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Aging bridges worldwide face growing safety challenges due to extended service 
life and environmental stressors. However, most existing studies lack a systemic 
perspective and mainly rely on fragmented, expert-driven assessments. Such 
approaches fail to capture the interplay of risk factors. This gap in understanding 
the interactions and propagation of risks limits the development of effective safety 
strategies for bridge operation. To address this gap, this study aims to identify and 
structure key risk factors affecting bridge safety in operational contexts by adopting 
a data-driven hierarchical model. Utilizing 132 officially documented accident 
reports from national safety databases in China (2007–2024), text mining techniques 
are applied to extract lexical risk items, which are subsequently refined through 
expert workshops and association rule mining to capture factor relationships. The 
Decision-Making Trial and Evaluation Laboratory (DEMATEL) method, integrated 
with Adversarial Interpretive Structural Modeling (AISM), is applied to construct 
a multi-level causal hierarchy of safety risks. The findings reveal 19 distinct risk 
factors, structured into seven levels with 20 transmission pathways. Notably, 
insufficient informatization management and unqualified managerial competence 
are identified as foundational factors, while overweight vehicle passage, inadequate 
inspection and maintenance, and geological and meteorological hazards emerge 
as direct triggers of safety incidents. The constructed hierarchy demonstrates 
a clear propagation chain from latent management deficiencies to observable 
surface-level hazards. Theoretically, the study advances the understanding of 
risk interaction mechanisms by integrating quantitative data analysis with expert 
interpretation. Practically, it provides infrastructure safety managers with a structured 
roadmap for targeted interventions, emphasizing the importance of enhancing 
digital management systems, traffic load regulation, and emergency preparedness 
in bridge operation contexts.
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1 Introduction

The transportation system serves as a vital lifeline for national 
development and public welfare, with bridges constituting a 
critical component of the transportation network (1). However, as 
bridge infrastructure continues to advance and age, the safety 
risks associated with their operation have become increasingly 
significant. Globally, bridges face a range of challenges during 
operation and maintenance, including structural fatigue, 
functional degradation, insufficient load-bearing capacity, and a 
low level of digitalized management (2). China, possessing one of 
the largest bridge inventories in the world, is now witnessing a 
marked trend of aging in its in-service bridges. Over the past three 
decades, China has reported more than 300 incidents involving 
bridges in service, with up to 70% occurring during the 
operational phase (3). These events, including terrorist attacks, 
explosion threats, hazardous material transport accidents, 
overloading, and pier impacts, underscore the diverse hazards that 
can emerge after a bridge enters service. A recent commentary in 
Nature highlighted that the risks of bridge collapses during 
operation are real and expected to escalate, driven by climate 
change and the aging of bridge infrastructure (65). Such 
deterioration processes can exacerbate structural vulnerabilities, 
compelling engineers and policymakers to take decisive actions to 
ensure the safety of operational bridges. Ensuring safety 
throughout the operational lifespan has therefore become a global 
priority, as failures at this stage can lead to severe economic losses 
and far-reaching social consequences. With the global bridge 
inventory expanding rapidly, the urgency of addressing 
operational safety risks—particularly in China—has intensified. 
Risk assessment stands at the core of this endeavor, providing the 
foundation for preventive strategies that safeguard both 
infrastructure and public well-being.

Extensive research has been devoted to bridge safety 
management, with scholars examining risks from multiple 
dimensions including human factors, construction processes, and 
systemic interactions. Previous studies have highlighted that 
human error remains a critical contributor to bridge-related 
incidents, influencing decision-making, operational behaviors, 
and safety performance across different project stages (4, 5). At 
the same time, advances in modeling approaches—such as random 
Boolean networks, social network analysis, and other complex 
systems methods—have deepened understanding of the 
multifactorial coupling among human, equipment, management, 
and environmental risks, particularly during construction phases 
(6). While these findings have enriched the theoretical and 
methodological foundation for safety risk analysis, most attention 
to date has been directed toward the construction stage, leaving 
operational-phase risks comparatively underexplored despite their 
potentially greater consequences over the service life of bridges. 
Although safety risk assessment has been extensively studied in 
sectors such as coal mining (7), building construction (8, 73), 
subway construction (9) and metro system operations (10), the 
specific context of bridge operations remains significantly 
underrepresented in scholarly research. Moreover, the majority of 
existing studies have predominantly adopted knowledge-driven 
approaches—such as expert elicitation (9), structured 
questionnaires (11), case-based analysis (12), literature synthesis 

(13), and on-site investigations (14)—which, while valuable, often 
introduce subjectivity and lack consistency in factor identification. 
In contrast, data-driven methodologies that enable objective and 
scalable extraction of safety-related patterns from historical 
records have seen limited application in the bridge safety domain. 
Furthermore, although some recent studies have incorporated 
systems-thinking perspectives to analyze risk propagation (15–
17), the existing literature remains fragmented and seldom 
addresses the complex, hierarchical, and nonlinear interrelations 
among diverse safety risk factors in operational 
bridge environments.

To address these theoretical and practical gaps, this study aims 
to systematically identify and structure the key safety risk factors 
affecting bridge operation by leveraging data-driven and 
hierarchical modeling approaches. Although numerous risk 
elements have been mentioned across prior studies, a coherent, 
multi-level structure capturing their causal interdependencies 
remains largely underexplored—especially during the operational 
lifespan of bridges. This study focuses specifically on risk 
identification and propagation in the bridge operation phase, 
which is often overlooked compared to construction-phase 
analysis. Accordingly, three specific research objectives (ROs) 
are proposed:

RO1: To identify and distill the key safety risk factors associated 
with bridge operations from large-scale accident records.

RO2: To reveal the interrelationships among these risk factors and 
determine the most critical and recurrent risk patterns.

RO3: To establish a hierarchical risk framework and map the 
pathways through which risks propagate during bridge operations.

To address these objectives, the study draws on 132 officially 
documented accident cases involving bridge operations in China 
between 2007 and 2024. Key operational safety risk factors were 
identified and distilled through computational text mining and refined 
via expert validation (for RO1). Their interrelationships and recurrent 
patterns were uncovered using association rule analysis (for RO2). 
Finally, an integrated DEMATEL–AISM modeling approach was 
employed to construct a hierarchical risk framework and map the 
pathways through which risks propagate during bridge operations (for 
RO2 and RO3). This multi-phase analytical design combines large-scale 
empirical evidence with structured causal modeling, ensuring both the 
robustness of the results and the clarity of the systemic insights obtained.

Theoretically, this research advances the field by integrating data-
driven extraction techniques with hierarchical modeling to illuminate 
the multi-layered dynamics of operational bridge safety risks. It offers 
a novel lens to conceptualize risk propagation pathways and addresses 
prior gaps in fragmented or oversimplified risk identification 
frameworks. Practically, the findings inform infrastructure safety 
governance by providing a structured foundation for targeted 
interventions across different organizational levels—ranging from 
digital management system upgrades and inspection protocols to 
traffic control and emergency response mechanisms. The insights are 
particularly relevant for countries with aging bridge inventories and 
rapid urbanization, where operational risks are both complex 
and consequential.
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2 Literature review

2.1 Bridge safety risk management

Bibliometric analyses of recent publications on bridge safety risk 
management, evaluation of safety risk factors, and the application of 
DEMATEL-AISM/ISM methods are summarized in Figure 1. Among 
these, Figure 1a specifically illustrates the distribution of research 
topics in bridge safety risk management, showing that the majority of 
studies concentrate on the construction phase of bridges.

In the construction phase, the most frequently examined risk 
factors include environmental conditions, human errors, and natural 

disasters, while common methodological approaches involve 
structural health monitoring (SHM), bridge management systems 
(BMS), reliability assessment, and detailed case studies (1). These 
bibliometric findings align with earlier literature (18–20), which 
consistently reports that safety research during construction has 
received the bulk of scholarly attention. Representative examples 
include investigations into human error-induced risks in bridge 
construction (4), analyses of multi-factor coupling mechanisms in 
construction accidents (6), and studies linking worker behavioral 
traits to safety performance (5). Such works have contributed to a solid 
understanding of technical, human, and environmental risk 
interactions during construction, while advancing methodological 

FIGURE 1

Cluster view of knowledge domains. (a) Bridge safety risk management. (b) Identification and evaluation of safety risk factors. (c) DEMATEL-AISM/ISM 
method.
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innovations in safety assessment, such as reliability modeling, network 
analysis, and decision support frameworks.

In contrast, research on safety risk management during the 
operational phase of bridges remains comparatively limited, despite 
growing global concern over aging infrastructure, cumulative load 
effects, and climate change–induced hazards (1, 65). Existing 
operational-phase studies have largely focused on targeted technical 
interventions. For example, SHM systems have been applied to detect 
fatigue cracks, corrosion, and deformation in real time, supporting 
preventive maintenance (1, 21). BMS integrating inspection records, 
sensor data, and maintenance planning have been developed to 
optimize resource allocation and extend service life (19, 22). Accident 
case analyses have also been employed to identify recurring hazards 
in service, such as overloading, insufficient inspection frequency, and 
inadequate emergency preparedness (3, 23). Some works have begun 
to incorporate probabilistic risk models and resilience assessment 
frameworks to evaluate operational safety under extreme events, 
including earthquakes and floods (24, 25).

While these operational-phase studies have yielded valuable 
insights into specific risk control measures and monitoring 
technologies, their focus has generally remained on discrete aspects—
such as structural health, load management, or incident response—
rather than on the integrated management of complex, interacting risk 
factors across the operational lifecycle. Given the rapid expansion of 
bridge inventories worldwide, the aging of existing structures, and the 
intensifying impacts of climate change, advancing the understanding 
of safety risks in the operational phase is both urgent and globally 
relevant. Addressing this gap not only supports more resilient 
infrastructure systems in China but also contributes to the 
international body of knowledge on life-cycle safety management for 
critical transport assets.

2.2 Identification and evaluation methods 
of safety risk factors

Compared with the construction stage, systematic research on 
safety risk identification during the operational phase of bridges 
remains scarce. Existing studies in bridge safety risk identification and 
evaluation have relied on qualitative and expert-based assessments 
(2), typically incorporating elements of structural inspections and 
accident case analyses (23). While these approaches can provide rich 
domain-specific insights, they are limited in their ability to 
comprehensively capture complex and dynamic risk interactions in 
operational contexts.

To obtain a broader perspective on methodologies for safety risk 
identification and evaluation, a systematic review of relevant research 
was conducted. It is found that the identification and evaluation of 
engineering safety risk factors has evolved considerably over the past 
decades. Traditional risk factor identification methods were 
predominantly based on expert elicitation, structured questionnaires, 
and the analysis of historical accident reports (9, 26, 27). Such 
approaches, although rich in contextual understanding, often 
introduced subjectivity and inconsistency in the weighting of factors. 
In response, recent studies have introduced data-mining techniques, 
such as text mining (6), which provide a more objective basis for 
identifying influential parameters (28). The techniques help 
engineering operators to capture not only the common hazards (e.g., 

structural fatigue, overloading), but also the less conspicuous 
environmental and human factors that contribute to risk propagation 
(6, 29). However, the relevant implementation in bridge field is still 
rare. Apart from that, safety risk evaluation involves analyzing both 
the probability of hazardous events and their potential impacts (29). 
For instance, Xue et al. (73) investigated the safety risks of shield 
tunnel construction undercrossing rivers (STUR) by combining 
literature review, expert discussion, and a hybrid grey-DEMATEL-ISM 
approach, identifying 32 risks across four categories and elucidating 
their interrelations with potential impacts, which demonstrates the 
potential of integrated causal-hierarchical analysis frameworks for 
complex infrastructure projects.

Bibliometric clustering results in Figure 1b reveal that existing 
research on safety risk factor identification and evaluation is 
concentrated in several prominent thematic areas, including landslide 
(#0), railway engineering (#9, including bridges), new quantitative 
(#8), and integrated methods (#6). Recent relevant research on 
infrastructure project operations primarily focuses on identifying 
critical contributing safety risk factors in traffic management (66), 
subway operation (67), bridge construction (22), and coal mining (68) 
by developing tailored evaluation models and indicator frameworks.

In parallel with text mining and traditional statistical methods, 
recent studies in civil engineering have demonstrated the growing 
application of advanced machine learning (ML) and artificial 
intelligence (AI) models for safety risk identification and evaluation. 
For example, a cascaded deep learning framework has been developed 
for pavement crack detection and segmentation, enabling location-
aware feature extraction from large-scale infrastructure images (30). 
Similarly, a physics-informed neural network has been applied to 
predict stratified ground consolidation based on excess pore water 
pressure monitoring data, demonstrating how domain knowledge can 
be embedded into AI models for improved interpretability (31). In 
addition, ensemble learning methods such as stacking have been 
successfully introduced to predict the pullout capacity of small ground 
anchors, illustrating the potential of ML-based hybrid models in 
geotechnical safety prediction (32). These advances highlight that 
data-driven and ML-enhanced approaches can significantly improve 
the accuracy and scalability of risk identification. However, they are 
predominantly designed for component-level predictions (e.g., cracks, 
soil consolidation, anchors), whereas systemic and hierarchical 
propagation of safety risks in bridge operations remains 
insufficiently addressed.

Existing studies on safety risk identification and evaluation can 
broadly be  divided into three categories: (1) Knowledge-driven 
approaches. These include expert judgment, Delphi surveys, analytic 
hierarchy processes, and qualitative causal analysis [Qiao, 2021; (33)]. 
Their main strength lies in incorporating rich domain expertise and 
contextual understanding, which is valuable when empirical data are 
limited. However, they are susceptible to subjectivity and may lack 
reproducibility. (2) Data-driven approaches. With the availability of 
large datasets, techniques such as text mining, statistical modeling, and 
machine learning have been increasingly applied to identify risk factors 
and predict failure patterns (30, 31, 34). Their strength is objectivity, 
scalability, and the ability to capture hidden patterns across large 
samples. Nevertheless, such methods may overlook tacit knowledge 
and require substantial computational resources and data quality 
assurance. (3) Hybrid or integrated approaches. Methods such as 
DEMATEL–ISM, Bayesian networks, and fuzzy logic models combine 
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expert input with quantitative modeling to analyze complex causal 
relationships (2, 29). Their advantage is the ability to balance 
interpretability and analytical rigor, providing structured hierarchical 
frameworks and quantifiable causal pathways. The limitation is that 
model outcomes may still depend on the quality of expert input or 
parameter calibration. In summary, each approach has unique 
strengths: knowledge-driven methods emphasize expert insight, data-
driven methods enhance objectivity and generalizability, and hybrid 
methods enable structured causal modeling. Building upon these, the 
present study integrates text mining, association rule mining, and 
DEMATEL–AISM to leverage the advantages of each while mitigating 
their limitations, thereby offering a more robust and systemic 
framework for analyzing risk propagation in bridge operations.

In the context of bridge operations, however, systematic 
identification and evaluation of operational safety risk factors remains 
limited. Most operational studies rely on expert judgment and routine 
inspection records, failing to apply advanced data-mining approaches. 
Addressing this methodological gap requires a systematic, data-
informed framework capable of integrating large-scale operational 
accident data with advanced causal and hierarchical analysis 
techniques. Such an approach can move beyond isolated factor 
assessment toward a holistic understanding of interrelated risks in 
bridge operations, which is the focus of the present study. The 
proposed integrated methodology, designed to address this gap, is 
elaborated in detail in the subsequent methodology section.

2.3 Gaps in research

Despite significant progress, current bridge safety research is 
disproportionately weighted toward the construction phase, while the 
operational phase—when most bridges spend the majority of their 
lifespan—remains underexplored. Given the increasing number of 
in-service bridges and the rising frequency of operational hazards, risk 
management during the operational lifespan warrants more systematic 
investigation. This underrepresentation limits our ability to anticipate 
and mitigate the unique and evolving risks of in-service bridges. 
Furthermore, most prior research relies heavily on knowledge-driven 
approaches, such as expert elicitation and case-based analysis, to 
identify safety risk factors. Although such methods offer valuable 
insights, they are often limited by subjectivity and inconsistencies in 
factor definition. While some scholars have begun to analyze accident 
reports, few have employed robust, quantitative, data-driven 
techniques, such as text mining, to comprehensively extract risk 
factors from historical safety records.

Moreover, the identified factors are often presented in isolation, 
lacking integration into hierarchical frameworks that capture causal 
interdependencies and transmission pathways. Addressing these gaps 
is essential for developing a comprehensive and structured operational 
risk management strategy for bridges. As a foundational step in risk 
assessment, the identification of risk factors should aim to be both 
comprehensive and structured to support consistency and traceability 
in subsequent modeling. Yet, few studies have explored the layered, 
causal interdependencies among risk elements, especially within the 
context of bridge operations. Despite the availability of systems 
analysis tools, limited attention has been paid to constructing 
hierarchical risk architectures or modeling transmission pathways that 
reflect real-world risk propagation dynamics.

3 Methodology

3.1 Research framework

To systematically achieve RO1, RO2, and RO3, this study 
establishes a structured research framework (Figure  2) that 
sequentially identifies key safety risk factors, uncovers their 
interrelationships, and constructs a hierarchical risk framework to 
capture their transmission pathways during bridge operations. 
Initially, official accident investigation reports were retrieved from the 
National Ministry of Emergency Management (NMEM)1, the Safety 
Management Website2, and the Chinese Bridge Portal3. These reports 
were then refined through data cleaning to exclude irrelevant 
information and retain only content related to accident histories and 
underlying causes. Subsequently, text mining was employed to extract 
and summarize accident-related safety risk factors. Based on this, a 
dataset capturing the association patterns among these factors was 
constructed using association rule mining. Finally, a hybrid 
DEMATEL-AISM approach was applied to systematically examine the 
interrelationships and transmission mechanisms among the identified 
risk factors.

3.2 The integrated DEMATEL-AISM 
approach

3.2.1 Decision-making trial and evaluation 
laboratory (DEMATEL)

DEMATEL is recognized as a powerful approach for uncovering 
causal relationships within complex systems (35). It facilitates the 
analysis of interdependencies among factors and identifies key 
elements through a visualized structural framework, which has been 
applied to many fields including systems engineering and management 
science. For instance, Agi et al. (36) employed DEMATEL to reveal 
interdependencies among 20 blockchain adoption enablers, 
highlighting technology advantage and external pressure as key drivers.

3.2.2 Adversarial interpretive structure Modeling 
(AISM)

AISM method, built upon classical ISM and inspired by 
adversarial principles from Generative Adversarial Network (GAN), 
generates dual simplified hierarchical topologies through opposing 
extraction rules without compromising system integrity (37).

According to the bibliometric map as Figure 1c, DEMATEL, ISM 
and AISM methods have been widely used in the field of building 
industry, occupational safety, coastal urban project and supply chain 
management. DEMATEL and ISM/AISM methods are usually 
integrated used. To overcome the traditional DEMATEL method’s 
limitations, namely vague discrimination rules and subjective bias, 
this study applies AISM, which integrates inverse cause-based 
hierarchy extraction with ISM’s result-driven rules. This approach 
yields a clearer, more structured representation of complex 
interrelations through interpretable directed hierarchies (38).

1  https://www.mem.gov.cn

2  https://www.safehoo.com

3  http://www.cnbridge.cn
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Compared with the traditional ISM, AISM introduces a 
bidirectional adversarial extraction mechanism that generates both 
cause-oriented and result-oriented hierarchies. This dual 
perspective reduces the subjectivity inherent in single-directional 
ISM modeling, enhances structural interpretability, and allows 
clearer identification of dominant propagation pathways (29, 38). 
In this sense, the novelty of our approach lies in integrating 
DEMATEL’s quantitative causal intensity with AISM’s dual-
hierarchy topology, which has not yet been systematically applied 
in the context of bridge operation risk analysis. Beyond the general 
reduction of subjectivity, AISM offers two specific advantages in the 
present study. First, by constructing both cause-oriented and result-
oriented hierarchies, AISM enables verification from two 
perspectives, ensuring that the identified transmission chains of 
bridge operation risks are not artifacts of single-directional 
assumptions. Second, the dual-topology mechanism facilitates the 
detection of antagonistic or feedback relations that traditional ISM 
may obscure, which is particularly relevant given the intertwined 
nature of management, environmental, and technical risks in bridge 
operations (25, 29, 38). These advantages explain why AISM 
provides a more rigorous and transparent framework than 
conventional ISM for analyzing the propagation of operational 
safety risks.

3.2.3 The combination of DEMATEL and AISM
Both DEMATEL and ISM are structural modeling methods that 

analyze interrelationships among factors through matrix operations 
and graph theory (25, 29). DEMATEL’s total influence matrix shares 

a high degree of similarity with the reachability matrix used in AISM, 
facilitating its derivation.

The integration of DEMATEL and ISM has been widely applied 
across various disciplines (29, 39, 40). As an enhanced extension of 
ISM, AISM incorporates a bidirectional adversarial hierarchy 
extraction mechanism, enabling clearer identification of structural 
differences and dominant transmission paths among factors. Thus, the 
combination of DEMATEL and AISM allows for a more precise 
depiction of causal propagation and structural contrasts within 
complex systems.

Recent studies have begun to adopt this hybrid DEMATEL-AISM 
framework and have reported promising results (38, 41). This 
integrated approach effectively captures the influence mechanisms, 
hierarchical layers, and transmission pathways of interrelated factors. 
In the context of bridge operation safety risk evaluation, DEMATEL 
identifies causal links, while AISM visualizes them through a 
bidirectional multi-level structure, thereby supporting the 
identification of key risk factors and offering a robust foundation for 
in-depth analysis.

3.3 Identification of safety risk factors

To achieve RO1, which is to identify and distill the key safety risk 
factors associated with bridge operations from large-scale accident 
records, manual extraction from numerous accident reports is time-
consuming and prone to human error (42). Text mining, a data 
processing technique, enables the objective identification of valuable 

FIGURE 2

Research framework of the current study.
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patterns from large-scale unstructured textual data (43, 44). Its 
effectiveness has been demonstrated across various domains. For 
instance, Shi et al. (29) identified 18 key causes from 127 coal mine 
construction accident reports; Zhou et al. (33) extracted 51 risk factors 
from 330 chemical accident reports and validated that text mining 
method can quickly and efficiently extract key information from 
incident reports; Das et al. (45) used text mining to extract key factors 
from 10 in-depth ambulance crash reports, revealing relationships of 
complex causes and enhancing public health safety.

Therefore, this study applies text mining to analyze bridge 
operation accident reports, following a workflow comprising data 
collection, preprocessing, structuring, analysis, and results output.

3.3.1 Raw data collection
In 2007, the State Council of the People’s Republic of China issued 

the Notice on Conducting Safety Hazard Investigations of Major 
Infrastructure (69), mandating comprehensive safety inspections for 
critical infrastructure, including bridges, across the nation. This policy 
catalyzed the systematic collection of bridge safety data, resulting in 
standardized accident investigation reports maintained by 
authoritative bodies. To align with this policy and subsequent safety 
initiatives, this study leverages a robust dataset of 132 officially 
documented bridge operation accident reports from 2007 to 2024, 
covering a diverse range of bridge types, geographic regions, and 
incident severities. The dataset encompasses accidents involving 
various bridge categories, including beam, arch, cable-stayed, and 
suspension bridges, spanning urban, rural, and mountainous regions 
across China’s eastern, central, and western provinces. This diversity 
ensures broad representativeness, capturing a wide spectrum of 
operational contexts, from high-traffic urban lifelines to remote rural 
crossings. The reports, sourced from national safety databases, detail 
accident histories, causes, and contributing factors, providing a 
comprehensive foundation for identifying operational safety risks. The 
selection of the 2007–2024 timeframe aligns with the policy’s initiation 
and reflects a period of significant infrastructure expansion and aging 
in China.

To mitigate potential biases, such as overrepresentation of severe 
incidents or specific regions, the dataset was curated to include a 
balanced mix of minor, moderate, and catastrophic accidents, with 
incidents distributed across 28 provinces to reflect China’s geographic 
and infrastructural diversity. The use of standardized, government-
verified reports enhances the dataset’s reliability and consistency, 
which offers a solid empirical basis for the text mining and hierarchical 
modeling approaches employed in this study and enables the 
systematic identification and analysis of safety risk factors in 
bridge operations.

3.3.2 Data preprocessing
To ensure reproducibility of the text mining process, detailed 

preprocessing steps were documented, including removal of 
non-informative symbols, word segmentation, stop word filtering, and 
word frequency thresholding, as elaborated below.

Given the extensive length of accident investigation reports, only 
sections detailing the “accident history” and “cause analysis” were 
retained. Additionally, linguistic inconsistencies commonly found in 
such reports were corrected to ensure textual clarity and accuracy.

Furthermore, symbols and punctuation in accident investigation 
reports usually conveyed little semantic value for text mining, while 

unnecessarily inflating data dimensions and increasing the 
computational burden of training (46). To mitigate this, such elements 
were eliminated.

3.3.3 Data structuring
Accident investigation reports, as unstructured textual data, 

should be transformed into machine-readable formats for effective 
processing. Since sentences convey meaning through word 
combinations, they require segmentation into individual words for 
further analysis.

Word segmentation refers to the algorithmic process of 
determining word boundaries within sentences or documents. It 
transforms lengthy passages into structured units of words, thereby 
facilitating subsequent processing and analysis. Unlike English, where 
spaces serve as natural delimiters, Chinese text lacks explicit separators 
(47). To address this, Jieba, a widely adopted segmentation tool, was 
employed to tokenize bridge accident investigation reports. However, 
while Jieba performs well with general vocabulary, it struggles with 
domain-specific terminology relevant to bridge operations. To 
improve segmentation accuracy, a customized dictionary was 
compiled to incorporate domain-specific terms absent from the 
default lexicon.

Stop words are high-frequency terms with limited semantic 
contribution, and thus are generally excluded in natural language 
processing. Their elimination reduces data volume and computational 
demands, which is particularly advantageous for resource-intensive 
algorithms such as Apriori, DEMATEL, and AISM, while still 
preserving meaningful content. In this study, the stop word list 
developed by the Harbin Institute of Technology (48) was adopted 
for filtering.

3.3.4 Data analysis
In text mining, word frequency reflects how often specific terms 

appear, enabling macro-level visualization of key safety risk factors 
associated with accidents. Criteria for selecting word frequency 
thresholds were determined following prior studies (46, 49). 
Frequencies are listed in Table 1.

3.3.5 Result output
For text mining, PyCharm Edu 2024.1 was used as the compiler. 

The word items identified in the mining process are listed in the first 
column of Table 1.

3.3.6 Expert-based refinement of risk factors
Drawing upon the text mining outcomes and accident report 

corpus, a structured expert workshop was conducted to refine the 
identified safety risk factors (50). Expert selection followed criteria 
derived from Hauashdh et al. (51), Luzon and El-Sayegh (52), Yusof 
et  al. (53), and the approach of Shi et  al. (29), requiring: (1) a 
minimum of a bachelor’s degree, (2) senior professional titles, and 
(3) at least 20 years of relevant experience in bridge engineering. 
Five experts meeting these standards were invited; details are 
presented in Table 2.

The workshop proceeded in three phases: (1) Preparation phase. 
The workshop defined the research topic, expert group, and appointed 
a facilitator. (2) Discussion phase. Under the facilitator’s guidance, 4 
iterative sessions were held as follows: Round 1: categorized lexical 
items into four domains: management, physical, environmental, and 
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personnel; Round 2: further distilled these categories into 19 distinct 
risk factors; Round 3: aligned individual lexical terms with 
corresponding risk factors; Round 4: Reviewed and validated the full 
list of identified factors. (3) Synthesis Phase. The facilitator compiled 
the results and presented them for final expert review. No objections 
were raised, confirming the final risk factor set. And the frequency 
distribution of these refined factors is summarized in Table 1, with 
definitions detailed in Table 3.

3.4 Analysis of safety risk factors through 
association rules

To address RO2, which aims to reveal the interrelationships among 
these risk factors and determine the most critical and recurrent risk 
patterns, the association rule mining method was employed to uncover 
underlying correlations among itemsets within the dataset (29, 54). Each 
safety accident case was examined to convert narrative descriptions into 
Boolean-structured data through enumeration. A value of “1” indicates 
the presence of a specific safety risk factor in a given case, while “0” 
denotes its absence. This process resulted in a structured dataset 
comprising 132 bridge operation accident cases, as presented in Table 4. 
In this table, each row (Tj) represents a unique accident case, and each 
column (Fi) corresponds to a distinct risk factor.

The Apriori algorithm, a foundational method for discovering 
association rules, was employed to investigate interdependencies 
among safety risk factors. Utilizing its rule-mining module, potential 
relationships between factor pairs were extracted. In alignment with 
previous research (29, 55), the threshold criteria were set as follows: 

Support > 0.001, Confidence ≥ 0.8, and Lift > 1. As a result, 32 
meaningful rules were identified and are detailed in Table 5. Within 
the table, support indicates the relative frequency of occurrence, 
confidence reflects the predictive strength between items, and lift 
illustrates the nature and magnitude of their association.

3.5 Analysis of safety risk factors through 
DEMATEL-AISM

To fulfill RO3, which seeks to establish a hierarchical risk 
framework and map the pathways through which risks propagate 
during bridge operations, the confidence values derived from the 
association rules were first used to construct a direct influence 
matrix, following the approach of Aaldering et  al. (56). This 
matrix was subsequently normalized to generate a comprehensive 
influence matrix. By incorporating the identity matrix, a total 

TABLE 1  List of safety risk factors in bridge operation.

Text mining word items Factor refinement Code Frequency

Structure, span, superstructure, deck High risk of bridge scale and structure F1 85

Seismic zone, river, urban center, mountain High risk of bridge location F2 31

Collision, side-swipe, impact damage, vehicle Frequent traffic collisions F3 62

Fatigue, prolonged, material aging, wear and tear Long bridge service life F4 38

Technical grade, deterioration, steel grade, durability Inadequate bridge technical grade F5 25

Traffic, vehicle, congestion, trucks, lane Complex traffic flow F6 58

Remote sensing, monitoring, record, manual, management system, rules and 

regulations
Insufficient informatization management F7 43

Expert, assessment, decision, advisory Unestablished safety expert think tank F8 23

Loading check, overload, traffic accident Poor vehicle safety management F9 62

Illegal sand mining, theft, arson Deliberate human sabotage F10 9

Overweight, overload, trucks, pass Overweight vehicle passage F11 98

Scour, earthquake, seismic zone, flood, landslide Geological and meteorological hazards prone F12 66

Hazardous cargo, chemical leakage, explosion High risk dangerous goods transportation F13 28

Arch bridge, beam bridge, historic bridge, cable-stayed High risk of bridge type or culture F14 43

Design deficiency, site planning, girders Unreasonable planning and design F15 65

Emergency response, unexpected, alarm, treatment Unsound emergency management F16 18

Hazard sources, chemical, fire, quarry Nearby hazard sources F17 44

Maintenance, inspection, repair, prolonged Inadequate inspection and maintenance F18 86

Timely, competence, management, recognition, experience, operation Unqualified management competence F19 35

TABLE 2  Expert profile overview.

Expert Age Academic 
qualification

Professional 
title

Years of 
working

Expert 1 60 Bachelor Senior engineer 35

Expert 2 57 Bachelor Senior engineer 33

Expert 3 55 Master Senior engineer 32

Expert 4 52 Master Senior engineer 27

Expert 5 48 Doctor Professor 21
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influence matrix was formed, as presented in Figure 3. In this 
matrix, any element exceeding zero was encoded as “1,” and all 
others were set to “0.”

To derive the reachability matrix (Figure 4), a transformation was 
performed based on a threshold λ. Given that the total influence 
matrix contains continuous values between 0 and 1, while the 
reachability matrix requires binary entries, elements equal to or above 
λ were assigned a value of “1”; otherwise, “0.”

Following previous DEMATEL-ISM applications, λ was 
determined by referencing the statistical distribution of the total 
influence matrix values. Specifically, elements were normalized 
within [0,1], and the mean value μ was adopted as the cut-off. This 
approach is widely used to balance network sparsity and 
connectivity, ensuring that only relations with above-average 
influence strength are retained while avoiding arbitrary 
subjectivity (25, 29, 35). To confirm robustness, a sensitivity test 
was also conducted by varying λ within μ ± σ/2, which showed 
consistent hierarchical structures.

4 Results

4.1 Identification of key safety risk factors 
in bridge operations

To address RO1, a comprehensive analysis was conducted on 132 
officially documented bridge operation accident reports in China, 
spanning the period from 2007 to 2024. Through a text mining 
workflow involving data preprocessing, segmentation, and frequency 
analysis, an initial set of lexical items associated with accident 
causation was extracted. These preliminary results were subsequently 
refined through a structured expert workshop involving five senior 
bridge engineering specialists, each with over 20 years of professional 
experience. The iterative refinement process involved categorizing the 
lexical items into four thematic domains—management, physical, 
environmental, and personnel—and consolidating semantically 
similar terms to ensure conceptual clarity and eliminate redundancy.

The outcome of this dual-phase process was the identification of 
19 distinct safety risk factors that comprehensively represent the 
operational safety risk landscape for bridges. These factors encompass 
a spectrum of hazards, from structural and environmental threats 
(e.g., geological and meteorological hazards prone, long bridge service 
life) to managerial and procedural deficiencies (e.g., insufficient 
informatization management, unqualified management competence, 
unsound emergency management), as well as traffic- and user-related 
risks (e.g., overweight vehicle passage, poor vehicle safety 
management, frequent traffic collisions).

The frequency distribution of these risk factors, summarized in 
Table 1, provides empirical evidence of their relative prevalence in 
real-world incidents, with overweight vehicle passage emerging as 

TABLE 3  Connotation of safety risk factors of bridge operation.

Safety risk factors Connotation

High risk of bridge scale and structure Bridges with large spans or complex structural systems present high safety risk

High risk of bridge location Bridges located in seismic zones, over major rivers, urban lifelines or mountainous terrain

Frequent traffic collisions Vehicle or vessel impacts damage superstructure, triggering deck collapse hazards

Long bridge service life Extended fatigue aging, wear cause material deterioration and sudden structural failure

Inadequate bridge technical grade Poor bridge technical grade with low steel grade and poor durability

Complex traffic flow High volumes, congestion and an unbalanced mix of multi-modal transport systems

Insufficient informatization management Lack of sensor monitoring, BIM and digital management

Unestablished safety expert think tank Missing expert assessment and advisory on safety risk

Poor vehicle safety management Lack of overload control or route planning

Deliberate human sabotage Intentional vandalism, theft, or arson

High risk of overweight vehicle passage Overloaded trucks impose extreme deck stresses

Geological and meteorological hazards risk Various hazards including scour, seismic shocks, floods, sandstorms or landslides

High risk dangerous goods transportation Hazardous cargo leaks or explosions ignite fire on the bridge

High risk of bridge type or culture Arch, cable-stayed or historic bridges with high safety risk

Unreasonable planning and design Design defects and poor site planning with inadequate adaptation to evolving requirements

Unsound emergency management Incomplete emergency plans and alarms delay response

Nearby hazard sources Adjacent chemical plants or pipelines risk explosion

Inadequate inspection and maintenance Inadequate inspections and deferred repairs

Unqualified management competence Lack of professional expertise and operational experience

TABLE 4  Boolean dataset for safety risk association analysis in bridge 
operation.

Code F1 F2 F3 F4 F5 F6 F7 … F18 F19

T001 1 1 1 0 1 0 0 … 0 1

T002 0 0 0 0 1 0 1 … 1 0

T003 0 0 0 1 0 0 1 … 0 0

T004 1 0 0 1 1 0 0 … 1 0

… … … … … … … … … … …

T132 1 0 1 0 0 1 1 … 1 0
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the most frequently cited cause, followed by inadequate inspection 
and maintenance. This structured and validated factor set forms the 
empirical foundation for subsequent analyses under RO2 and RO3, 
enabling systematic exploration of interrelationships and 
hierarchical propagation pathways within the bridge operation 
safety risk system.

4.2 Interrelationships and critical risk 
patterns from DEMATEL analysis

The influence degree measures how strongly a factor impacts 
other factors, while the affected degree reflects how much it is 
influenced by others. The centrality degree captures the extent of a 
factor’s connectivity with the rest, and the causality degree quantifies 

its role as a causal driver. The computed values for each safety risk 
factor across these four dimensions are presented in Table 6.

Specifically, the influence degree characterizes a factor’s outgoing 
impact within the system, whereas the affected degree describes its 
susceptibility to external influences. Centrality degree represents the 
relational closeness of a factor to others, and causality degree identifies 
whether it primarily acts as a cause or consequence. As shown in 
Table 6, for example, overweight vehicle passage (F11) exhibits a low 
influence degree but a high affected degree, suggesting it is easily 
impacted by other risks and serves as a direct yet reactive contributor 
to incidents. It also means that while heavy vehicle passes are easy to 
recognize, they are inherently difficult to eradicate.

Conversely, for instance, insufficient informatization management 
(F7) scores high on influence degree but low on affected degree, 
indicating that it exerts widespread impact on other risks but is rarely 

TABLE 5  Safety risk factor association rules in bridge operation.

No. Post-item Pre-item Percentage of 
support

Percentage of 
confidence

Degree of effect

1 F11 F9 35.67 93.45 2.5678

2 F9 F2 55.23 93.45 3.1234

3 F19 F7 32.12 92.34 1.7854

4 F18 F9 45.67 92.34 2.3456

5 F6 F3 40.12 91.78 2.2345

6 F11 F4 50.23 91.34 2.7654

7 F4 F15 45.67 91.23 2.3456

8 F18 F6 38.12 90.78 2.1234

9 F4 F1 38.90 90.56 2.1234

10 F11 F15 48.90 90.56 2.5678

11 F9 F6 36.78 90.12 1.8901

12 F12 F15 44.34 89.67 2.3456

13 F17 F15 30.12 89.45 1.8765

14 F16 F6 34.56 89.45 1.7890

15 F3 F6 37.89 89.34 1.7654

16 F5 F4 42.34 88.90 1.9876

17 F15 F19 25.34 88.76 1.5678

18 F6 F13 32.10 88.76 1.6789

19 F12 F16 30.12 88.45 1.8765

20 F5 F3 33.45 87.65 1.6789

21 F18 F19 25.34 87.65 1.6789

22 F18 F8 28.90 87.56 1.5678

23 F13 F6 30.45 87.23 1.5678

24 F9 F14 26.78 86.78 1.4567

25 F5 F13 28.90 86.54 1.4567

26 F16 F14 24.56 85.67 1.3456

27 F13 F5 27.65 85.34 1.3456

28 F10 F6 22.34 84.56 1.2345

29 F10 F14 20.12 84.34 1.1234

30 F3 F5 15.67 83.45 1.1234

31 F10 F2 12.34 82.34 1.0123
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influenced itself. This makes it a foundational driver in shaping safety 
risk dynamics in bridge operations.

Further analysis of centrality and causality degrees reveals that 
factors such as high risk of bridge scale and structure, high risk of 
bridge location, frequent traffic collisions, long bridge service life, 
inadequate bridge technical grade, insufficient informatization 
management, high risk of dangerous goods transportation, high 
risk of bridge type or culture, unreasonable planning and design, 
and unqualified management competence function as independent 
drivers, capable of triggering downstream risks. In contrast, 
factors including complex traffic flow, unestablished safety expert 
think tank, poor vehicle safety management, deliberate human 
sabotage, overweight vehicle passage, geological and 
meteorological hazards prone, unsound emergency management, 
nearby hazard sources, and inadequate inspection and 
maintenance, often manifest as consequences within the 
risk network.

These findings fulfill RO2 by revealing both the direct and indirect 
interdependencies among the 19 identified risk factors, highlighting 
the most critical drivers and recurrent patterns within the bridge 
operation safety risk network.

4.3 Hierarchical framework and 
propagation Pathways from AISM analysis

In the reachability matrix, a value of “1” signifies that the 
horizontal node exerts a direct influence on the corresponding 
vertical node, whereas “0” indicates the absence of such a 
relationship. Based on this matrix, a directed hierarchical topology 
diagram was developed by mapping the relationships and 
antagonistic hierarchies identified among the elements (Figure 5). 
Specifically, Figure  5a depicts the cause-oriented hierarchical 
topology, whereas Figure  5b displays the result-oriented 
hierarchical structure.

Drawing on the AISM methodology, safety risks associated with 
overall bridge operation were classified into three hierarchical levels: 
superficial, intermediate, and fundamental. Superficial factors 
represent the most immediate and observable risks at the downstream 
end of the transmission chain, often directly limiting operational 
safety. Intermediate factors serve as transitional elements, indirectly 
contributing to risk development and functioning as a bridge between 
root causes and surface-level manifestations. And fundamental factors 
reside at the upstream origin of the risk transmission pathway and 

FIGURE 3

Total influence matrix.
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FIGURE 4

Reachability matrix.

TABLE 6  Causal weight analysis of safety determinants via DEMATEL-based assessment.

Code Influence degree Affected degree Centrality degree Causation degree Factor Properties

F1 1.962 0.045 2.007 1.917 Casual

F2 1.212 0.140 1.352 1.071 Casual

F3 1.670 0.932 2.602 0.738 Casual

F4 1.709 0.610 2.319 1.098 Casual

F5 1.321 0.955 2.276 0.366 Casual

F6 1.490 2.152 3.642 −0.663 Result

F7 1.588 0.551 2.139 1.037 Casual

F8 0.377 0.606 0.982 −0.229 Result

F9 0.938 1.593 2.531 −0.655 Result

F10 0.433 1.309 1.742 −0.877 Result

F11 0.296 1.799 2.094 −1.503 Result

F12 0.417 2.613 3.031 −2.196 Result

F13 1.578 0.816 2.394 0.762 Casual

F14 1.283 0.045 1.329 1.238 Casual

F15 1.127 0.794 1.921 0.333 Casual

F16 0.581 1.986 2.567 −1.405 Result

F17 0.491 0.683 1.174 −0.193 Result

F18 0.599 2.039 2.638 −1.441 Result

F19 0.930 0.327 1.257 0.602 Casual
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constitute the underlying causes impacting safety performance from 
the outset.

According to the tier structure in Figure 2, levels L1 and L2 are 
categorized as superficial factors. Levels L3 through L5 represent 
intermediate risk contributors. Levels L6 and L7 comprise the 
foundational layer of risk, indicating the most deep-seated origins. To 
ensure the accuracy of the results, the intersection of each of the three 
layers in the cause-first topology and the result-first topology is 
identified as the final result under the final two-way verification. The 
specific safety risk elements assigned to each hierarchical level are 
identified as follows:

	(1)	 Superficial factors: Overweight vehicle passage, inadequate 
inspection and maintenance, deliberate human sabotage, 
geological and meteorological hazards prone, poor vehicle 
safety management, unsound emergency management.

	(2)	 Medial factors: Frequent traffic collisions, complex traffic flow, 
inadequate bridge technical grade, high risk dangerous goods 
transportation, long bridge service life, unreasonable planning 
and design.

	(3)	 Bottomed factors: Insufficient informatization management, 
and unqualified management competence. While only a few 
factors are directly connected, their indirect impact 
is widespread.

This hierarchical mapping addresses RO3 by systematically 
structuring the risk factors into superficial, medial, and bottomed 

levels, thereby clarifying the primary pathways through which safety 
risks propagate during bridge operations.

5 Discussion

By integrating empirical data from 132 bridge accident cases with 
advanced analytical methods, this research provides a comprehensive 
understanding of multi-level safety risks in bridge operations.

5.1 Key findings

Drawing upon 132 documented accident cases, this study 
identified and analyzed 19 key risk factors influencing the operational 
safety of bridges by integrating text mining techniques, the association 
rule algorithm, and the DEMATEL-AISM framework. To ensure the 
robustness and credibility of the findings, five domain experts, who 
were previously involved in the refinement and definition of these 
safety risks, independently reviewed the analysis process 
and outcomes.

The findings indicate that safety incidents arise from intricate 
interactions among risk factors, organized into a multi-level 
hierarchy of superficial, medial, and bottomed levels, rather than 
from isolated risks or mere hazard accumulation (29). This 
hierarchical structure provides a clearer understanding of risk 
transmission mechanisms compared to conventional models such as 

FIGURE 5

Hierarchical structure of safety risk factors. (a) cause-oriented hierarchical topology diagram (b) result-oriented hierarchy topology diagram.
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“human-equipment-environment-management” (Qiao, 2021), 
HFACS (25), and 4M1E (33), which often fail to depict risk 
propagation over time. Specifically, overweight vehicle passage is 
identified as the most frequent and significant risk factor, followed by 
inadequate inspection and maintenance, aligning with findings from 
Fiorillo and Ghosn (57) and Lou et  al. (58). The AISM model 
highlights insufficient informatization management as a fundamental 
cause undermining management competence in bridge operations, 
underscoring that management-related deficiencies form the 
structural basis for risk proliferation across technical and operational 
domains. Additionally, unsound emergency management is a critical 
risk factor, particularly for unpredictable geological and 
meteorological hazards, which significantly disrupt bridge safety and 
operational continuity (59).

These findings align with Xiong et al. (72), who used interpretive 
structural modeling to confirm safety management systems as root 
causes and surface-level factors like heavy vehicle traffic and 
inspection activities as immediate contributors to expressway bridge 
safety risks. Similarly, Andrić and Lu (2) identified natural and 
geological threats, traffic-related risks, human-induced hazards, and 
design deficiencies as primary contributors to bridge safety accidents 
using fuzzy analytical hierarchy processes and fuzzy logic techniques. 
However, their methodology overlooks managerial factors and causal 
chains, whereas this study advances the analysis by uncovering 
hierarchical interactions and highlighting management system 
weaknesses as fundamental drivers. In contrast to Wang et al. (25), 
who focused on construction-phase risks and emphasized cognitive 
factors and safety training deficiencies, this study prioritizes 
insufficient informatization management and inadequate managerial 
competence as bottom-level causes in the operational phase, 
leveraging a data-driven approach that integrates textual data from 
132 accident reports with expert assessments.

5.2 Theoretical contributions

This study differs from previous research in several important 
aspects. First, while most existing works have concentrated on 
construction-phase risks or adopted knowledge-driven assessments, 
we focus on the operational phase of bridges, a stage often overlooked 
but with high real-world significance. Second, unlike conventional 
ISM-based approaches that are constrained by single-directional logic, 
our use of AISM combined with DEMATEL and Apriori introduces a 
methodological novelty that enables dual-hierarchy extraction, clearer 
causal interpretation, and reduced subjectivity. Third, in contrast to 
machine learning studies that primarily predict isolated structural 
behaviors (e.g., pavement cracks, ground consolidation, anchor 
pullout capacity), our approach emphasizes hierarchical causal 
propagation across 19 operational risk factors, offering systemic 
insights into how management, environmental, and technical 
deficiencies interact and escalate into accidents. These contributions 
collectively advance the methodological toolkit for infrastructure risk 
analysis and provide a more comprehensive understanding of 
operational safety risks in bridges.

Furthermore, this study advances the theoretical understanding 
of safety risk dynamics in bridge operations by developing a multi-
tiered hierarchical model that elucidates the complex interactions and 
propagation of 19 identified risk factors across superficial, medial, and 

bottomed levels. Unlike conventional frameworks such as “human-
equipment-environment-management” (Qiao, 2021), HFACS (25), 
and 4M1E (33), which provide broad categorizations but lack clarity 
in depicting temporal and causal propagation, this research offers a 
dynamic and structured representation of risk transmission 
mechanisms. By integrating text mining, association rule mining, and 
the DEMATEL-AISM framework, the study addresses critical gaps in 
causal chain analysis, particularly in the operational phase of 
infrastructure projects, thereby contributing to the literature on 
infrastructure safety risk assessment.

Methodologically, this study contributes novelty by employing 
AISM rather than conventional ISM. While ISM has been widely 
applied to model hierarchical relations, its single-directional logic 
often limits the ability to capture antagonistic or bidirectional 
influences. AISM addresses this limitation by constructing dual 
simplified topologies from opposing rules, which not only 
increases model robustness but also provides a richer 
representation of risk propagation pathways. This methodological 
enhancement ensures that the causal hierarchies identified in this 
study are more consistent with the complexity of real-world bridge 
operation risks.

The emphasis on insufficient informatization management as a 
fundamental driver extends prior work by Li et al. (34), who identified 
weak digital integration as a constraint on real-time SHM and risk 
prediction. This study further refines the role of managerial factors by 
positioning them as root causes within the safety risk structure, 
contrasting with Andrić and Lu (2), who overlooked managerial 
influences in their fuzzy logic-based multi-hazard risk evaluation. 
Compared to Wang et al. (25), who focused on construction-phase 
risks and emphasized cognitive factors and safety training deficiencies 
using DEMATEL-ISM, this research highlights insufficient 
informatization management and inadequate managerial competence 
as bottom-level causes in the operational phase. The integration of 
textual data from 132 accident reports with expert assessments 
enhances the objectivity and robustness of the analysis, overcoming 
the subjective scoring limitations of prior studies.

5.3 Practical implications

Building upon the causal analysis presented in the previous 
section, the following section outlines specific management strategies 
for improving safety risk governance in bridge operation contexts.

5.3.1 Establish an integrated and informatized 
safety management system

According to results of the AISM model, insufficient 
informatization management emerges as the fundamental cause, 
which further undermines management competence in bridge 
operations. This result underscores that management-related 
deficiencies form the structural basis for risk proliferation across 
technical and operational domains. Similar findings have been 
reported in infrastructure safety literature. For instance, Li et al. (34) 
demonstrated that weak digital integration constrains real-time SHM 
and risk prediction in infrastructure systems. Addressing managerial 
and digital integration shortcomings is essential for breaking the 
causal chain that drives risk escalation across technical and operational 
domains. Strengthening BMS through the integration of IoT sensors, 
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BIM platforms, SHM technology, and AI-driven analytics enhances 
real-time monitoring and predictive maintenance, enabling effective 
human–machine collaboration (1, 19, 71). This digital transformation 
not only addresses technical deficiencies but also empowers managers 
with data-driven insights, thereby improving decision-making 
capacity and management quality (22). Previous studies confirm that 
advancing BMS informatization is pivotal for upgrading managerial 
competencies and ensuring resilient safety governance (1). Therefore, 
fostering the digital foundation of BMS while simultaneously 
developing managerial capabilities will provide an effective pathway 
to mitigate operational risks and improve the overall safety 
performance of bridge management.

5.3.2 Strengthen vehicle safety management and 
inspection protocols

The study identifies overweight vehicle passage as the most 
frequent and significant safety risk factor, followed by inadequate 
inspection and maintenance. Overloaded trucks are repeatedly 
documented as causing cumulative fatigue damage and reducing 
bridge service life, which aligns with the findings of Fiorillo and 
Ghosn (57) and Lou et al. (58). In practice, vehicle safety management 
can be improved by deploying weigh-in-motion (WIM) systems and 
integrating real-time monitoring, which effectively control axle loads 
and mitigate excessive structural stress (24). On the other hand, 
inspection and maintenance of bridges can be enhanced through the 
application of digital twin models and intelligent transportation 
systems (ITS), which have shown significant potential for improving 
early detection of defects and optimizing maintenance cycles (60). 
Moreover, policy frameworks combining enforcement and incentive 
schemes are recommended to strengthen compliance and promote 
collaborative governance among freight operators and infrastructure 
managers (61).

5.3.3 Enhance emergency management for 
geological and meteorological hazards

Inadequate emergency management has emerged as a critical safety 
risk factor in bridge operations, especially in the context of geological 
and meteorological hazards that are often sudden and difficult to 
predict. These hazards, such as landslides, floods, and strong winds, 
have been shown to significantly disrupt bridge safety and operational 
continuity (59). Poor emergency preparedness can exacerbate the 
impact of such events, leading to greater losses and severe consequences. 
To address this, robust emergency management systems are essential 
for timely response and effective risk mitigation. Integrating real-time 
monitoring tools, such as weather radars and seismic sensors, with early 
warning systems enables proactive hazard detection and response (62). 
Additionally, bridges with cultural heritage value (F14) require 
specialized emergency plans due to their irreplaceable historical 
significance alongside their transportation functions (63, 64). 
Strengthening emergency governance while considering the unique 
vulnerabilities of such bridges provides an effective pathway to mitigate 
operational risks and enhance overall bridge resilience.

5.4 Strengths and limitations

This study contributes several notable strengths. First, by integrating 
text mining with association rule mining and the DEMATEL–AISM 

framework, it reduces the subjectivity that often characterizes expert-
driven approaches and provides a reproducible and data-driven 
procedure for risk identification. Compared with traditional ISM 
models, which have been widely applied in construction safety analysis 
(29), the AISM method employed here generates both cause-oriented 
and result-oriented hierarchies, thereby enhancing interpretability and 
enabling clearer identification of dominant propagation pathways. 
Second, the use of 132 standardized official accident reports ensures 
that the findings are representative and traceable, whereas many 
international studies rely on limited case studies or small expert panels 
(2, 9). Third, the dual-hierarchy causal structure not only advances 
methodological rigor but also provides practical insights by 
distinguishing root managerial deficiencies from surface-level hazards, 
which is highly relevant for operational safety governance.

Despite these contributions, several limitations warrant further 
exploration. Firstly, due to the computational complexity of the 
influence matrix, the scope of analysis was restricted to 19 risk factors. 
Secondly, the number of expert participants in the evaluation process 
was relatively small, potentially introducing subjective bias. 
Additionally, the entire dataset originated from China, which means 
cultural, social, and economic contexts specific to the region may have 
influenced the outcomes. Lastly, to maximize the potential of text 
mining, a standardized accident report format should be developed to 
ensure consistent data quality.

Future research could address these limitations by expanding the 
dataset to international accident reports, incorporating multimodal 
data such as sensor monitoring and inspection records, and combining 
DEMATEL–AISM with advanced machine learning techniques to 
enhance scalability and predictive capability.

6 Conclusion

The present study extracted safety-related risk elements from 132 
documented accident reports using a text mining methodology. After 
an initial screening and refinement process, 19 key risk factors were 
identified. Leveraging association rule mining, a dataset was developed 
that captured 31 significant inter-factor relationships. The DEMATEL 
method was subsequently applied to determine the relative influence 
of each factor, while the AISM technique facilitated the construction 
of a multi-level hierarchical structure. As a result, the risk factors were 
categorized into seven levels, forming 20 distinct paths of 
risk transmission.

The findings indicate that factors including overweight vehicle 
passage, inadequate inspection and maintenance, geological and 
meteorological hazards, and unsound emergency management are 
immediate, or direct, contributors to safety incidents during bridge 
operations. In contrast, insufficient informatization management and 
unqualified management competence constitute the root causes, 
shaping and amplifying the influence of other risk factors. These 
underlying deficiencies form critical pathways for risk propagation 
and escalation. This research not only clarifies the interaction 
mechanisms among key risk elements but also offers theoretical 
guidance for enhancing safety governance in the field of bridge 
operation and maintenance. A structured understanding of these risk 
pathways supports targeted interventions at multiple levels—
enterprise management systems, technical inspection protocols, 
environmental hazard resilience, emergency response capacity, and 
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overall risk mitigation strategies. Collectively, these improvements 
contribute to more effective risk prevention, minimization of 
operational disruptions, and the establishment of higher safety 
standards for the national bridge management sector.
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