4.7 Study limitations and future directions

While our study provides valuable insights, several limitations 
should be acknowledged. First, our data did not include cumulative 
shift burden from the previous week, limiting our ability to assess 
extended recovery deficits. Second, the behavioral validation was 
based on a modest sample drawn from two emergency departments 
within a single European city, limiting generalizability to other 
emergency departments or shift-working contexts. The modest sample 
size may also reduce statistical power, even though the repeated-
measures design increases robustness. Third, the risk value 
distribution was skewed, generally reflecting lower-risk shifts, thereby 
constraining the analysis of those at higher risk levels. Fourth, our 
methodological choice to use a sliding window approach, while 

https://doi.org/10.3389/fpubh.2025.1679296
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Schmidt et al.� 10.3389/fpubh.2025.1679296

Frontiers in Public Health 10 frontiersin.org

valuable for capturing time-series data, may have inadvertently 
introduced data redundancy.

Additionally, potential multicollinearity among SLI items 
raises the question of whether further simplification of the index 
may enhance utility without compromising predictive accuracy. 
Moreover, the current SLI does not account for excessive sleep, 
which may reflect compensatory behaviors and could carry its 
own risks. Lastly, our SRI metric did not account for sleepiness 
during activity intervals, overlooking diurnal sleepiness and 
nocturnal wakefulness patterns.

Future studies should address these gaps by incorporating more 
granular assessments of sleep–wake dynamics, particularly in diverse 
shift work settings. Expanding the dataset and applying the SLI in 
varied contexts will be  crucial to validating and extending the 
framework’s applicability.

5 Conclusion

This study underscores the critical role of structured recovery 
management in mitigating sleep-related consequences of shift 
work among EHPs. By highlighting the predictive capacity of the 
SLI and exploring its associations with sleep quantity and 
regularity, we provide a practical framework for identifying high-
risk shifts and vulnerable individuals. Specifically, we  address 
three key gaps: the lack of objective validation of existing risk 
metrics, their limited calibration to European healthcare contexts, 
and the absence of SRI applications in shift workers. By bridging 
these gaps, our findings provide a stronger evidence base for 
integrating recovery-based indices into clinical scheduling and 
occupational health strategies. Integrating these findings into 
targeted intervention programs holds promise for reducing sleep 
disruption and enhancing both clinical performance and 
organizational health. Future research should explore the SLI’s 
integration into automated scheduling and fatigue monitoring 
systems, facilitating longitudinal analyses of shift adaptation and 
occupational well-being.
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