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Syndemics involving Human immunodeficiency virus (HIV) and other sexually
transmitted infections (STIs) remain a major public health challenge in sub-
Saharan Africa, and understanding their spatial and temporal dynamics is critical
for effective interventions. Using data from two consecutive, population-based
cross-sectional surveys conducted in 2014 and 2015 under the HIV Incidence
Provincial Surveillance System (HIPSS) in KwaZulu-Natal, South Africa, we applied
a Bayesian spatio-temporal framework grounded in latent variable modeling to
quantify and map the syndemic burden of HIV and other STIs. A confirmatory
factor analysis constructed a continuous latent syndemic score from four binary
indicators (HIV diagnosis, HIV testing, STI diagnosis, and STI symptoms), which
was modeled using Bayesian hierarchical spatial methods via Integrated Nested
Laplace Approximation (INLA), incorporating spatial random effects through the
Stochastic Partial Differential Equation (SPDE) approach and temporal effects
via a first-order random walk. Local spatial autocorrelation, assessed using
Local Moran’s I and Getis-Ord Gi∗ statistics, revealed consistent hotspots and
coldspots. Syndemic burden of HIV and other STIs was higher among younger
adults (20–49 years), women, individuals with incomplete secondary education,
those engaging in sexual risk behaviors or reporting forced sexual debut, and
those facing socioeconomic vulnerabilities such as food insecurity. Access
to healthcare and treatment for depression were also positively associated,
likely reflecting increased detection. Local Moran’s I identified 11 significant
clusters (three hotspots, eight coldspots), and Getis-Ord Gi∗ identified 32 (17
hotspots, 15 coldspots), with hotspot patterns persisting across both years,
indicating temporal stability. These findings highlight the utility of Bayesian latent
variable and spatio-temporal modeling in integrating multiple co-occurring
health conditions into a single spatial framework, providing actionable evidence
to support geographically targeted, multi-sectoral interventions that address
structural and behavioral drivers of co-epidemics in resource-limited settings.
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1 Introduction

The intersecting epidemics of Human immunodeficiency virus
(HIV) and other sexually transmitted infections (STIs) represent a
persistent and synergistic public health challenge in sub-Saharan
Africa, particularly in South Africa, which bears one of the highest
HIV burdens globally (1). Within the country, the province of
KwaZulu-Natal (KZN) remains at the epicenter of this crisis, with
sustained high HIV prevalence (2, 3).

These infections often do not occur in isolation; rather, they co-
occur and interact synergistically within structurally disadvantaged
populations. This clustering and mutual enhancement of
diseases, especially under the influence of social, economic, and
environmental stressors, is known as a syndemic (4, 5). The
syndemic framework emphasizes the interaction of epidemics
driven by common social determinants such as poverty, gender
inequality, limited healthcare access, and food insecurity (6, 7).
Despite its conceptual relevance, empirical applications of
syndemic theory, especially those incorporating spatial and
temporal dimensions, remain limited in resource-constrained,
high-prevalence settings like KZN.

Significant progress has been made in mapping the individual
epidemiology of HIV and other STIs (8, 9). However, most
studies examine these diseases in isolation, often using traditional
univariate approaches that overlook spatial correlation, temporal
trends, or shared structural drivers. Studies such as (9, 10) highlight
spatial heterogeneity in HIV and syphilis, respectively, but rarely
account for joint clustering or interdependence between diseases.
Even where repeated population-based data like the HIV Incidence
Provincial Surveillance System (HIPSS) exist (11), comprehensive
syndemic modeling remains underdeveloped.

Recent methodological advances in spatial epidemiology offer
promising opportunities to bridge these gaps. Latent variable
models, particularly within a structural equation modeling (SEM)
framework, can combine multiple observed indicators (e.g.,
HIV testing, STI symptoms) into a single continuous latent
construct that reflects the underlying disease burden more
holistically (12, 13). When integrated within a Bayesian hierarchical
framework, these models accommodate spatial dependency and
uncertainty (14, 15). In addition, the stochastic partial differential
equation (SPDE) approach enables fine-scale spatial modeling with
continuous surfaces and quantified uncertainty (16).

Despite these methodological innovations, few studies have
integrated latent variable modeling with spatial and temporal
analyses into a unified framework. Although the utility of

Abbreviations: HIV, human immunodeficiency virus; KZN, KwaZulu

Natal; HIPSS, HIV incidence provincial surveillance system; STIs, sexually

transmitted infections; SPDE, stochastic partial differential equation; INLA,

integrated nested laplace approximation; CI, credible/confidence interval;

CFA, confirmatory factor analysis; SEM, structural equation modeling; DLWS,

diagonally weighted least squares; CFI, comparative fix index; RMSEA, root

mean square error of approximation; SRMR, standardized mean square

residual; GMRF, Gaussian Markov random field; LISA, local indicators of

spatial association; CPO, conditional predictive ordinate; PIT, probability

integral transform; KLD, Kullback-Leibler divergence; SD, standard deviation;

MCMC, Markov Chain Monte Carlo.

spatial modeling for understanding HIV epidemics has been
well demonstrated (17), these studies did not employ latent
constructs or Bayesian spatio-temporal models to capture
syndemic interactions.

This study addresses these critical gaps by applying a Bayesian
spatio-temporal structural equation modeling framework to jointly
model HIV and STI syndemics in KwaZulu-Natal. Specifically,
we construct a latent Syndemic Score through confirmatory factor
analysis and model it using spatially and temporally structured
random effects via SPDE and random walk priors. Furthermore,
we identify syndemic hotspots using Local Moran’s I and Getis-Ord
Gi∗ statistics, and explore associations with a range of demographic,
behavioral, and structural covariates.

By uniting latent variable theory with advanced Bayesian
spatio-temporal techniques, this study contributes both to
methodological innovation and practical relevance. It models the
syndemic burden not merely as a statistical construct but as a
meaningful, spatially and temporally dynamic phenomenon. The
resulting maps and insights provide an evidence base for designing
targeted, multi-sectoral health interventions in resource-limited
settings like KZN.

2 Materials and methods

2.1 Sources of data and study population

This study utilizes secondary data derived from two successive
population-based cross-sectional surveys conducted as part of the
HIV Incidence Provincial Surveillance System (HIPSS). HIPSS was
a comprehensive surveillance program established to track trends
in HIV prevalence and incidence within KwaZulu-Natal, South
Africa. The first wave of data collection took place from 11 June
2014 to 18 June 2015, followed by a second round from 8 July 2015
to 7 June 2016. Both surveys were implemented in Vulindlela, a
rural community, and Greater Edendale, a peri-urban setting, both
located in uMgungundlovu District.

To achieve a representative sample, HIPSS employed a
multistage probability sampling framework. Of the 600 available
enumeration areas (EAs), 591 containing at least 50 households
qualified. A random sample of 221 EAs was selected for the 2014
round and 203 for the 2015 round. Households within these areas
were systematically chosen, and from each, one eligible individual
was randomly selected upon obtaining written informed consent.
GPS coordinates were recorded for each sampled household to
facilitate geospatial analysis and reduce potential selection bias.

Data integrity was upheld through rigorous quality assurance
protocols. Daily monitoring occurred during the initial month
of fieldwork, followed by monthly audits for the next 6 months
and quarterly reviews thereafter. Field operations were managed
using the Mobenzi Researcher system (Durban, South Africa),
which enabled real-time tracking of data collection, protocol
adherence, and data accuracy. Built-in validation checks flagged
inconsistencies promptly for correction. The dataset includes
laboratory-confirmed HIV test outcomes from blood samples,
further strengthening its epidemiological robustness. All records
underwent central processing with thorough quality control and
completeness checks.

Frontiers in Public Health 02 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1683985
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Chireshe et al. 10.3389/fpubh.2025.1683985

A total of 20,048 individuals aged 15–49 years participated
in both survey waves, 9,812 in 2014 (6,265 women and 3,547
men) and 10,236 in 2015 (6,431 women and 3,805 men). Several
variables had missing data, ranging from negligible (<1% for
MainIncome, MealCutsYear, MealSkipYear, RunOutMoneyYear,
AccessedHealthCare) to moderate (STISymptoms, 7%;
ForcedFirstSex, 14%). To manage incomplete data, multiple
imputation using the mice package in R was carried out, with
appropriate models applied for categorical and continuous
variables. All participants were retained for inclusion in the final
analyses. Complete case analysis was deemed inappropriate as it
would have reduced the sample, potentially introducing severe
bias. Although some degree of bias may be unavoidable, the
strong sampling design and careful handling of missing data
through imputation enhance the reliability and generalisability of
the findings.

The decision to concentrate on individuals aged 15–49 years
is informed by both public health priorities and international
reporting conventions. This demographic represents the core
of the sexually active and economically productive population,
who are disproportionately affected by HIV and other STIs.
Furthermore, this age range is consistent with national HIV
surveillance protocols and global monitoring frameworks such as
those established by UNAIDS. As a result, the findings are directly
comparable to broader epidemiological data and can effectively
inform targeted interventions in high-burden areas like KwaZulu-
Natal.

2.2 Syndemic construct and study variables

In line with the syndemic theory framework, the co-
occurrence and mutual reinforcement of HIV and other STIs were
conceptualized as a single latent construct. This latent syndemic
construct was derived from four binary observed indicators: HIV
status, HIV testing history, STI diagnosis, and self-reported STI
symptoms. All indicators were standardized prior to analysis.

To quantify the latent syndemic burden, Confirmatory Factor
Analysis (CFA) was conducted using the lavaan package in R. The
Diagonally Weighted Least Squares (DWLS) estimator, appropriate
for categorical data, was employed to ensure robust parameter
estimation. Model fit was evaluated using conventional thresholds:
a Comparative Fit Index (CFI) above 0.95, a Root Mean Square
Error of Approximation (RMSEA) below 0.06, and a Standardized
Root Mean Square Residual (SRMR) below 0.08 were considered
indicative of good fit.

All categorical covariates were converted into factor variables,
while binary variables were recoded to reflect binary responses
as 1 (Yes) and 0 (No). The covariates considered in the analysis
spanned several domains. Demographic variables included age
group, gender, marital status, education level, and primary source
of income. Behavioral variables encompassed alcohol use, sexual
initiation, and number of sexual partners. Structural variables
captured indicators of socioeconomic vulnerability and healthcare
access, including food insecurity (measured by meal skipping, meal
cutting, and running out of money), forced first sex, migration
status (away from home), and level of community attachment.

Additionally, a binary variable was included to capture mental
health service utilization, specifically treatment for depression.

Individual-level latent syndemic scores were subsequently
extracted using the lavPredict() function and served as the primary
outcome variable in subsequent modeling. These scores were
then analyzed within a Bayesian hierarchical spatio-temporal
framework, allowing for the investigation of their associations with
sociodemographic, behavioral, and structural covariates, as well as
their geographic and temporal distribution across the study region.
This approach enabled the identification of syndemic burden
hotspots and temporal trends in KwaZulu-Natal.

The extracted syndemic scores were summarized using means,
standard deviations, and quantiles. Their distributional properties
were assessed using histograms, density plots, and skewness and
kurtosis statistics.

2.3 Statistical analysis

The analytical strategy focused on modeling the latent
syndemic score using a Bayesian hierarchical framework to
assess both its spatial distribution and temporal dynamics.
The continuous syndemic score, derived from confirmatory
factor analysis, served as the primary outcome. To account
for geographic and temporal correlation, we employed the
Integrated Nested Laplace Approximation (INLA) approach
(18), incorporating all individual- and household-level covariates
as fixed effects. Individual survey weights (weight_individual)
were applied in the INLA model to account for the complex
survey design, including differential probabilities of selection at
the cluster, household, and individual levels, as well as non-
response adjustments. Incorporating these weights ensures that the
estimates are representative of the target population and enhances
their generalisability.

The spatial component was modeled using the Stochastic
Partial Differential Equation (SPDE) method, which approximates
a Gaussian random field as a Gaussian Markov random field,
allowing continuous spatial modeling over the study region (16).
Longitude and latitude coordinates for each observation were used
to construct a two-dimensional spatial mesh, with spatial effects
estimated directly from these point-level locations rather than from
spatial polygons or area-level summaries. To further explore local
geographic patterns, Local Indicators of Spatial Association (LISA)
and Getis-Ord Gi∗ statistics were computed to identify significant
clustering and hotspot areas.

Enumeration Areas (EAs), defined by Statistics South Africa
as the smallest census-based geographic units used for household
enumeration (typically encompassing 50–150 households), served
as the primary sampling units in the survey design and as
the basis for spatial clustering in the analysis. In the modeling
framework, EA-level information was incorporated via an EA-
by-year random effect to capture unstructured spatio-temporal
heterogeneity. Temporal correlation was explicitly modeled as a
first-order random walk over survey years. This combined strategy
allowed us to exploit the fine-scale information from household
coordinates, while ensuring that residual variation at the EA and
EA-by-year levels was appropriately accounted for.
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Temporality was modeled explicitly by including a first-order
random walk (RW1) prior on survey year in the INLA framework.
This allows consecutive years to be correlated, capturing smooth
temporal evolution of the latent syndemic burden. The RW1
prior assumes that each year’s effect depends on the previous year
with Gaussian-distributed differences, while being constrained to
sum to zero for identifiability. This specification enabled us to
quantify deviations in syndemic burden across survey years while
accounting for residual space–time interaction.

2.3.1 Prior specification and model comparison
We fitted two versions of the Bayesian spatio-temporal

syndemic model that differed in their prior specifications. The
first model (Model 1) relied on the default priors in INLA: fixed
effects were assigned vague Gaussian priors (mean 0, precision
0.001), while variance parameters for temporal, spatial, and
interaction components followed vague Gamma priors (shape 1,
rate 0.00005). The second model (Model 2) employed explicit
penalized complexity (PC) priors, while still using vague Gaussian
priors for fixed effects. For the temporal component, we specified a
random walk of order 1 (RW1) with a PC prior on its precision
[prec ∼ PC.prec(1, 0.01)], which implies a 1% probability that
the standard deviation of the temporal effect exceeds 1. The
space–time interaction, modeled as an independent and identically
distributed (IID) random effect, was also assigned a PC prior on
its precision with the same parameterization. The spatial field was
represented through the SPDE approach, with PC priors jointly
placed on the range (to avoid unrealistically short correlation
distances) and on the marginal precision. PC priors were chosen
because they are weakly informative and penalize deviation from
simpler base models (e.g., no spatial or temporal structure), thereby
reducing the risk of overfitting while retaining interpretability.
Comparing the default-prior model with the explicit-PC-prior
model allowed us to assess the robustness of our findings to
alternative prior assumptions.

2.3.2 Latent variable structural equation model
(measurement model)

To quantify the latent burden of HIV and STIs, a confirmatory
factor analysis (CFA) was used to define a latent syndemic construct
based on four observed binary indicators. This measurement model
allows multiple correlated outcomes to be represented by a single
underlying factor (19, 20) as expressed in Equation 1:

Syndemic = λ1 · HIVtested + λ2 · HIVstatus + λ3 · STIsSymptoms

+λ4 · STIsdiagnosed + ε. (1)

The CFA model for each individual i and indicator j is given by
Equation 2:

yij = λjηi + εij, εij ∼ N
(
0, σ 2

j
)

, (2)

Or in matrix form as in Equation 3:

yi = �ηi + εi, εi ∼ N(0, �), (3)

where yi is the observed vector of outcomes for individual i, �

is the loading matrix, ηi is the individual latent score, and � is the
covariance of residuals.

2.3.3 Structural model (regression on covariates)
The syndemic scores were regressed on a set of socio-

demographic, behavioral, and spatial-temporal covariates using a
Bayesian hierarchical framework. The structural equation is given
in Equation 4:

yi = β0 +
K∑

k=1

βkXik + ftemporal (ti) + fspatial (si) + fs−t (si, ti) + εi,

(4)

where ftemporal, fspatial, and fs−t represent random effects capturing
temporal trend, spatial structure, and space-time interaction,
respectively. This approach captures latent structure while
accounting for spatial autocorrelation and temporal dynamics (21,
22).

The temporal effect was modeled as Equation 5:

fyear (t) − fyear (t − 1) = εt, εt ∼ N(0, −1
tme), (5)

where time is the precision for the temporal effect.
The spatial effect was specified using the stochastic partial

differential equation (SPDE) method (Lindgren et al., 2011 ) shown
in Equation 6:

(
κ2 − 


) α
2 = W (s) , (6)

where W (s) is the spatial white noise, 
 is the Laplacian operator, κ
is the spatial scale parameter related to spatial range r and α defines
Matérn covariance smoothness.

The spatial range parameter is linked to the scale κ as expressed
in Equation 7:

r =
√

8
κ

. (7)

The SPDE approach implies a Matérn covariance structure
given in Equation 8:

Cov
(
f (si) , f

(
sj
)) = σ 2 · 1

2ν−1
 (ν)

(
κ ‖ si − sj ‖

)ν

ν(
κ ‖ si − sj ‖

)
, (8)

where ν is the modified Bessel function and ν

controls smoothness.

2.3.4 Likelihood specification
Assuming Gaussian outcomes, the likelihood function for the

i-th observation is given in Equation 9:

L
(
yi|θ

) = 1√
2πσ 2

exp
(
− 1

2σ 2

[
yi − μi

]2
)

, (9)

where μi = Xi
Tβ+fspatial (si) + ftemporal (ti) + fs−t (si, ti) , (10)

and θ = {
β , fspatial (si) , ftemporal (ti) , fs−t (si, ti) , σ 2} . (11)
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Equation 10 explicitly defines the structure of the linear
predictor, while Equation 11 lists all parameters for which the
likelihood in Equation 9 is conditioned.

Assuming conditional independence, the full likelihood is given
by Equation 12:

L
(
y|θ) =

n∏
i=1

[
1√

2πσ 2
exp

(
− 1

2σ 2

[
yi − μi

]2
)]

. (12)

The corresponding log-likelihood is expressed in Equation 13:

log L
(
y|θ) = −n

2
log 2πσ 2 − 1

2σ 2

n∑
i=1

(
yi − μi

)2 (13)

2.3.5 Bayesian inference and posterior
distribution

Following Bayes’ theorem, the joint posterior distribution is
proportional to the product of the likelihood and the priors (12):

p
(
θ |y) ∝ L

(
y|θ) · p (θ)

2.3.6 Marginal posterior and predictive
distributions

The marginal posterior of a parameter θj is shown in
Equation 14:

p
(
θj|y

) =
∫

p
(
θ |y)dθ−j, (14)

where θ is the full vector of all parameters, θ−j are all parameters
except θj and y are the observed indicators.

The posterior predictive distribution for a future observation
yrep

i is given as Equation 15:

p
(
yrep

i|y
) =

∫
p
(
yrep

i|θ
) ·p (

θ |y) dθ, (15)

For Gaussian likelihoods:

yrep
i|θ ∼ N

(
μi, σ 2) ,

The posterior predictive distribution is given as Equation 16:

p
(
yrep

i|y
) =

∫
N

(
yrep

i|μi, σ 2) ·p (
θ |y) dθ. (16)

2.4 Model diagnostics

To ensure the validity and reliability of the fitted Bayesian
spatio-temporal structural equation model, a comprehensive set
of model diagnostics was conducted. Model fit was assessed using
the Deviance Information Criterion (DIC) and the Watanabe-
Akaike Information Criterion (WAIC), both of which balance
model complexity and goodness of fit. Conditional Predictive
Ordinate (CPO) and Probability Integral Transform (PIT) values
were computed to assess model predictive performance and
calibration. A histogram of PIT values that approximates a uniform

distribution suggests good model calibration. Additionally, the
absence of extreme outliers in the log(CPO) plots further supports
satisfactory predictive adequacy. Convergence and precision of
the parameter estimates were examined by comparing posterior
means and modes, and by inspecting Kullback–Leibler divergence
(KLD) values. KLD values near zero indicate stable posterior
distributions. Furthermore, posterior density plots of the fixed
effects were visually inspected to confirm unimodality and
smoothness, providing additional support for convergence. Lastly,
hyperparameters such as the spatial range, standard deviation,
and precision terms were examined to evaluate the contribution
and stability of the random effects components. All diagnostic
procedures were conducted in R using the INLA package and
relevant spatial libraries.

2.5 Software and implementation

All statistical and spatial analyses were implemented in R
(version 4.5.1) using the R-INLA package for Bayesian inference.
Confirmatory factor analysis was conducted using the lavaan
package. Spatial preprocessing was facilitated by sf, spdep, and
rgeos. The spatial mesh for the SPDE model was constructed
using inla.mesh.2d(), while the stacking of covariates, spatial,
and temporal structures was done using inla.stack(). The INLA
framework was chosen over traditional MCMC methods due to its
computational efficiency and accurate approximation of marginal
posteriors, particularly in complex latent Gaussian models (18).

3 Empirical results

3.1 Descriptive statistics

The distribution of the syndemic scores, derived from the
latent variable model incorporating HIV and other STI indicators,
revealed moderate variability across individuals. Scores ranged
from −0.481 to 0.630, with a mean of −0.009 (SD = 0.248),
a median of −0.060, and an interquartile range of 0.270. Most
participants were clustered near the average, while a smaller subset
experienced considerably higher co-occurring burdens. Negative
values represent below-average syndemic burden, whereas positive
values indicate above-average burden, with larger absolute values
reflecting greater deviation from the population mean. The
distribution was approximately symmetric with slight negative
skew (skewness = −0.388, kurtosis = −0.243), and visual
inspection of histograms and density plots confirmed that it
was sufficiently close to normal to justify reporting means and
standard deviations.

Table 1 presents a descriptive summary of the latent syndemic
score stratified by key socio-demographic, behavioral, and
structural covariates among 20,048 individuals residing in
Vulindlela and Greater Edendale areas of uMgungundlovu
Municipality. The mean syndemic scores varied considerably
across age groups, gender, education levels, and behavioral
characteristics.

Higher mean syndemic scores were observed among
individuals aged 30–39 years, those with primary education,
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TABLE 1 Descriptive summary statistics of syndemic score of HIV and
other STIs by each covariate among individuals in Vulindela and Greater
Edendale areas in uMgungundlovu municipality.

Covariate Count =
20,048

Mean SD

Age group

15–19 3,567 −0.168 0.228

20–24 4,236 −0.047 0.222

25–29 3,494 0.028 0.239

30–34 2,806 0.080 0.230

35–39 2,273 0.077 0.234

40–44 1,931 0.067 0.237

45–49 1,741 −0.005 0.251

Gender

Female 12,606 0.030 0.238

Male 7,442 −0.075 0.252

Highest education

Complete secondary 7,988 −0.001 0.233

Incomplete secondary 9,153 −0.009 0.260

No schooling/creche/pre-
primary

521 −0.165 0.282

Primary (grade 1–7) 1,157 0.007 0.263

Tertiary (diploma/degree) 1,229 −0.010 0.208

Main income

No income 1,375 −0.091 0.288

Other non-farming income 1,296 0.008 0.239

Pension or grants 5,892 0.022 0.239

Remittance 300 0.001 0.241

Salary and/or wage 11,185 −0.017 0.246

Marital status

Married 2,960 0.056 0.214

Single 17,088 −0.020 0.252

Forced first sex

No 19,472 −0.011 0.248

Yes 576 0.045 0.258

Sex ever

No 2,846 −0.230 0.224

Yes 17,202 0.027 0.233

Away from home

No 18,167 −0.009 0.249

Yes 1,881 −0.008 0.246

Number of sexual partners

1 15,487 −0.021 0.250

2 2,441 0.021 0.229

3+ 2,120 0.042 0.246

(Continued)

TABLE 1 (Continued)

Covariate Count =
20,048

Mean SD

Alcohol consumption

No 15,078 −0.014 0.246

Yes 4,970 0.005 0.255

Meal cuts

No 14,073 −0.026 0.252

Yes 5,975 0.032 0.235

Length in community

Always 13,747 −0.033 0.253

Less than 1 year 623 0.029 0.242

More than 1 year 5,678 0.043 0.229

Meal skip

No 16,692 −0.017 0.250

Yes 3,356 0.030 0.238

Run out of money

No 12,964 −0.027 0.253

Yes 7,084 0.023 0.237

Depression treatment

No 19,439 −0.011 0.249

Yes 609 0.036 0.231

Accessed health care

No 9,507 −0.042 0.251

Yes 10,541 0.021 0.242

and individuals who reported sexual activity, multiple sexual
partners, or experiences of food insecurity (meal skipping or
cutting meals). Females, married individuals, and those who had
accessed healthcare services or received treatment for depression
also exhibited higher mean scores, potentially reflecting greater
detection or underlying vulnerability.

Conversely, adolescents (15–19 years), those with no sexual
history, and individuals with no schooling or no reported income
showed the lowest mean syndemic scores. Notably, participants
reporting three or more sexual partners and those experiencing
food insecurity had elevated scores, suggesting a compounding
burden from both behavioral and structural vulnerabilities.

These descriptive patterns provide initial insights into
the distribution of syndemic burden and inform the
selection of covariates for further multivariable spatial and
spatio-temporal modeling.

3.2 Spatial clustering of syndemic burden

To examine the spatial clustering of the syndemic burden across
enumeration areas (EAs), we employed two complementary local
spatial statistics: Local Moran’s I (LISA) and Getis-Ord Gi∗. These
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methods identify statistically significant local patterns of spatial
association, revealing areas with unusually high (hotspots) or low
(coldspots) syndemic scores relative to their neighbors.

Figure 1 displays the spatial distribution of statistically
significant clusters based on Local Moran’s I (LISA) method.
The results from LISA identified 11 significant clusters, including
three high–high clusters (hotspots) and eight low–low clusters
(coldspots).

The results from the Getis-Ord Gi∗ analysis are displayed
in Figure 2. Compared to LISA findings, the Getis-Ord Gi∗

statistic detected 32 significant clusters, comprising 17 hotspots and
15 coldspots.

Clusters identified by both methods indicate that areas with
elevated syndemic burden are surrounded by similarly high-burden
areas, while low-burden clusters reflect spatially contiguous areas of
lower syndemic scores.

Hotspots were predominantly concentrated in and around
Edendale, indicating a localized area of entrenched syndemic
vulnerability. Coldspots, in contrast, were more frequently
observed in peripheral and outlying areas to the northwest, west,
and southwest of the study region, with some also adjacent to
Edendale. These patterns highlight the geographically clustered
nature of syndemic burden, suggesting priority zones for targeted
public health interventions.

Table 2 presents a summary of the number of significant
clusters identified per year using both LISA and Getis-Ord Gi∗

statistics.
The variation in the number of clusters detected by LISA and

Gi∗ highlights their complementary perspectives: LISA captures
local spatial autocorrelation, while Gi∗ emphasizes the intensity of
clustering. Using both approaches strengthens confidence in the
observed spatial patterns.

3.3 Spatio-temporal interaction effects

The temporal component of the model, fitted with a RW1
prior, revealed meaningful year-to-year differences in syndemic
burden. Relative to the overall mean effect, the posterior mean
for 2014 was slightly negative (mean = −0.016, 95% CrI: −0.021
to −0.011), while 2015 showed a positive deviation (mean
= 0.016, 95% CrI: 0.011 to 0.021). This pattern indicates a
modest but credible increase in the underlying syndemic burden
between 2014 and 2015. The temporal effect was estimated
independently of the spatio-temporal interaction, reinforcing that
both spatial clustering and year-to-year changes contributed to the
observed heterogeneity.

The spatio-temporal interaction component of the Bayesian
hierarchical model revealed significant localized changes in
the syndemic burden between 2014 and 2015. As shown in
Figure 3, areas with increasing interaction effects were primarily
concentrated in the eastern and central parts of the study
region. These areas exhibited growing syndemic clustering over
time, potentially signaling intensifying co-epidemics of HIV and
STIs. Conversely, there are regions where interaction effects
decreased, suggesting a possible attenuation of syndemic burden
or improved health interventions. Areas with declining interaction

effects were observed mainly in parts of the northwestern and
southwestern regions.

To further explore annual dynamics, Figure 4 presents maps of
spatio-temporal interaction effects separately for 2014 and 2015.
In 2014, hotspots of syndemic interactions were more scattered,
with pronounced clustering in the northwest. By 2015, these
clusters shifted and intensified, particularly in peri-urban areas,
as indicated by the darker red zones. Meanwhile, regions that
transitioned to blue shades reflect localized reductions in syndemic
interaction effects.

Together, these spatial patterns suggest that the syndemic
burden is not static but evolves unevenly across both space
and time, underlining the importance of targeted, place-based
interventions. The shifting clusters also point to underlying social
and structural drivers that may have intensified or diminished over
the study period.

Temporal dynamics further support this interpretation. In
2014, coldspots were more prominent, while 2015 exhibited an
increase in the number and intensity of hotspots, indicating a
temporal shift in the spatial distribution of syndemic burden.
This year-to-year variation underscores the need to account for
temporal change when identifying priority areas for public health
interventions. The observed spatio-temporal heterogeneity also
reinforces the value of including space–time interaction terms in
the Bayesian model to capture evolving geographic vulnerability.

3.4 Syndemic model results

Table 3 presents the posterior estimates and corresponding 95%
credible intervals for covariates associated with syndemic burden,
derived from the Bayesian spatio-temporal model. These results
reflect the relative contribution of individual- and household-level
factors after accounting for spatial structure, temporal trends, and
space-time interactions. Covariates with credible intervals that do
not cross zero are considered statistically significant contributors
to variation in the latent syndemic score.

Several sociodemographic and behavioral factors were
significantly associated with the syndemic score. Compared to
individuals aged 15–19 years, those aged 20–24 (β = 0.059; 95%
CI: 0.048, 0.069), 25–29 (β = 0.117; 95% CI: 0.106, 0.129), 30–34
(β = 0.161; 95% CI: 0.149, 0.173), 35–39 (β = 0.166; 95% CI:
0.153, 0.179), 40–44 (β = 0.155; 95% CI: 0.141, 0.168), and 45–49
(β = 0.094; 95% CI: 0.080, 0.109) showed significantly higher
syndemic burden, indicating increasing vulnerability with age.
Males exhibited lower syndemic scores than females (β = −0.094;
95% CI: −0.101, −0.088).

Education level was associated with syndemic burden.
Participants with incomplete secondary education had significantly
higher scores (β = 0.013; 95% CI: 0.006, 0.019) compared to
those who completed secondary schooling, whereas those with
no schooling or only pre-primary education had lower scores
(β = −0.091; 95% CI: −0.111, −0.071), possibly reflecting
underdiagnosis or limited access to health services. Regarding
income, reliance on remittances (β = 0.068; 95% CI: 0.041,
0.095), pensions or grants (β = 0.065; 95% CI: 0.052, 0.078), other
informal income (β = 0.064; 95% CI: 0.047, 0.080), or salary
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FIGURE 1

Spatial clustering of syndemic burden of HIV and other STIs in Vulindela and Greater Edendale area based on local Moran’s I (https://drive.google.
com/file/d/1rziEUI2RP2-p71QZiWzi794RQuKRlbsf/view?usp=sharing).

FIGURE 2

Spatial clustering of syndemic burden of HIV and other STIs in Vulindela and Greater Edendale area based on Getis-Ord Gi* (https://drive.google.
com/file/d/1UKp0sxkCW4TLc9BOSalkOM2S1DjsLyoK/view?usp=sharing).
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TABLE 2 Summary table of the number of significant clusters per year for both Local Moran’s I (LISA) and Getis-Ord Gi∗ analyses.

Year LISA hotspots LISA
coldspots

Total (LISA) Getis-Ord Gi∗
hotspots

Getis-Ord Gi∗
coldspots

Total (Getis-Ord
Gi∗)

2014 1 7 8 10 11 21

2015 2 1 3 7 4 11

Total 3 8 11 17 15 32

FIGURE 3

Spatio-temporal change in interaction effects from 2014 to 2015 (https://drive.google.com/file/d/1oB0sedSdUEkvutXqsVx5j5upX1q05ZGq/view?
usp=sharing).

and/or wage (β = 0.041; 95% CI: 0.029, 0.095) was associated with
elevated syndemic scores relative to those reporting no income.

Beyond socioeconomic factors, behavioral and psychosocial
indicators also showed strong associations. Having ever had sex
(β = 0.152; 95% CI: 0.142, 0.163) and a higher number of sexual
partners (β = 0.028; 95% CI: 0.023, 0.033) were linked to greater
syndemic burden. Experiencing forced sex at sexual debut (β =
0.037; 95% CI: 0.019, 0.054) and shorter duration of residence in
the community (β = 0.026; 95% CI: 0.009, 0.044 for <1 year)
were additional risk factors. Access to healthcare (β = 0.031; 95%
CI: 0.025, 0.038) and receiving treatment for depression (β =
0.031; 95% CI: 0.013, 0.049) were also positively associated with
syndemic scores.

Caution is warranted in interpreting some predictors. Although
access to healthcare and depression treatment were significantly
associated with higher syndemic scores, these relationships do not
necessarily imply causation. Rather, they may reflect increased
engagement with the health system or prior diagnosis, serving as

proxies for individuals already experiencing syndemic conditions.
Distinguishing true predictors from proxies or outcomes is essential
in syndemic analyses to avoid misleading conclusions.

3.5 Model diagnostics and performance

The following section presents diagnostic evaluations to
confirm the credibility of the Bayesian spatio-temporal model. To
assess model adequacy and convergence, several diagnostic metrics
were evaluated.

3.5.1 Model selection and fit
Table 4 summarizes the model fit statistics for the two candidate

models. Model 2, which incorporated explicit penalized complexity
(PC) priors, yielded marginally lower DIC and WAIC values
compared to Model 1, indicating slightly better fit. Given that the
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FIGURE 4

Spatio-temporal interaction effects by year (https://drive.google.com/file/d/1gAyM1jD0Buc8SZMO_nyHC9KOAFJaTNC6/view?usp=sharing).

differences were modest, this comparison provides reassurance that
the findings are not sensitive to prior specification.

The substantive results presented in the paper are therefore
based on Model 2, which we selected as the model of best
fit. Importantly, posterior estimates of fixed effects, temporal
dynamics, and spatial patterns were highly consistent across both
models, indicating that the substantive conclusions are robust to
prior and hyperparameter specification.

3.5.2 Predictive accuracy
CPO and PIT values were computed to assess model predictive

performance and calibration. Figure 5 shows the PIT histogram.
The histogram of PIT values approximated a uniform

distribution, suggesting good model calibration. Additionally, no
extreme outliers were identified in log(CPO) plots (Figure 6),
supporting satisfactory predictive adequacy.

3.5.3 Convergence diagnostics
The fixed effects exhibited excellent convergence, as assessed

by the absolute differences between posterior means and modes,
all of which were less than 5 × 10−3. The posterior density plots
were sharply peaked and unimodal (Figure 7), further supporting
stability of estimation. Moreover, the Kullback–Leibler divergence
(KLD) values for all fixed effects were zero, indicating that the
posterior marginals were very well approximated by Gaussian
distributions. Together, these diagnostics suggest robust and
reliable parameter estimation.

Figure 7 shows the density plots for the Bayesian spatio-
temporal model, used to assess parameter convergence and
distribution of posterior samples.

The density plots show smooth, unimodal distributions, further
confirming stable posterior estimation.

3.5.4 Hyperparameter assessment
The model’s hyperparameters indicated that the residual

variance was modest (σ ² ≈ 0.044), supporting good overall model
fit. Temporal variability was small (σ ² ≈ 0.0019), suggesting that
year-to-year trends were relatively smooth and largely captured
by the fixed effects. The estimated spatial range was broad
(median ≈ 1.686 km; 95% CrI: 0.022–261 km) but highly uncertain,
implying weak, though possible, evidence of structured spatial
autocorrelation. The posterior standard deviation for the spatial
field was small (≈ 0.035; 95% CrI: 0.011–0.077), indicating
limited but non-negligible residual clustering. Space–time random
effects had a comparable variance (σ ² ≈ 0.0014), suggesting that
localized spatio-temporal interactions contributed meaningfully
to unexplained variability. Overall, these results indicate that
while residual spatial and temporal effects were modest, space–
time interactions played a notable role in shaping the observed
syndemic patterns.

4 Discussion

This study advances our understanding of syndemic
interactions involving HIV and other STIs in KwaZulu-Natal
by applying a Bayesian spatio-temporal structural equation model
to repeated cross-sectional data. By constructing a latent syndemic
variable, we were able to capture co-occurring disease burdens
and identify distinct demographic, behavioral, psychosocial, and
structural predictors of heightened vulnerability. The analysis
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TABLE 3 Posterior estimates and 95% credible intervals for covariates
associated with syndemic burden of HIV and other STIs from the Bayesian
spatio-temporal model.

Covariate Estimate
(β)

95% CI
lower

95% CI
upper

Intercept −0.167 −0.179 −0.156

Age group (ref: 15–19)

20–24 0.059 0.048 0.069

25–29 0.117 0.106 0.129

30–34 0.161 0.149 0.173

35–39 0.166 0.153 0.179

40–44 0.155 0.141 0.168

45–49 0.094 0.080 0.109

Gender (ref: female)

Male −0.094 −0.101 −0.088

Highest education (ref: complete secondary)

Incomplete secondary 0.013 0.006 0.019

No schooling/creche/pre-
primary

−0.091 −0.111 −0.071

Primary (grade 1–7) −0.005 −0.018 0.009

Tertiary (diploma/degree) −0.010 −0.022 0.003

Main income (ref: no income)

Other non-farming income 0.064 0.047 0.080

Pension or grants 0.065 0.052 0.078

Remittance 0.068 0.041 0.095

Salary and/or wage 0.041 0.029 0.053

Marital status (ref: married)

Single 0.011 0.002 0.021

Forced first sex (ref: no)

Yes 0.037 0.019 0.054

Sex ever (ref: no)

Yes 0.152 0.142 0.163

Away from home (ref: no)

Yes 0.003 −0.007 0.014

Number of sexual partners (ref: 1)

2+ 0.028 0.023 0.033

Alcohol consumption (ref: no)

Yes 0.012 0.004 0.019

Meal cuts (ref: no)

Yes 0.013 0.003 0.023

Length in community (ref: always)

Less than 1 year 0.026 0.009 0.044

More than 1 year 0.017 0.009 0.024

Meal skip (ref: no)

Yes 0.009 −0.001 0.019

(Continued)

TABLE 3 (Continued)

Covariate Estimate
(β)

95% CI
lower

95% CI
upper

Run out of money (ref: no)

Yes 0.002 −0.007 0.011

Depression treatment (ref: no)

Yes 0.031 0.013 0.049

Accessed health care (ref: no)

Yes 0.031 0.025 0.038

Bold values indicate significant posterior effects.

TABLE 4 Model selection criteria summary for the two competing
models.

Model DIC WAIC

1 −4,976.66 −4,973.83

2 −4,987.63 −4,983.35

further revealed substantial spatial and temporal heterogeneity in
syndemic patterns, underscoring the importance of geographically
and temporally tailored public health strategies.

Age emerged as a key determinant of syndemic burden.
Individuals aged 35–39 years had the highest latent scores,
consistent with national data showing elevated HIV and TB
burdens in this group (3, 10). Gender differences were also notable:
female participants exhibited higher syndemic scores than males,
aligning with findings from (23) on structural gender disparities,
including hegemonic masculinity, male violence, and gendered
power inequities. These findings are also consistent with (24),
who reported significantly higher STI prevalence among females
compared to males in KwaZulu-Natal.

Educational attainment played a critical role. Incomplete
secondary education was significantly associated with higher
syndemic scores, reinforcing earlier studies that highlighted the
protective effect of higher education (25, 26). Interestingly,
participants with no formal education showed slightly lower
syndemic scores, possibly due to underreporting or limited
healthcare access, highlighting the need for improved outreach in
underrepresented populations.

Socioeconomic vulnerability also contributed to syndemic
burden. Participants relying on remittances or social grants
reported higher scores. These income types, while supporting
subsistence, may reflect broader structural inequities that facilitate
syndemic interactions.

Behavioral and psychosocial risk factors such as alcohol use,
early sexual debut, and multiple sexual partnerships were all
significantly associated with higher syndemic burden, consistent
with previous studies (27, 28).

Mobility indicators showed that individuals who had lived in
their communities for less than 1 year experienced significantly
greater syndemic burden. This supports findings, that linked
migration to disrupted healthcare continuity and heightened
disease risk (29–31).

Spatial analyses revealed marked clustering of syndemic
burden. Using Local Moran’s I, 27 significant spatial clusters were
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FIGURE 6

Log CPO values plot.

detected, comprising 13 hotspots (high–high) and 14 coldspots
(low–low). The Getis-Ord Gi∗ statistic identified 29 clusters,
including 17 hotspots and 12 coldspots. The consistency of these
patterns between 2014 and 2015 indicates temporal stability in
geographic disparities, consistent with findings from previous
studies (9, 32). Persistent hotspots were concentrated in and around
Edendale, reflecting entrenched syndemic vulnerability. Coldspots
were more frequently observed in peripheral areas to the northwest,
west, and southwest of the study region, with some also adjacent
to Edendale.

Spatio-temporal modeling further revealed that syndemic
clustering extended over distances of up to 1.686 km, suggesting
regional diffusion of risk likely shaped by social, infrastructural,
or healthcare access gradients. This finding is consistent with
previous research (33), demonstrating the spatial heterogeneity
and diffusion in HIV transmission patterns in KwaZulu-Natal,
influenced by mobility and geographic disparities in healthcare
access. Temporal dynamics were also evident: coldspots were more
numerous in 2014, while 2015 showed a slight increase in LISA
hotspots and a decrease in Gi∗ hotspots, highlighting shifts in
the spatial distribution of syndemic burden. These patterns align
with observations by (26) and (32), who found that the burden
of HIV and related infections is shaped by changing spatial and
temporal risk environments. Such shifts reinforce the importance
of dynamic, time-sensitive intervention strategies and support

the inclusion of space–time interaction terms in the modeling
framework, as emphasized in spatial epidemiological studies (16)
and (34).

Our findings align with and extend prior spatial epidemiology
research in KwaZulu-Natal. Modeling using Bayesian CAR
models mapped and showed overlapping HIV and STI clusters
in peri-urban Durban (35), while geoadditive INLA models
identified predictors of unsuppressed HIV viral loads (36). Our
latent syndemic framework moves beyond these approaches by
integrating multiple indicators into a composite index, capturing
the synergistic nature of overlapping syndemic of HIV and STIs.

The application of Bayesian latent variable models integrated
with spatio-temporal analysis provided a robust framework for
identifying persistent syndemic of HIV and STIs hotspots and
their drivers. The model diagnostics, including DIC (−4,987.63)
and WAIC (−4,983.35), supported good fit. The spatial field had
an estimated range of approximately 1.686 km, and the temporal
component captured year-to-year variation through a first-order
random walk. The low variance of space-time interaction effects (σ ²
≈ 0.0014) indicated that much of the spatio-temporal variability
was already accounted for by the structured components.

Altogether, this study demonstrates the power of combining
syndemic theory with modern spatial statistics to uncover
actionable insights. Persistent geographic hotspots and their social
and behavioral correlates help to inform integrated, multi-sectoral
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FIGURE 7

Density plots for significant syndemic score covariates for HIV and other STIs.

responses. These must go beyond disease-specific silos to address
the interlinked drivers of poor health in high-burden settings,
such as KwaZulu-Natal, ultimately advancing health equity and
the goals of syndemic-informed public health policy. From a
public health perspective, these findings highlight the importance
of geographically targeted interventions, such as prioritizing HIV
testing, treatment, and prevention services in identified hotspots.
They also underscore the need to strengthen education, gender
equity, and poverty alleviation initiatives as structural interventions
that can mitigate overlapping vulnerabilities. By linking spatial
epidemiological evidence with broader social policy, the study
provides a foundation for more efficient allocation of resources and
the design of tailored, community-centered programmes.

4.1 Strengths and limitations

In interpreting these findings, it is important to consider both
the strengths and limitations of the study. First, missing data
presented a challenge. While multiple imputation was applied

for variables with moderate levels of missingness, residual bias
due to imputation cannot be fully ruled out. The number of
indicators available for the latent construct was also limited,
reflecting constraints of the survey instrument. Although the
chosen indicators capture essential domains, the construct may not
fully represent the wider underlying phenomenon. The inclusion
of individual survey weights in the INLA model enhances the
representativeness of the estimates and improves generalisability
to the broader population, although some residual limitations
inherent to survey-based data may remain. Further, only a limited
number of survey waves were available, which restricted the
ability to examine longer-term trends. Nevertheless, the available
waves provided valuable insights into temporal patterns within the
study period.

Second, as with all Bayesian approaches, the modeling is
influenced by prior specification. Although we applied penalized
complexity (PC) priors, which are designed to be weakly
informative and to guard against overfitting, some degree of
subjectivity in prior selection remains inherent to Bayesian
inference. At the same time, the Bayesian framework offered
important strengths: it allowed explicit incorporation of spatial and
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temporal dependence, coherent quantification of uncertainty, and
estimation of latent constructs that would be difficult to address
under frequentist approaches.

Finally, while repeated cross-sectional data enabled robust
spatio-temporal inference, causal relationships cannot be
definitively established. Future longitudinal studies are needed to
confirm the observed associations and dynamics.

Despite these limitations, the study has notable strengths.
Integrating syndemic theory with advanced Bayesian spatio-
temporal structural equation modeling provided a novel
framework for capturing complex disease interactions across
space and time. The modeling strategy also enabled the
identification of persistent geographic hotspots and their
social and behavioral drivers. Together, these insights advance
understanding of overlapping epidemics and highlight priority
areas for intervention.

5 Conclusion

Taken together, despite these limitations, our findings
provide important insights into the syndemic dynamics of
HIV and other STIs in KwaZulu-Natal through the application
of a Bayesian spatio-temporal structural equation modeling
framework. By constructing a latent syndemic score from multiple
disease indicators and incorporating both spatial and temporal
components, we identified persistent high-burden hotspots, and a
range of individual and structural-level risk factors associated with
syndemic vulnerability.

The analysis revealed consistent spatial clustering of syndemic
burden across enumeration areas, with stable hotspots observed
over two consecutive years (2014 and 2015). This temporal stability
underscores the entrenched nature of overlapping epidemics
in specific geographic regions. Key covariates, such as age,
gender, education, income sources, sexual behaviors, experiences
of forced sex, depression treatment, food insecurity, mobility,
and healthcare access, were significantly associated with elevated
syndemic burden, reaffirming the interdependent nature of these
health and social risks.

Methodologically, the integration of latent variable
modeling with spatio-temporal analysis provides a robust
and nuanced framework for understanding and visualizing
complex disease interrelationships in high-burden settings.
The identification of persistent geographical hotspots offers
critical insight for the development of spatially targeted,
multi-sectoral interventions that address not only clinical
outcomes but also the social and structural determinants that
sustain syndemics.

These findings have substantial public health implications.
The presence of stable syndemic hotspots highlights the need
for geographically prioritized interventions in KwaZulu-
Natal. The associations with structural vulnerabilities,
such as food insecurity, mobility, and mental health,
point to the necessity of comprehensive strategies that
extend beyond biomedical care. Additionally, the elevated
burden among individuals aged 20–39 underscores
the urgency of youth-focused and gender-sensitive
prevention initiatives.

Future research should prioritize longitudinal tracking to
clarify causal mechanisms and evaluate the impact of integrated
health and social interventions in hotspot regions. As health
systems in resource-limited settings increasingly face the
complexity of syndemic interactions, the analytical approach
presented here offers a scalable tool for precision public health
planning and policy.
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