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Aging bridges worldwide face growing safety challenges due to extended service
life and environmental stressors. However, most existing studies lack a systemic
perspective and mainly rely on fragmented, expert-driven assessments. Such
approaches fail to capture the interplay of risk factors. This gap in understanding
the interactions and propagation of risks limits the development of effective safety
strategies for bridge operation. To address this gap, this study aims to identify and
structure key risk factors affecting bridge safety in operational contexts by adopting
a data-driven hierarchical model. Utilizing 132 officially documented accident
reports from national safety databases in China (2007-2024), text mining techniques
are applied to extract lexical risk items, which are subsequently refined through
expert workshops and association rule mining to capture factor relationships. The
Decision-Making Trial and Evaluation Laboratory (DEMATEL) method, integrated
with Adversarial Interpretive Structural Modeling (AISM), is applied to construct
a multi-level causal hierarchy of safety risks. The findings reveal 19 distinct risk
factors, structured into seven levels with 20 transmission pathways. Notably,
insufficient informatization management and unqualified managerial competence
are identified as foundational factors, while overweight vehicle passage, inadequate
inspection and maintenance, and geological and meteorological hazards emerge
as direct triggers of safety incidents. The constructed hierarchy demonstrates
a clear propagation chain from latent management deficiencies to observable
surface-level hazards. Theoretically, the study advances the understanding of
risk interaction mechanisms by integrating quantitative data analysis with expert
interpretation. Practically, it provides infrastructure safety managers with a structured
roadmap for targeted interventions, emphasizing the importance of enhancing
digital management systems, traffic load regulation, and emergency preparedness
in bridge operation contexts.
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bridge operation safety, safety risk factors, risk propagation pathways, hierarchical risk
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1 Introduction

The transportation system serves as a vital lifeline for national
development and public welfare, with bridges constituting a
critical component of the transportation network (1). However, as
bridge infrastructure continues to advance and age, the safety
risks associated with their operation have become increasingly
significant. Globally, bridges face a range of challenges during
operation and maintenance, including structural fatigue,
functional degradation, insufficient load-bearing capacity, and a
low level of digitalized management (2). China, possessing one of
the largest bridge inventories in the world, is now witnessing a
marked trend of aging in its in-service bridges. Over the past three
decades, China has reported more than 300 incidents involving
bridges in service, with up to 70% occurring during the
operational phase (3). These events, including terrorist attacks,
explosion threats, hazardous material transport accidents,
overloading, and pier impacts, underscore the diverse hazards that
can emerge after a bridge enters service. A recent commentary in
Nature highlighted that the risks of bridge collapses during
operation are real and expected to escalate, driven by climate
change and the aging of bridge infrastructure (65). Such
deterioration processes can exacerbate structural vulnerabilities,
compelling engineers and policymakers to take decisive actions to
ensure the safety of operational bridges. Ensuring safety
throughout the operational lifespan has therefore become a global
priority, as failures at this stage can lead to severe economic losses
and far-reaching social consequences. With the global bridge
inventory expanding rapidly, the urgency of addressing
operational safety risks—particularly in China—has intensified.
Risk assessment stands at the core of this endeavor, providing the
foundation for preventive strategies that safeguard both
infrastructure and public well-being.

Extensive research has been devoted to bridge safety
management, with scholars examining risks from multiple
dimensions including human factors, construction processes, and
systemic interactions. Previous studies have highlighted that
human error remains a critical contributor to bridge-related
incidents, influencing decision-making, operational behaviors,
and safety performance across different project stages (4, 5). At
the same time, advances in modeling approaches—such as random
Boolean networks, social network analysis, and other complex
systems methods—have deepened understanding of the
multifactorial coupling among human, equipment, management,
and environmental risks, particularly during construction phases
(6). While these findings have enriched the theoretical and
methodological foundation for safety risk analysis, most attention
to date has been directed toward the construction stage, leaving
operational-phase risks comparatively underexplored despite their
potentially greater consequences over the service life of bridges.
Although safety risk assessment has been extensively studied in
sectors such as coal mining (7), building construction (8, 73),
subway construction (9) and metro system operations (10), the
specific context of bridge operations remains significantly
underrepresented in scholarly research. Moreover, the majority of
existing studies have predominantly adopted knowledge-driven
elicitation (9), structured

approaches—such as expert

questionnaires (11), case-based analysis (12), literature synthesis
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(13), and on-site investigations (14)—which, while valuable, often
introduce subjectivity and lack consistency in factor identification.
In contrast, data-driven methodologies that enable objective and
scalable extraction of safety-related patterns from historical
records have seen limited application in the bridge safety domain.
Furthermore, although some recent studies have incorporated
systems-thinking perspectives to analyze risk propagation (15-
17), the existing literature remains fragmented and seldom
addresses the complex, hierarchical, and nonlinear interrelations
among diverse safety risk factors in  operational
bridge environments.

To address these theoretical and practical gaps, this study aims
to systematically identify and structure the key safety risk factors
affecting bridge operation by leveraging data-driven and
hierarchical modeling approaches. Although numerous risk
elements have been mentioned across prior studies, a coherent,
multi-level structure capturing their causal interdependencies
remains largely underexplored—especially during the operational
lifespan of bridges. This study focuses specifically on risk
identification and propagation in the bridge operation phase,
which is often overlooked compared to construction-phase
analysis. Accordingly, three specific research objectives (ROs)

are proposed:

ROLI: To identify and distill the key safety risk factors associated
with bridge operations from large-scale accident records.

RO2: To reveal the interrelationships among these risk factors and
determine the most critical and recurrent risk patterns.

RO3: To establish a hierarchical risk framework and map the

pathways through which risks propagate during bridge operations.

To address these objectives, the study draws on 132 officially
documented accident cases involving bridge operations in China
between 2007 and 2024. Key operational safety risk factors were
identified and distilled through computational text mining and refined
via expert validation (for RO1). Their interrelationships and recurrent
patterns were uncovered using association rule analysis (for RO2).
Finally, an integrated DEMATEL-AISM modeling approach was
employed to construct a hierarchical risk framework and map the
pathways through which risks propagate during bridge operations (for
RO2 and RO3). This multi-phase analytical design combines large-scale
empirical evidence with structured causal modeling, ensuring both the
robustness of the results and the clarity of the systemic insights obtained.

Theoretically, this research advances the field by integrating data-
driven extraction techniques with hierarchical modeling to illuminate
the multi-layered dynamics of operational bridge safety risks. It offers
anovel lens to conceptualize risk propagation pathways and addresses
prior gaps in fragmented or oversimplified risk identification
frameworks. Practically, the findings inform infrastructure safety
governance by providing a structured foundation for targeted
interventions across different organizational levels—ranging from
digital management system upgrades and inspection protocols to
traffic control and emergency response mechanisms. The insights are
particularly relevant for countries with aging bridge inventories and
rapid urbanization, where operational risks are both complex
and consequential.
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2 Literature review
2.1 Bridge safety risk management

Bibliometric analyses of recent publications on bridge safety risk
management, evaluation of safety risk factors, and the application of
DEMATEL-AISM/ISM methods are summarized in Figure 1. Among
these, Figure la specifically illustrates the distribution of research
topics in bridge safety risk management, showing that the majority of
studies concentrate on the construction phase of bridges.

In the construction phase, the most frequently examined risk
factors include environmental conditions, human errors, and natural

10.3389/fpubh.2025.1686346

disasters, while common methodological approaches involve
structural health monitoring (SHM), bridge management systems
(BMS), reliability assessment, and detailed case studies (1). These
bibliometric findings align with earlier literature (18-20), which
consistently reports that safety research during construction has
received the bulk of scholarly attention. Representative examples
include investigations into human error-induced risks in bridge
construction (4), analyses of multi-factor coupling mechanisms in
construction accidents (6), and studies linking worker behavioral
traits to safety performance (5). Such works have contributed to a solid
understanding of technical, human, and environmental risk
interactions during construction, while advancing methodological
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FIGURE 1
Cluster view of knowledge domains. (a) Bridge safety risk management. (b) Identification and evaluation of safety risk factors. (c) DEMATEL-AISM/ISM
method.
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innovations in safety assessment, such as reliability modeling, network
analysis, and decision support frameworks.

In contrast, research on safety risk management during the
operational phase of bridges remains comparatively limited, despite
growing global concern over aging infrastructure, cumulative load
effects, and climate change-induced hazards (I, 65). Existing
operational-phase studies have largely focused on targeted technical
interventions. For example, SHM systems have been applied to detect
fatigue cracks, corrosion, and deformation in real time, supporting
preventive maintenance (1, 21). BMS integrating inspection records,
sensor data, and maintenance planning have been developed to
optimize resource allocation and extend service life (19, 22). Accident
case analyses have also been employed to identify recurring hazards
in service, such as overloading, insufficient inspection frequency, and
inadequate emergency preparedness (3, 23). Some works have begun
to incorporate probabilistic risk models and resilience assessment
frameworks to evaluate operational safety under extreme events,
including earthquakes and floods (24, 25).

While these operational-phase studies have yielded valuable
insights into specific risk control measures and monitoring
technologies, their focus has generally remained on discrete aspects—
such as structural health, load management, or incident response—
rather than on the integrated management of complex, interacting risk
factors across the operational lifecycle. Given the rapid expansion of
bridge inventories worldwide, the aging of existing structures, and the
intensifying impacts of climate change, advancing the understanding
of safety risks in the operational phase is both urgent and globally
relevant. Addressing this gap not only supports more resilient
infrastructure systems in China but also contributes to the
international body of knowledge on life-cycle safety management for
critical transport assets.

2.2 ldentification and evaluation methods
of safety risk factors

Compared with the construction stage, systematic research on
safety risk identification during the operational phase of bridges
remains scarce. Existing studies in bridge safety risk identification and
evaluation have relied on qualitative and expert-based assessments
(2), typically incorporating elements of structural inspections and
accident case analyses (23). While these approaches can provide rich
domain-specific insights, they are limited in their ability to
comprehensively capture complex and dynamic risk interactions in
operational contexts.

To obtain a broader perspective on methodologies for safety risk
identification and evaluation, a systematic review of relevant research
was conducted. It is found that the identification and evaluation of
engineering safety risk factors has evolved considerably over the past
decades. Traditional risk factor identification methods were
predominantly based on expert elicitation, structured questionnaires,
and the analysis of historical accident reports (9, 26, 27). Such
approaches, although rich in contextual understanding, often
introduced subjectivity and inconsistency in the weighting of factors.
In response, recent studies have introduced data-mining techniques,
such as text mining (6), which provide a more objective basis for
identifying influential parameters (28). The techniques help
engineering operators to capture not only the common hazards (e.g.,
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structural fatigue, overloading), but also the less conspicuous
environmental and human factors that contribute to risk propagation
(6, 29). However, the relevant implementation in bridge field is still
rare. Apart from that, safety risk evaluation involves analyzing both
the probability of hazardous events and their potential impacts (29).
For instance, Xue et al. (73) investigated the safety risks of shield
tunnel construction undercrossing rivers (STUR) by combining
literature review, expert discussion, and a hybrid grey-DEMATEL-ISM
approach, identifying 32 risks across four categories and elucidating
their interrelations with potential impacts, which demonstrates the
potential of integrated causal-hierarchical analysis frameworks for
complex infrastructure projects.

Bibliometric clustering results in Figure 1b reveal that existing
research on safety risk factor identification and evaluation is
concentrated in several prominent thematic areas, including landslide
(#0), railway engineering (#9, including bridges), new quantitative
(#8), and integrated methods (#6). Recent relevant research on
infrastructure project operations primarily focuses on identifying
critical contributing safety risk factors in traffic management (66),
subway operation (67), bridge construction (22), and coal mining (68)
by developing tailored evaluation models and indicator frameworks.

In parallel with text mining and traditional statistical methods,
recent studies in civil engineering have demonstrated the growing
application of advanced machine learning (ML) and artificial
intelligence (AI) models for safety risk identification and evaluation.
For example, a cascaded deep learning framework has been developed
for pavement crack detection and segmentation, enabling location-
aware feature extraction from large-scale infrastructure images (30).
Similarly, a physics-informed neural network has been applied to
predict stratified ground consolidation based on excess pore water
pressure monitoring data, demonstrating how domain knowledge can
be embedded into AI models for improved interpretability (31). In
addition, ensemble learning methods such as stacking have been
successfully introduced to predict the pullout capacity of small ground
anchors, illustrating the potential of ML-based hybrid models in
geotechnical safety prediction (32). These advances highlight that
data-driven and ML-enhanced approaches can significantly improve
the accuracy and scalability of risk identification. However, they are
predominantly designed for component-level predictions (e.g., cracks,
soil consolidation, anchors), whereas systemic and hierarchical
propagation of safety risks in bridge operations remains
insufficiently addressed.

Existing studies on safety risk identification and evaluation can
broadly be divided into three categories: (1) Knowledge-driven
approaches. These include expert judgment, Delphi surveys, analytic
hierarchy processes, and qualitative causal analysis [Qiao, 2021; (33)].
Their main strength lies in incorporating rich domain expertise and
contextual understanding, which is valuable when empirical data are
limited. However, they are susceptible to subjectivity and may lack
reproducibility. (2) Data-driven approaches. With the availability of
large datasets, techniques such as text mining, statistical modeling, and
machine learning have been increasingly applied to identify risk factors
and predict failure patterns (30, 31, 34). Their strength is objectivity,
scalability, and the ability to capture hidden patterns across large
samples. Nevertheless, such methods may overlook tacit knowledge
and require substantial computational resources and data quality
assurance. (3) Hybrid or integrated approaches. Methods such as
DEMATEL-ISM, Bayesian networks, and fuzzy logic models combine
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expert input with quantitative modeling to analyze complex causal
relationships (2, 29). Their advantage is the ability to balance
interpretability and analytical rigor, providing structured hierarchical
frameworks and quantifiable causal pathways. The limitation is that
model outcomes may still depend on the quality of expert input or
parameter calibration. In summary, each approach has unique
strengths: knowledge-driven methods emphasize expert insight, data-
driven methods enhance objectivity and generalizability, and hybrid
methods enable structured causal modeling. Building upon these, the
present study integrates text mining, association rule mining, and
DEMATEL-AISM to leverage the advantages of each while mitigating
their limitations, thereby offering a more robust and systemic
framework for analyzing risk propagation in bridge operations.

In the context of bridge operations, however, systematic
identification and evaluation of operational safety risk factors remains
limited. Most operational studies rely on expert judgment and routine
inspection records, failing to apply advanced data-mining approaches.
Addressing this methodological gap requires a systematic, data-
informed framework capable of integrating large-scale operational
accident data with advanced causal and hierarchical analysis
techniques. Such an approach can move beyond isolated factor
assessment toward a holistic understanding of interrelated risks in
bridge operations, which is the focus of the present study. The
proposed integrated methodology, designed to address this gap, is
elaborated in detail in the subsequent methodology section.

2.3 Gaps in research

Despite significant progress, current bridge safety research is
disproportionately weighted toward the construction phase, while the
operational phase—when most bridges spend the majority of their
lifespan—remains underexplored. Given the increasing number of
in-service bridges and the rising frequency of operational hazards, risk
management during the operational lifespan warrants more systematic
investigation. This underrepresentation limits our ability to anticipate
and mitigate the unique and evolving risks of in-service bridges.
Furthermore, most prior research relies heavily on knowledge-driven
approaches, such as expert elicitation and case-based analysis, to
identify safety risk factors. Although such methods offer valuable
insights, they are often limited by subjectivity and inconsistencies in
factor definition. While some scholars have begun to analyze accident
reports, few have employed robust, quantitative, data-driven
techniques, such as text mining, to comprehensively extract risk
factors from historical safety records.

Moreover, the identified factors are often presented in isolation,
lacking integration into hierarchical frameworks that capture causal
interdependencies and transmission pathways. Addressing these gaps
is essential for developing a comprehensive and structured operational
risk management strategy for bridges. As a foundational step in risk
assessment, the identification of risk factors should aim to be both
comprehensive and structured to support consistency and traceability
in subsequent modeling. Yet, few studies have explored the layered,
causal interdependencies among risk elements, especially within the
context of bridge operations. Despite the availability of systems
analysis tools, limited attention has been paid to constructing
hierarchical risk architectures or modeling transmission pathways that
reflect real-world risk propagation dynamics.
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3 Methodology
3.1 Research framework

To systematically achieve RO1, RO2, and RO3, this study
establishes a structured research framework (Figure 2) that
sequentially identifies key safety risk factors, uncovers their
interrelationships, and constructs a hierarchical risk framework to
capture their transmission pathways during bridge operations.
Initially, official accident investigation reports were retrieved from the
National Ministry of Emergency Management (NMEM)', the Safety
Management Website?, and the Chinese Bridge Portal®. These reports
were then refined through data cleaning to exclude irrelevant
information and retain only content related to accident histories and
underlying causes. Subsequently, text mining was employed to extract
and summarize accident-related safety risk factors. Based on this, a
dataset capturing the association patterns among these factors was
constructed using association rule mining. Finally, a hybrid
DEMATEL-AISM approach was applied to systematically examine the
interrelationships and transmission mechanisms among the identified
risk factors.

3.2 The integrated DEMATEL-AISM
approach

3.2.1 Decision-making trial and evaluation
laboratory (DEMATEL)

DEMATEL is recognized as a powerful approach for uncovering
causal relationships within complex systems (35). It facilitates the
analysis of interdependencies among factors and identifies key
elements through a visualized structural framework, which has been
applied to many fields including systems engineering and management
science. For instance, Agi et al. (36) employed DEMATEL to reveal
interdependencies among 20 blockchain adoption enablers,
highlighting technology advantage and external pressure as key drivers.

3.2.2 Adversarial interpretive structure Modeling
(AISM)

AISM method, built upon classical ISM and inspired by
adversarial principles from Generative Adversarial Network (GAN),
generates dual simplified hierarchical topologies through opposing
extraction rules without compromising system integrity (37).

According to the bibliometric map as Figure 1¢, DEMATEL, ISM
and AISM methods have been widely used in the field of building
industry, occupational safety, coastal urban project and supply chain
management. DEMATEL and ISM/AISM methods are usually
integrated used. To overcome the traditional DEMATEL method’s
limitations, namely vague discrimination rules and subjective bias,
this study applies AISM, which integrates inverse cause-based
hierarchy extraction with ISM’s result-driven rules. This approach
yields a clearer, more structured representation of complex
interrelations through interpretable directed hierarchies (38).

1 https://www.mem.gov.cn
2 https://www.safehoo.com

3 http://www.cnbridge.cn
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Compared with the traditional ISM, AISM introduces a
bidirectional adversarial extraction mechanism that generates both
This dual
perspective reduces the subjectivity inherent in single-directional

cause-oriented and result-oriented hierarchies.
ISM modeling, enhances structural interpretability, and allows
clearer identification of dominant propagation pathways (29, 38).
In this sense, the novelty of our approach lies in integrating
DEMATELs quantitative causal intensity with AISM’s dual-
hierarchy topology, which has not yet been systematically applied
in the context of bridge operation risk analysis. Beyond the general
reduction of subjectivity, AISM offers two specific advantages in the
present study. First, by constructing both cause-oriented and result-
oriented hierarchies, AISM enables verification from two
perspectives, ensuring that the identified transmission chains of
bridge operation risks are not artifacts of single-directional
assumptions. Second, the dual-topology mechanism facilitates the
detection of antagonistic or feedback relations that traditional ISM
may obscure, which is particularly relevant given the intertwined
nature of management, environmental, and technical risks in bridge
operations (25, 29, 38). These advantages explain why AISM
provides a more rigorous and transparent framework than
conventional ISM for analyzing the propagation of operational
safety risks.

3.2.3 The combination of DEMATEL and AISM

Both DEMATEL and ISM are structural modeling methods that
analyze interrelationships among factors through matrix operations
and graph theory (25, 29). DEMATEL: total influence matrix shares
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a high degree of similarity with the reachability matrix used in AISM,
facilitating its derivation.

The integration of DEMATEL and ISM has been widely applied
across various disciplines (29, 39, 40). As an enhanced extension of
ISM, AISM incorporates a bidirectional adversarial hierarchy
extraction mechanism, enabling clearer identification of structural
differences and dominant transmission paths among factors. Thus, the
combination of DEMATEL and AISM allows for a more precise
depiction of causal propagation and structural contrasts within
complex systems.

Recent studies have begun to adopt this hybrid DEMATEL-AISM
framework and have reported promising results (38, 41). This
integrated approach effectively captures the influence mechanisms,
hierarchical layers, and transmission pathways of interrelated factors.
In the context of bridge operation safety risk evaluation, DEMATEL
identifies causal links, while AISM visualizes them through a
thereby the
identification of key risk factors and offering a robust foundation for

bidirectional multi-level structure, supporting

in-depth analysis.

3.3 Identification of safety risk factors

To achieve RO1, which is to identify and distill the key safety risk
factors associated with bridge operations from large-scale accident
records, manual extraction from numerous accident reports is time-
consuming and prone to human error (42). Text mining, a data
processing technique, enables the objective identification of valuable
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patterns from large-scale unstructured textual data (43, 44). Its
effectiveness has been demonstrated across various domains. For
instance, Shi et al. (29) identified 18 key causes from 127 coal mine
construction accident reports; Zhou et al. (33) extracted 51 risk factors
from 330 chemical accident reports and validated that text mining
method can quickly and efficiently extract key information from
incident reports; Das et al. (45) used text mining to extract key factors
from 10 in-depth ambulance crash reports, revealing relationships of
complex causes and enhancing public health safety.

Therefore, this study applies text mining to analyze bridge
operation accident reports, following a workflow comprising data
collection, preprocessing, structuring, analysis, and results output.

3.3.1 Raw data collection

In 2007, the State Council of the People’s Republic of China issued
the Notice on Conducting Safety Hazard Investigations of Major
Infrastructure (69), mandating comprehensive safety inspections for
critical infrastructure, including bridges, across the nation. This policy
catalyzed the systematic collection of bridge safety data, resulting in
standardized accident investigation reports maintained by
authoritative bodies. To align with this policy and subsequent safety
initiatives, this study leverages a robust dataset of 132 officially
documented bridge operation accident reports from 2007 to 2024,
covering a diverse range of bridge types, geographic regions, and
incident severities. The dataset encompasses accidents involving
various bridge categories, including beam, arch, cable-stayed, and
suspension bridges, spanning urban, rural, and mountainous regions
across China’s eastern, central, and western provinces. This diversity
ensures broad representativeness, capturing a wide spectrum of
operational contexts, from high-traffic urban lifelines to remote rural
crossings. The reports, sourced from national safety databases, detail
accident histories, causes, and contributing factors, providing a
comprehensive foundation for identifying operational safety risks. The
selection of the 2007-2024 timeframe aligns with the policy’s initiation
and reflects a period of significant infrastructure expansion and aging
in China.

To mitigate potential biases, such as overrepresentation of severe
incidents or specific regions, the dataset was curated to include a
balanced mix of minor, moderate, and catastrophic accidents, with
incidents distributed across 28 provinces to reflect China’s geographic
and infrastructural diversity. The use of standardized, government-
verified reports enhances the dataset’s reliability and consistency,
which offers a solid empirical basis for the text mining and hierarchical
modeling approaches employed in this study and enables the
systematic identification and analysis of safety risk factors in
bridge operations.

3.3.2 Data preprocessing

To ensure reproducibility of the text mining process, detailed
preprocessing steps were documented, including removal of
non-informative symbols, word segmentation, stop word filtering, and
word frequency thresholding, as elaborated below.

Given the extensive length of accident investigation reports, only
sections detailing the “accident history” and “cause analysis” were
retained. Additionally, linguistic inconsistencies commonly found in
such reports were corrected to ensure textual clarity and accuracy.

Furthermore, symbols and punctuation in accident investigation
reports usually conveyed little semantic value for text mining, while
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unnecessarily inflating data dimensions and increasing the
computational burden of training (46). To mitigate this, such elements
were eliminated.

3.3.3 Data structuring

Accident investigation reports, as unstructured textual data,
should be transformed into machine-readable formats for effective
processing. Since sentences convey meaning through word
combinations, they require segmentation into individual words for
further analysis.

Word segmentation refers to the algorithmic process of
determining word boundaries within sentences or documents. It
transforms lengthy passages into structured units of words, thereby
facilitating subsequent processing and analysis. Unlike English, where
spaces serve as natural delimiters, Chinese text lacks explicit separators
(47). To address this, Jieba, a widely adopted segmentation tool, was
employed to tokenize bridge accident investigation reports. However,
while Jieba performs well with general vocabulary, it struggles with
domain-specific terminology relevant to bridge operations. To
improve segmentation accuracy, a customized dictionary was
compiled to incorporate domain-specific terms absent from the
default lexicon.

Stop words are high-frequency terms with limited semantic
contribution, and thus are generally excluded in natural language
processing. Their elimination reduces data volume and computational
demands, which is particularly advantageous for resource-intensive
algorithms such as Apriori, DEMATEL, and AISM, while still
preserving meaningful content. In this study, the stop word list
developed by the Harbin Institute of Technology (48) was adopted
for filtering.

3.3.4 Data analysis

In text mining, word frequency reflects how often specific terms
appear, enabling macro-level visualization of key safety risk factors
associated with accidents. Criteria for selecting word frequency
thresholds were determined following prior studies (46, 49).
Frequencies are listed in Table 1.

3.3.5 Result output

For text mining, PyCharm Edu 2024.1 was used as the compiler.
The word items identified in the mining process are listed in the first
column of Table 1.

3.3.6 Expert-based refinement of risk factors

Drawing upon the text mining outcomes and accident report
corpus, a structured expert workshop was conducted to refine the
identified safety risk factors (50). Expert selection followed criteria
derived from Hauashdh et al. (51), Luzon and El-Sayegh (52), Yusof
et al. (53), and the approach of Shi et al. (29), requiring: (1) a
minimum of a bachelor’s degree, (2) senior professional titles, and
(3) at least 20 years of relevant experience in bridge engineering.
Five experts meeting these standards were invited; details are
presented in Table 2.

The workshop proceeded in three phases: (1) Preparation phase.
The workshop defined the research topic, expert group, and appointed
a facilitator. (2) Discussion phase. Under the facilitator’s guidance, 4
iterative sessions were held as follows: Round 1: categorized lexical
items into four domains: management, physical, environmental, and
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TABLE 1 List of safety risk factors in bridge operation.
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Text mining word items Factor refinement Code Frequency
Structure, span, superstructure, deck High risk of bridge scale and structure F1 85
Seismic zone, river, urban center, mountain High risk of bridge location F2 31
Collision, side-swipe, impact damage, vehicle Frequent traffic collisions F3 62
Fatigue, prolonged, material aging, wear and tear Long bridge service life F4 38
Technical grade, deterioration, steel grade, durability Inadequate bridge technical grade F5 25
Traffic, vehicle, congestion, trucks, lane Complex traffic flow F6 58
Remote sensing, monitoring, record, manual, management system, rules and

Insufficient informatization management F7 43
regulations
Expert, assessment, decision, advisory Unestablished safety expert think tank F8 23
Loading check, overload, traffic accident Poor vehicle safety management F9 62
Tllegal sand mining, theft, arson Deliberate human sabotage F10 9
Overweight, overload, trucks, pass Overweight vehicle passage F11 98
Scour, earthquake, seismic zone, flood, landslide Geological and meteorological hazards prone F12 66
Hazardous cargo, chemical leakage, explosion High risk dangerous goods transportation F13 28
Arch bridge, beam bridge, historic bridge, cable-stayed High risk of bridge type or culture Fl14 43
Design deficiency, site planning, girders Unreasonable planning and design F15 65
Emergency response, unexpected, alarm, treatment Unsound emergency management Fl6 18
Hazard sources, chemical, fire, quarry Nearby hazard sources F17 44
Maintenance, inspection, repair, prolonged Inadequate inspection and maintenance F18 86
Timely, competence, management, recognition, experience, operation Unqualified management competence F19 35

personnel; Round 2: further distilled these categories into 19 distinct
risk factors; Round 3: aligned individual lexical terms with
corresponding risk factors; Round 4: Reviewed and validated the full
list of identified factors. (3) Synthesis Phase. The facilitator compiled
the results and presented them for final expert review. No objections
were raised, confirming the final risk factor set. And the frequency
distribution of these refined factors is summarized in Table 1, with
definitions detailed in Table 3.

3.4 Analysis of safety risk factors through
association rules

To address RO2, which aims to reveal the interrelationships among
these risk factors and determine the most critical and recurrent risk
patterns, the association rule mining method was employed to uncover
underlying correlations among itemsets within the dataset (29, 54). Each
safety accident case was examined to convert narrative descriptions into
Boolean-structured data through enumeration. A value of “1” indicates
the presence of a specific safety risk factor in a given case, while “0”
denotes its absence. This process resulted in a structured dataset
comprising 132 bridge operation accident cases, as presented in Table 4.
In this table, each row (Tj) represents a unique accident case, and each
column (Fi) corresponds to a distinct risk factor.

The Apriori algorithm, a foundational method for discovering
association rules, was employed to investigate interdependencies
among safety risk factors. Utilizing its rule-mining module, potential
relationships between factor pairs were extracted. In alignment with
previous research (29, 55), the threshold criteria were set as follows:
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TABLE 2 Expert profile overview.

Age Academic Professional = Years of
qualification | title working
Expert 1 60 Bachelor Senior engineer 35
Expert 2 57 Bachelor Senior engineer 33
Expert 3 55 Master Senior engineer 32
Expert 4 52 Master Senior engineer 27
Expert 5 48 Doctor Professor 21

Support > 0.001, Confidence > 0.8, and Lift > 1. As a result, 32
meaningful rules were identified and are detailed in Table 5. Within
the table, support indicates the relative frequency of occurrence,
confidence reflects the predictive strength between items, and lift
illustrates the nature and magnitude of their association.

3.5 Analysis of safety risk factors through
DEMATEL-AISM

To fulfill RO3, which seeks to establish a hierarchical risk
framework and map the pathways through which risks propagate
during bridge operations, the confidence values derived from the
association rules were first used to construct a direct influence
matrix, following the approach of Aaldering et al. (56). This
matrix was subsequently normalized to generate a comprehensive
influence matrix. By incorporating the identity matrix, a total
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TABLE 3 Connotation of safety risk factors of bridge operation.

10.3389/fpubh.2025.1686346

Safety risk factors Connotation

High risk of bridge scale and structure

Bridges with large spans or complex structural systems present high safety risk

High risk of bridge location

Bridges located in seismic zones, over major rivers, urban lifelines or mountainous terrain

Frequent traffic collisions

Vehicle or vessel impacts damage superstructure, triggering deck collapse hazards

Long bridge service life

Extended fatigue aging, wear cause material deterioration and sudden structural failure

Inadequate bridge technical grade

Poor bridge technical grade with low steel grade and poor durability

Complex traffic flow

High volumes, congestion and an unbalanced mix of multi-modal transport systems

Insufficient informatization management

Lack of sensor monitoring, BIM and digital management

Unestablished safety expert think tank

Missing expert assessment and advisory on safety risk

Poor vehicle safety management

Lack of overload control or route planning

Deliberate human sabotage

Intentional vandalism, theft, or arson

High risk of overweight vehicle passage

Overloaded trucks impose extreme deck stresses

Geological and meteorological hazards risk

Various hazards including scour, seismic shocks, floods, sandstorms or landslides

High risk dangerous goods transportation

Hazardous cargo leaks or explosions ignite fire on the bridge

High risk of bridge type or culture

Arch, cable-stayed or historic bridges with high safety risk

Unreasonable planning and design

Design defects and poor site planning with inadequate adaptation to evolving requirements

Unsound emergency management

Incomplete emergency plans and alarms delay response

Nearby hazard sources

Adjacent chemical plants or pipelines risk explosion

Inadequate inspection and maintenance

Inadequate inspections and deferred repairs

Unqualified management competence

Lack of professional expertise and operational experience

TABLE 4 Boolean dataset for safety risk association analysis in bridge
operation.

Code F1 F2 F3 F4 F5 F6 F7 .. F18 F19
T001 1 1 10 1 0 0 .. 0 1
T002 0 0 0 0 1 0 11 0
T003 0 0 0 1 0 o0 1 .. 0 0
T004 10 o0 1 1 o 0 .. 1 0
T132 10 1 0 0 1 1.1 0

influence matrix was formed, as presented in Figure 3. In this
matrix, any element exceeding zero was encoded as “1,” and all
others were set to “0”

To derive the reachability matrix (Figure 4), a transformation was
performed based on a threshold A. Given that the total influence
matrix contains continuous values between 0 and 1, while the
reachability matrix requires binary entries, elements equal to or above
A were assigned a value of “17; otherwise, “0”

Following previous DEMATEL-ISM applications, A was
determined by referencing the statistical distribution of the total
influence matrix values. Specifically, elements were normalized
within [0,1], and the mean value y was adopted as the cut-off. This
approach is widely used to balance network sparsity and
connectivity, ensuring that only relations with above-average
influence strength are retained while avoiding arbitrary
subjectivity (25, 29, 35). To confirm robustness, a sensitivity test
was also conducted by varying A within p + ¢/2, which showed
consistent hierarchical structures.

Frontiers in Public Health

4 Results

4.1 ldentification of key safety risk factors
in bridge operations

To address RO1, a comprehensive analysis was conducted on 132
officially documented bridge operation accident reports in China,
spanning the period from 2007 to 2024. Through a text mining
workflow involving data preprocessing, segmentation, and frequency
analysis, an initial set of lexical items associated with accident
causation was extracted. These preliminary results were subsequently
refined through a structured expert workshop involving five senior
bridge engineering specialists, each with over 20 years of professional
experience. The iterative refinement process involved categorizing the
lexical items into four thematic domains—management, physical,
environmental, and personnel—and consolidating semantically
similar terms to ensure conceptual clarity and eliminate redundancy.

The outcome of this dual-phase process was the identification of
19 distinct safety risk factors that comprehensively represent the
operational safety risk landscape for bridges. These factors encompass
a spectrum of hazards, from structural and environmental threats
(e.g., geological and meteorological hazards prone, long bridge service
life) to managerial and procedural deficiencies (e.g., insufficient
informatization management, unqualified management competence,
unsound emergency management), as well as traffic- and user-related
risks (e.g., overweight vehicle passage, poor vehicle safety
management, frequent traffic collisions).

The frequency distribution of these risk factors, summarized in
Table 1, provides empirical evidence of their relative prevalence in
real-world incidents, with overweight vehicle passage emerging as
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TABLE 5 Safety risk factor association rules in bridge operation.

10.3389/fpubh.2025.1686346

Post-item Pre-item Percentage of Percentage of Degree of effect
support confidence
1 F11 F9 35.67 93.45 25678
2 F9 F2 55.23 93.45 3.1234
3 F19 F7 32.12 92.34 1.7854
4 F18 F9 45.67 92.34 23456
5 F6 F3 40.12 91.78 2.2345
6 F11 F4 50.23 91.34 27654
7 F4 F15 45.67 91.23 23456
8 F18 F6 38.12 90.78 2.1234
9 F4 Fl 38.90 90.56 2.1234
10 F11 F15 48.90 90.56 25678
11 F9 F6 36.78 90.12 1.8901
12 F12 F15 44.34 89.67 23456
13 F17 F15 30.12 89.45 1.8765
14 F16 F6 34.56 89.45 1.7890
15 F3 F6 37.89 89.34 1.7654
16 F5 F4 4234 88.90 1.9876
17 FI5 F19 25.34 88.76 1.5678
18 F6 F13 32.10 88.76 1.6789
19 F12 F16 30.12 88.45 1.8765
20 F5 F3 3345 87.65 1.6789
21 F18 F19 25.34 87.65 1.6789
22 F18 F8 28.90 87.56 1.5678
23 F13 F6 30.45 87.23 1.5678
24 F9 Fl4 26.78 86.78 1.4567
25 F5 F13 28.90 86.54 1.4567
26 F16 F14 24.56 85.67 1.3456
27 F13 F5 27.65 85.34 1.3456
28 F10 F6 22.34 84.56 1.2345
29 F10 F14 20.12 84.34 1.1234
30 F3 F5 15.67 83.45 1.1234
31 F10 F2 12.34 82.34 1.0123

the most frequently cited cause, followed by inadequate inspection
and maintenance. This structured and validated factor set forms the
empirical foundation for subsequent analyses under RO2 and RO3,
enabling systematic exploration of interrelationships and
hierarchical propagation pathways within the bridge operation
safety risk system.

4.2 Interrelationships and critical risk
patterns from DEMATEL analysis

The influence degree measures how strongly a factor impacts
other factors, while the affected degree reflects how much it is
influenced by others. The centrality degree captures the extent of a
factor’s connectivity with the rest, and the causality degree quantifies
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its role as a causal driver. The computed values for each safety risk
factor across these four dimensions are presented in Table 6.

Specifically, the influence degree characterizes a factor’s outgoing
impact within the system, whereas the affected degree describes its
susceptibility to external influences. Centrality degree represents the
relational closeness of a factor to others, and causality degree identifies
whether it primarily acts as a cause or consequence. As shown in
Table 6, for example, overweight vehicle passage (F11) exhibits a low
influence degree but a high affected degree, suggesting it is easily
impacted by other risks and serves as a direct yet reactive contributor
to incidents. It also means that while heavy vehicle passes are easy to
recognize, they are inherently difficult to eradicate.

Conversely, for instance, insufficient informatization management
(F7) scores high on influence degree but low on affected degree,
indicating that it exerts widespread impact on other risks but is rarely
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FIGURE 3

Total influence matrix.

influenced itself. This makes it a foundational driver in shaping safety
risk dynamics in bridge operations.

Further analysis of centrality and causality degrees reveals that
factors such as high risk of bridge scale and structure, high risk of
bridge location, frequent traffic collisions, long bridge service life,
inadequate bridge technical grade, insufficient informatization
management, high risk of dangerous goods transportation, high
risk of bridge type or culture, unreasonable planning and design,
and unqualified management competence function as independent
drivers, capable of triggering downstream risks. In contrast,
factors including complex traffic flow, unestablished safety expert
think tank, poor vehicle safety management, deliberate human
sabotage, overweight vehicle passage, geological and
meteorological hazards prone, unsound emergency management,
nearby hazard sources, and inadequate inspection and
maintenance, often manifest as consequences within the
risk network.

These findings fulfill RO2 by revealing both the direct and indirect
interdependencies among the 19 identified risk factors, highlighting
the most critical drivers and recurrent patterns within the bridge

operation safety risk network.
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4.3 Hierarchical framework and
propagation Pathways from AISM analysis

In the reachability matrix, a value of “1” signifies that the
horizontal node exerts a direct influence on the corresponding
vertical node, whereas “0” indicates the absence of such a
relationship. Based on this matrix, a directed hierarchical topology
diagram was developed by mapping the relationships and
antagonistic hierarchies identified among the elements (Figure 5).
Specifically, Figure 5a depicts the cause-oriented hierarchical
topology, 5b displays the
hierarchical structure.

whereas Figure result-oriented

Drawing on the AISM methodology, safety risks associated with
overall bridge operation were classified into three hierarchical levels:
superficial, intermediate, and fundamental. Superficial factors
represent the most immediate and observable risks at the downstream
end of the transmission chain, often directly limiting operational
safety. Intermediate factors serve as transitional elements, indirectly
contributing to risk development and functioning as a bridge between
root causes and surface-level manifestations. And fundamental factors
reside at the upstream origin of the risk transmission pathway and
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FIGURE 4

Reachability matrix.
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TABLE 6 Causal weight analysis of safety determinants via DEMATEL-based assessment.

Code Influence degree  Affected degree  Centrality degree = Causation degree = Factor Properties
F1 1.962 0.045 2.007 1.917 Casual
F2 1212 0.140 1.352 1.071 Casual
F3 1.670 0.932 2.602 0.738 Casual
F4 1.709 0.610 2.319 1.098 Casual
F5 1.321 0.955 2276 0.366 Casual
F6 1.490 2152 3.642 —0.663 Result
F7 1.588 0.551 2.139 1.037 Casual
F8 0.377 0.606 0.982 -0.229 Result
F9 0.938 1.593 2,531 —0.655 Result
F10 0.433 1.309 1.742 -0.877 Result
Fl11 0.296 1.799 2.094 ~1.503 Result
F12 0.417 2,613 3.031 ~2.196 Result
F13 1.578 0.816 2394 0.762 Casual
Fl4 1.283 0.045 1.329 1.238 Casual
F15 1.127 0.794 1.921 0.333 Casual
F16 0.581 1.986 2567 —1.405 Result
F17 0.491 0.683 1.174 —0.193 Result
F18 0.599 2.039 2.638 —1.441 Result
F19 0.930 0.327 1.257 0.602 Casual
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FIGURE 5
Hierarchical structure of safety risk factors. (a) cause-oriented hierarchical topology diagram (b) result-oriented hierarchy topology diagram.

constitute the underlying causes impacting safety performance from
the outset.

According to the tier structure in Figure 2, levels L1 and L2 are
categorized as superficial factors. Levels L3 through L5 represent
intermediate risk contributors. Levels L6 and L7 comprise the
foundational layer of risk, indicating the most deep-seated origins. To
ensure the accuracy of the results, the intersection of each of the three
layers in the cause-first topology and the result-first topology is
identified as the final result under the final two-way verification. The
specific safety risk elements assigned to each hierarchical level are
identified as follows:

(1) Superficial factors: Overweight vehicle passage, inadequate
inspection and maintenance, deliberate human sabotage,
geological and meteorological hazards prone, poor vehicle
safety management, unsound emergency management.

(2) Medial factors: Frequent traffic collisions, complex traffic flow,

inadequate bridge technical grade, high risk dangerous goods

transportation, long bridge service life, unreasonable planning
and design.

(3) Bottomed factors: Insufficient informatization management,

and unqualified management competence. While only a few

factors are directly connected, their indirect impact

is widespread.

This hierarchical mapping addresses RO3 by systematically
structuring the risk factors into superficial, medial, and bottomed

Frontiers in Public Health

levels, thereby clarifying the primary pathways through which safety
risks propagate during bridge operations.

5 Discussion

By integrating empirical data from 132 bridge accident cases with
advanced analytical methods, this research provides a comprehensive
understanding of multi-level safety risks in bridge operations.

5.1 Key findings

Drawing upon 132 documented accident cases, this study
identified and analyzed 19 key risk factors influencing the operational
safety of bridges by integrating text mining techniques, the association
rule algorithm, and the DEMATEL-AISM framework. To ensure the
robustness and credibility of the findings, five domain experts, who
were previously involved in the refinement and definition of these
safety risks, independently reviewed the analysis process
and outcomes.

The findings indicate that safety incidents arise from intricate
interactions among risk factors, organized into a multi-level
hierarchy of superficial, medial, and bottomed levels, rather than
from isolated risks or mere hazard accumulation (29). This
hierarchical structure provides a clearer understanding of risk

transmission mechanisms compared to conventional models such as
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“human-equipment-environment-management”  (Qiao, 2021),
HFACS (25), and 4M1E (33), which often fail to depict risk
propagation over time. Specifically, overweight vehicle passage is
identified as the most frequent and significant risk factor, followed by
inadequate inspection and maintenance, aligning with findings from
Fiorillo and Ghosn (57) and Lou et al. (58). The AISM model
highlights insufficient informatization management as a fundamental
cause undermining management competence in bridge operations,
underscoring that management-related deficiencies form the
structural basis for risk proliferation across technical and operational
domains. Additionally, unsound emergency management is a critical
risk factor, particularly for unpredictable geological and
meteorological hazards, which significantly disrupt bridge safety and
operational continuity (59).

These findings align with Xiong et al. (72), who used interpretive
structural modeling to confirm safety management systems as root
causes and surface-level factors like heavy vehicle traffic and
inspection activities as immediate contributors to expressway bridge
safety risks. Similarly, Andri¢ and Lu (2) identified natural and
geological threats, traffic-related risks, human-induced hazards, and
design deficiencies as primary contributors to bridge safety accidents
using fuzzy analytical hierarchy processes and fuzzy logic techniques.
However, their methodology overlooks managerial factors and causal
chains, whereas this study advances the analysis by uncovering
hierarchical interactions and highlighting management system
weaknesses as fundamental drivers. In contrast to Wang et al. (25),
who focused on construction-phase risks and emphasized cognitive
factors and safety training deficiencies, this study prioritizes
insufficient informatization management and inadequate managerial
competence as bottom-level causes in the operational phase,
leveraging a data-driven approach that integrates textual data from
132 accident reports with expert assessments.

5.2 Theoretical contributions

This study differs from previous research in several important
aspects. First, while most existing works have concentrated on
construction-phase risks or adopted knowledge-driven assessments,
we focus on the operational phase of bridges, a stage often overlooked
but with high real-world significance. Second, unlike conventional
ISM-based approaches that are constrained by single-directional logic,
our use of AISM combined with DEMATEL and Apriori introduces a
methodological novelty that enables dual-hierarchy extraction, clearer
causal interpretation, and reduced subjectivity. Third, in contrast to
machine learning studies that primarily predict isolated structural
behaviors (e.g., pavement cracks, ground consolidation, anchor
pullout capacity), our approach emphasizes hierarchical causal
propagation across 19 operational risk factors, offering systemic
insights into how management, environmental, and technical
deficiencies interact and escalate into accidents. These contributions
collectively advance the methodological toolkit for infrastructure risk
analysis and provide a more comprehensive understanding of
operational safety risks in bridges.

Furthermore, this study advances the theoretical understanding
of safety risk dynamics in bridge operations by developing a multi-
tiered hierarchical model that elucidates the complex interactions and
propagation of 19 identified risk factors across superficial, medial, and

Frontiers in Public Health

14

10.3389/fpubh.2025.1686346

bottomed levels. Unlike conventional frameworks such as “human-
equipment-environment-management” (Qiao, 2021), HFACS (25),
and 4M1E (33), which provide broad categorizations but lack clarity
in depicting temporal and causal propagation, this research offers a
dynamic and structured representation of risk transmission
mechanisms. By integrating text mining, association rule mining, and
the DEMATEL-AISM framework, the study addresses critical gaps in
causal chain analysis, particularly in the operational phase of
infrastructure projects, thereby contributing to the literature on
infrastructure safety risk assessment.

Methodologically, this study contributes novelty by employing
AISM rather than conventional ISM. While ISM has been widely
applied to model hierarchical relations, its single-directional logic
often limits the ability to capture antagonistic or bidirectional
influences. AISM addresses this limitation by constructing dual
simplified topologies from opposing rules, which not only
increases model robustness but also provides a richer
representation of risk propagation pathways. This methodological
enhancement ensures that the causal hierarchies identified in this
study are more consistent with the complexity of real-world bridge
operation risks.

The emphasis on insufficient informatization management as a
fundamental driver extends prior work by Li et al. (34), who identified
weak digital integration as a constraint on real-time SHM and risk
prediction. This study further refines the role of managerial factors by
positioning them as root causes within the safety risk structure,
contrasting with Andri¢ and Lu (2), who overlooked managerial
influences in their fuzzy logic-based multi-hazard risk evaluation.
Compared to Wang et al. (25), who focused on construction-phase
risks and emphasized cognitive factors and safety training deficiencies
using  DEMATEL-ISM, this

informatization management and inadequate managerial competence

research highlights insufficient

as bottom-level causes in the operational phase. The integration of
textual data from 132 accident reports with expert assessments
enhances the objectivity and robustness of the analysis, overcoming
the subjective scoring limitations of prior studies.

5.3 Practical implications

Building upon the causal analysis presented in the previous
section, the following section outlines specific management strategies
for improving safety risk governance in bridge operation contexts.

5.3.1 Establish an integrated and informatized
safety management system

According to results of the AISM model, insufficient
informatization management emerges as the fundamental cause,
which further undermines management competence in bridge
operations. This result underscores that management-related
deficiencies form the structural basis for risk proliferation across
technical and operational domains. Similar findings have been
reported in infrastructure safety literature. For instance, Li et al. (34)
demonstrated that weak digital integration constrains real-time SHM
and risk prediction in infrastructure systems. Addressing managerial
and digital integration shortcomings is essential for breaking the
causal chain that drives risk escalation across technical and operational
domains. Strengthening BMS through the integration of IoT sensors,
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BIM platforms, SHM technology, and Al-driven analytics enhances
real-time monitoring and predictive maintenance, enabling effective
human-machine collaboration (1, 19, 71). This digital transformation
not only addresses technical deficiencies but also empowers managers
with data-driven insights, thereby improving decision-making
capacity and management quality (22). Previous studies confirm that
advancing BMS informatization is pivotal for upgrading managerial
competencies and ensuring resilient safety governance (1). Therefore,
fostering the digital foundation of BMS while simultaneously
developing managerial capabilities will provide an effective pathway
to mitigate operational risks and improve the overall safety
performance of bridge management.

5.3.2 Strengthen vehicle safety management and
inspection protocols

The study identifies overweight vehicle passage as the most
frequent and significant safety risk factor, followed by inadequate
inspection and maintenance. Overloaded trucks are repeatedly
documented as causing cumulative fatigue damage and reducing
bridge service life, which aligns with the findings of Fiorillo and
Ghosn (57) and Lou et al. (58). In practice, vehicle safety management
can be improved by deploying weigh-in-motion (WIM) systems and
integrating real-time monitoring, which effectively control axle loads
and mitigate excessive structural stress (24). On the other hand,
inspection and maintenance of bridges can be enhanced through the
application of digital twin models and intelligent transportation
systems (ITS), which have shown significant potential for improving
early detection of defects and optimizing maintenance cycles (60).
Moreover, policy frameworks combining enforcement and incentive
schemes are recommended to strengthen compliance and promote
collaborative governance among freight operators and infrastructure
managers (61).

5.3.3 Enhance emergency management for
geological and meteorological hazards

Inadequate emergency management has emerged as a critical safety
risk factor in bridge operations, especially in the context of geological
and meteorological hazards that are often sudden and difficult to
predict. These hazards, such as landslides, floods, and strong winds,
have been shown to significantly disrupt bridge safety and operational
continuity (59). Poor emergency preparedness can exacerbate the
impact of such events, leading to greater losses and severe consequences.
To address this, robust emergency management systems are essential
for timely response and effective risk mitigation. Integrating real-time
monitoring tools, such as weather radars and seismic sensors, with early
warning systems enables proactive hazard detection and response (62).
Additionally, bridges with cultural heritage value (F14) require
specialized emergency plans due to their irreplaceable historical
significance alongside their transportation functions (63, 64).
Strengthening emergency governance while considering the unique
vulnerabilities of such bridges provides an effective pathway to mitigate
operational risks and enhance overall bridge resilience.

5.4 Strengths and limitations

This study contributes several notable strengths. First, by integrating
text mining with association rule mining and the DEMATEL-AISM
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framework, it reduces the subjectivity that often characterizes expert-
driven approaches and provides a reproducible and data-driven
procedure for risk identification. Compared with traditional ISM
models, which have been widely applied in construction safety analysis
(29), the AISM method employed here generates both cause-oriented
and result-oriented hierarchies, thereby enhancing interpretability and
enabling clearer identification of dominant propagation pathways.
Second, the use of 132 standardized official accident reports ensures
that the findings are representative and traceable, whereas many
international studies rely on limited case studies or small expert panels
(2, 9). Third, the dual-hierarchy causal structure not only advances
methodological rigor but also provides practical insights by
distinguishing root managerial deficiencies from surface-level hazards,
which is highly relevant for operational safety governance.

Despite these contributions, several limitations warrant further
exploration. Firstly, due to the computational complexity of the
influence matrix, the scope of analysis was restricted to 19 risk factors.
Secondly, the number of expert participants in the evaluation process
was relatively small, potentially introducing subjective bias.
Additionally, the entire dataset originated from China, which means
cultural, social, and economic contexts specific to the region may have
influenced the outcomes. Lastly, to maximize the potential of text
mining, a standardized accident report format should be developed to
ensure consistent data quality.

Future research could address these limitations by expanding the
dataset to international accident reports, incorporating multimodal
data such as sensor monitoring and inspection records, and combining
DEMATEL-AISM with advanced machine learning techniques to
enhance scalability and predictive capability.

6 Conclusion

The present study extracted safety-related risk elements from 132
documented accident reports using a text mining methodology. After
an initial screening and refinement process, 19 key risk factors were
identified. Leveraging association rule mining, a dataset was developed
that captured 31 significant inter-factor relationships. The DEMATEL
method was subsequently applied to determine the relative influence
of each factor, while the AISM technique facilitated the construction
of a multi-level hierarchical structure. As a result, the risk factors were
categorized into seven levels, forming 20 distinct paths of
risk transmission.

The findings indicate that factors including overweight vehicle
passage, inadequate inspection and maintenance, geological and
meteorological hazards, and unsound emergency management are
immediate, or direct, contributors to safety incidents during bridge
operations. In contrast, insufficient informatization management and
unqualified management competence constitute the root causes,
shaping and amplifying the influence of other risk factors. These
underlying deficiencies form critical pathways for risk propagation
and escalation. This research not only clarifies the interaction
mechanisms among key risk elements but also offers theoretical
guidance for enhancing safety governance in the field of bridge
operation and maintenance. A structured understanding of these risk
pathways supports targeted interventions at multiple levels—
enterprise management systems, technical inspection protocols,
environmental hazard resilience, emergency response capacity, and
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overall risk mitigation strategies. Collectively, these improvements
contribute to more effective risk prevention, minimization of
operational disruptions, and the establishment of higher safety
standards for the national bridge management sector.
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