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Introduction: Urban communities, as the basic unit of urban governance, play a
crucial role in responding to public health emergencies (PHEs). This study aims
to investigate the resilience measurement and optimization strategies of urban
communities in responding to PHEs in order to improve their resilience.

Methods: The study constructed a resilience assessment framework and identified
31 key influencing factors to measure the resilience of case communities in Nanjing.
Through sensitivity analysis, static optimization strategies were proposed from
social, environmental, and economic levels. Dynamic Bayesian network inference
simulation and importance analysis were used to propose dynamic optimization
strategies from pre, during, and long-term perspectives.

Results: Through the combination of dynamic and static strategies, community
managers promote resilience building from both short-term and long-term
perspectives.

Discussion: The study provides a valuable reference for comprehensively
improving the emergency management system.

KEYWORDS

urban community resilience, public health emergencies, Bayesian network, resilience
metrics, optimization strategies

1 Introduction

As cities continue to expand, they are increasingly vulnerable to a range of uncertainties
originating from both external and internal sources (1). In addition to common natural
disasters such as earthquakes, typhoons, and floods, the severe consequences of public health
emergencies (PHEs) should not be underestimated. Since the implementation of the
International Health Regulations in 2007, the WHO has declared seven global PHEs, including
outbreaks of HIN1 influenza, Ebola virus, Zika virus, and monkeypox. Although PHEs occur
infrequently, they have a broad-reaching impact and spread rapidly, posing substantial threats
to human health and socio-economic stability. The global outbreak of the COVID-19
pandemic in 2020 has had profound effects on global economic development. According to
World Health Organization statistics, as of August 2024, the cumulative number of globally
diagnosed cases stands at 776 million, with approximately 7.06 million confirmed deaths. This
public health crisis has had a profound impact on global economic development (2), leading
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to significant deterioration in the economic conditions of sectors such
as manufacturing, agriculture, the food industry, education, sports,
and entertainment (3).

The COVID-19 pandemic has presented substantial challenges to
existing urban response systems for PHEs, spanning from pre-disaster
prevention to mid-disaster management. Communities, as
fundamental units of human activity and foundational elements of
urban governance, play a pivotal role in the early stages of emergency
response and are critical for the development of comprehensive public
health service systems. During the pandemic, stringent measures at
the community level, such as community blockades (4, 5) and strict
restrictions on entry and exit (6), were effective in preventing the
spread of the outbreak, controlling its transmission, and reducing the
loss of life and property (7).

In the face of unpredictable and interconnected public health
crises, post-disaster mitigation tends to be reactive, allowing for only
limited reductions in losses once a disaster has occurred. The most
effective approach to disaster risk reduction involves fostering
communities that can self-organize and self-adjust to evolving
emergencies, thereby achieving optimization and stability—essentially
embedding urban community resilience. The concept of “resilience,”
encompassing elasticity, resistance, and adaptability, originated in
engineering before being widely adopted across various disciplines,
including ecology (8), psychology (9), economics (10), and safety
management (11). In the context of disaster risk, resilience is defined
as “the ability of a system or its components to absorb disturbance and
still retain its essential functions following a disaster event” (12). The
process of resilience in mitigating disasters and reducing damage can
be divided into four stages: prevention and preparation, absorption,
rapid recovery, and adaptation and transformation. In this study,
urban community resilience refers to the capacity of community
systems to resist disruptions caused by uncertainty, while also
recovering and adapting as necessary (13).

Since the Second United Nations World Conference on Disaster
Risk Reduction, governments, institutions, and academic communities
in countries such as the United States, Germany, Japan, and others
have been exploring the development of resilient communities.
Identifying appropriate dimensions to analyze the factors influencing
resilience and establishing standardized and effective metrics for
measuring resilience are essential steps in assessing the progress of
resilience-building efforts within communities. To evaluate urban
community resilience, scholars have employed various frameworks,
including the 4R Theory (14), the Disaster Resilience Local Framework
Model (DROP) (15), the Community Climate Resilience Assessment
(CCRAM) (16), the Interpretive Structural Modeling - Analytic
Hierarchy Process (ISM-AHP) model (17), the Community Disaster
Resilience Framework (CDRF) (18), and the iRe-CoDeS Framework
(19). These frameworks incorporate dimensions such as spatial
resilience, capital resilience, social resilience, and governance
resilience (20-22) to quantify the level of urban community resilience.

In recent years, scholars have progressively incorporated the
concept of resilience into the prevention, control, and comprehensive
management of communities during PHEs. This paradigm not only
leverages the inherent advantages of communities in crisis situations
but also introduces innovative strategies for preventing and managing
public health challenges in non-crisis periods. Research has
emphasized the importance of efficient collaboration and coordinated
prevention and control efforts among community stakeholders.
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Findings suggest that critical factors such as government policy
prioritization and tiered guidance (23), neighborhood social capital
(6), resource allocation (24), and the active engagement of community
residents and volunteer organizations (6) significantly enhance the
effectiveness of community-based prevention and control measures
(23, 25). Additionally, several scholars have proposed frameworks for
prevention and control planning informed by resilience theory (7,
26-28). Research on urban community resilience in the context of
PHEs predominantly focuses on collaborative governance, resident
participation, external interventions, and the development of
organizational systems (29). However, there is limited exploration of
urban community resilience as a sociological construct from an
overarching network perspective, incorporating essential elements
such as resources, the environment, and activities. Consequently,
integrating resilience theory into the framework of urban community
prevention and control during PHEs—by identifying critical factor
nodes, clarifying the hierarchical relationships among resilience
factors, and modeling the likelihood of resilience actions—is
paramount for enhancing communities’ capacity to proactively adapt
to emergencies and safeguarding vulnerable populations at the
grassroots level.

Building upon identified research, this study aims to achieve the
following objectives: First, a novel framework is proposed to assess
urban community resilience for PHEs, incorporating key influencing
factors across three dimensions: social, environmental, and economic.
Second, leveraging Bayesian networks, an optimization strategy is
introduced to enhance urban community resilience in addressing
future public health challenges. This study not only offers actionable
strategies for community administrators to implement resilience-
building initiatives but also provides theoretical foundations to
improve the effectiveness of PHEs management systems.

2 Methods
2.1 Research idea
This study aims to investigate the application of urban community

PHEs
Optimization” approach. The methodology follows these steps: (1)

resilience for using an “Identification-Measurement-
Through a comprehensive literature review, this study identifies
influencing factors within the resilience framework. Identify the
influencing factors within the frameworks of social, environmental,
and economic resilience through a comprehensive literature review;
(2) Apply the Decision-Making Trial and Evaluation Laboratory
(DEMATEL) method to assess the relationships between these factors
through matrix transformation and threshold filtering; (3) Develop a
Bayesian network-based model to measure urban community
resilience for PHEs, using communities in Nanjing, China, as a case
study; (4) Measure resilience levels and diagnose the key factor chains
that lead to resilience failure through reverse reasoning; (5) Generate
static optimization strategies for urban community resilience for
PHEs based on sensitivity analysis of the influencing factors; (6)
Design simulation scenarios to analyze changes in community
resilience values and importance indicators over time, subsequently
generating dynamic optimization strategies for urban community
resilience for PHEs, thereby maximizing the role of community
resilience during emergencies.
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2.2 Establishment of the Bayesian network

Given the numerous uncertainties associated with PHEs,
Bayesian Network (BN) can quantify these uncertainties through
probabilistic reasoning and represent the causal relationships
between factors (30). Accordingly, this study chooses to construct a
BN model to assess urban community resilience for PHEs. Initially,
influencing factors are defined as network nodes, and based on their
internal hierarchical relationships, the paths of influence are
delineated to construct a resilient network structure. Subsequently,
expert assessments regarding the state distribution of influencing
factors are obtained through surveys. Next, fuzzy comprehensive
evaluation is employed to calculate the prior probabilities of root
nodes, and the Leaky Noisy-OR model is introduced to determine
the conditional probability tables for non-root nodes. Finally, data are
imported into NETICA software to perform forward and backward
inference diagnostics on the BN of urban community resilience
for PHEs.

2.2.1 Determination of the relationship between
influencing factors

This study employs the DEMATEL method to identify causal
relationships among nodes and to delineate the structure of the BN
for urban community resilience for PHEs. The BN is represented as a
directed acyclic graph illustrating the interrelationships among
influencing factors. The DEMATEL method has been extensively
applied in disaster management research (31-33) and is particularly
effective in analyzing the factors that influence community resilience
during PHEs. The relationships between these factors are established
through a structured survey, which is conducted as follows:

@ Form a direct impact matrix

The survey scores are summarized, averaged, and then rounded
to form the direct influence matrix A = [a;], «,» where a; represents
the degree of influence that factor xi has on factor X, with a; =0
when i =j.

® Normalizing the Direct Influence Matrix

To standardize the dimensions, the maximum value normalization
method is applied. The sum of each row in matrix A is calculated, and
the maximum value is identified. Using this value, the standardized
matrix B = [b;],, is derived according to Equation 1, where b; ranges
between 0 and 1.

aj

B
ma"z j:flij

1

® Solving the Comprehensive Influence Matrix

The community functions as a micro-urban unit comprised of
multiple entities and elements, characterized by complex and diverse
network relationships. The interconnections among urban community
resilience factors are multifaceted. Matrix A captures the direct
influences between these factors, while successive multiplications of
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matrix B represent the growing indirect influences among elements.
This process culminates in the comprehensive influence matrix T, as
shown in Equation 2:

-1

T=B(I-B) )

® Calculation of Four Metric Indices

Based on matrix T, four metric indices for influencing factors of
urban community resilience for PHEs are derived. The influence
degree f; is calculated as the sum of each row in matrix T, representing
the overall impact of each factor on others, as shown in Equation 3:

fi= Z;l:ltij, (i =12,.. .,n)
=3 ti(i=12.m)

3)

The affected degree ¢; is the sum of each column in matrix T,
indicating the overall influence received by each factor from others, as
shown in Equation 4:

e = ijltij, (i=12,...,n) (4)

The centrality m; is calculated as the sum of f; and e;, reflecting the
overall significance of the factor within the evaluation system, as
shown in Equation 5:

m; = fi +e (5)

The causality degree n; is defined as the difference between f; and
e. If n; > 0 indicates that the factor exerts a greater influence on others,
serving as a causal factor for resilience. Conversely, #; < 0 suggests that
the factor is more influenced by others, functioning as an effect factor.

n = fi—e (6)

2.2.2 Calculating the prior probabilities of root
nodes

The prior probability values of the root nodes in the BN are
derived through expert questionnaires combined with the fuzzy
comprehensive evaluation method, representing the failure
probabilities of the corresponding influencing factors. In accordance
with Wickens’ Signal Detection Theory, the failure probabilities of the
variable factors are classified into seven levels using fuzzy linguistic
terms. The specific trapezoidal fuzzy numbers and the corresponding
evaluation levels are presented in Table 1.

Due to variations in the understanding and experience of
experts in urban community resilience and emergency
management, the arithmetic mean method is insufficient for
addressing these discrepancies and obtaining accurate results.
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TABLE 1 Forms of fuzzy numbers.

Level Fuzzy linguistic term Fuzzy number
1 Very Low (VL) (0,0,0.1,0.2)

2 Low (L) (0.1,0.2,0.2,0.3)

3 Fairly Low (FL) (0.2,0.3,0.4,0.5)

4 Medium (M) (0.4,0.5,0.5, 0.6)

5 Fairly High (FH) (0.5, 0.6, 0.7, 0.8)

6 High (H) (0.7,0.8,0.8, 0.9)

7 Very High (VH) (0.8,09,1,1)

This study employs the weighted average method to process fuzzy
ratings, comparing each expert’s evaluation with the mean value
and assigning distinct weight coefficients to each expert. The
weight assigned to an expert is proportional to the proximity of
their rating to the mean, with experts whose evaluations are
closer to the mean receiving higher weights. Suppose the fuzzy
rating of a particular expert is F = (Fy;, Fy Fys Fiy) where k = 1,
2, ..., n.

@ Calculating the Arithmetic Mean of Trapezoidal Fuzzy
Numbers F,, from #n Experts, as shown in Equation 7:

1 1
;Z:Zleb;z::leb

Fa:(Fal)Fa2>Fa3)Fa4): 1wn 1wn
;Z kleks»;Z P (7)

® Calculating the Distance Between F; and F,, as shown in
Equation 8:

A(FoFy) = (P~ Fu +|[Fea ~Fao|+[Fis ~Fa|+ [Fra = Fae ) ®)

® Calculating the Similarity Between Fy and F,, as shown in
Equation 9:

d(Fe.F,)

ZZ=1d(Fk ’Fa)

S(Fe.F,)=1 ©9)

@ Calculating the Expert Evaluation Weight Wy, as shown in
Equation 10:

S(Fo.F,)

Z:=15(Fk ’F“ )

Wi (10)

Frontiers in Public Health

10.3389/fpubh.2025.1691666

® Calculating the Weighted Comprehensive Fuzzy Evaluation
Number F, as shown in Equation 11:

S(F.F,)

" F. | (1)
Zkzls(Fk’Fa)

F=(R,B,F,Fy) = Zzzlkak - zz:l

® Calculating the Weighted Aggregated Fuzzy Evaluation Value,
as shown in Equation 12:

_F1+F2 +F3 +F4
4

p (12)

2.2.3 Calculating the conditional probabilities of
non-root nodes

(1) The Noisy-OR model is a commonly used simplification tool
in BN to represent the relationship between # mutually independent
.» Z, and a child node Y. All nodes are binary
variables, with only two states: “0” representing no failure and “1”

parent nodes Z,, Z,, ..

representing failure. Additionally, the Noisy-OR model assumes that
the outcome of Y depends solely on the values of X; (i = 1,2, ..., n) and
is independent of other variables. In other words, there is a failure
connection probability P; (i = 1, 2, ..., n) between each x; and Y which
satisfies Equation 13:

P :(Y|X,~):(Y|X1,X2,...,Xi,...,Xn) (13)

It represents the probability that Y fails given that only x; fails. In
other words, if Y =1 (failure), then at least one of the x; must be 1
(failure). Assuming that all parent nodes with x; = 1 (failure) form the
set Xr, the conditional probability of Y failing is calculated as shown
in Equation 14:

PZI_Hi:X,EXT(l_Pi) (14)

Although the Noisy-OR model cannot capture complex
interactions or non-monotonic relationships, it is often used to explain
and analyze causal relationships in practical problems due to its
simplicity, intuitiveness, and computational efficiency. However, the
BN for urban community resilience may not encompass all influencing
factors of PHEs, which undermines the assumption in the Noisy-OR
model that “the failure of a child node is independent of variables
other than its parent nodes” Although these potential variables are not
identified or selected as parent nodes, they can still introduce biases
into the results. The Leaky Noisy-OR model can compensate for this
shortcoming by introducing a default node Z; to represent other
potential variables that are not considered but may still cause the child
node to fail.

Even if all parent nodes Z; do not fail, the child node Y may still
fail due to the failure of the default node Z;. Let P; denote the
probability that the child node Y fails when only the default node Z;
fails and all other parent nodes do not, with the confidence interval in
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this study set to 0.9 (34), i.e., P, = 0.1. A 90% confidence level indicates
that, if the sampling process were repeated numerous times,
approximately 90% of the resulting confidence intervals would
encompass the true parameter value. This approach balances the need
for a high degree of reliability with the provision of more precise
estimates, thereby mitigating the risk of being excessively conservative.
Assume that the set of all failed parent nodes is Zr, and Pi represents
the probability that the child node Y fails when only parent node Z;
fails while all other parent nodes do not. This probability is primarily
obtained using the same method as for root nodes. The conditional
probability of failure for each non-root node can then be calculated
using Equation 15.

PZI_(l_PL)Hi:Z,eZT (15)

(1-R)
(

1-P)

3 Results

3.1 Identification of influencing factors of
urban community resilience for PHEs

3.1.1 Theoretical framework for assessing urban
community resilience

PHEs are defined by their abrupt onset and inherent uncertainty.
Therefore, the assessment of urban community resilience must
account for these dynamic changes. The Pressure-State-Response
(PSR) model serves as a framework to analyze the relationship
between environmental pressures, system status, and policy responses.
This framework aligns closely with the dynamic processes urban
communities undergo in the face of PHEs. During such incidents,
communities initially face external pressures, which prompt changes
in their status. In response, communities implement various measures
to mitigate the pressure and restore stability. The PSR model offers a
robust theoretical framework for understanding the “pressure-status-
response” dynamic cycle, facilitating a comprehensive understanding
of the formation and evolution of urban community resilience in
urban settings.

The Social-Economic-Natural Composite Ecosystem (SENCE)
theory conceptualizes society, economy, and nature as an
interconnected composite system, emphasizing their interdependence
and mutual influence. As a complex system, the resilience of urban
communities is shaped by a range of interrelated factors, including the
characteristics of community residents, social capital, material
resources, financial assets, the natural environment, and infrastructure.
The SENCE theory integrates these three dimensions, offering a
systematic framework for analyzing the multi-level impacts on urban
community resilience, thereby overcoming the limitations of
unidimensional analyses.

In conclusion, the PSR model centers on the causal chain of
“pressure - status - response;,” emphasizing the logical relationship
between external shocks and system responses. The SENCE theory
enhances the understanding of the “status” dimension by revealing the
intricate interactions among the social, economic, and environmental
subsystems. Consequently, this study integrates the PSR model with
the SENCE theory, combining the two to form a more comprehensive
framework for resilience analysis. The dimensions of pressure, status,
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and response align with the pre-disaster, during-disaster, and post-
disaster phases, respectively, facilitating resilience evaluation across
these distinct stages. In accordance with the SENCE theory, the factors
influencing urban community resilience are classified into social,
economic, and environmental dimensions. The social dimension
addresses the personal characteristics of community residents and
factors related to community management. The economic dimension
encompasses the community’s available financial resources and its
capacity for effective resource allocation. The environmental
dimension includes a wide array of environmental factors from a
public health perspective, such as natural conditions, built
environments, and physical infrastructure within the community.

The urban community resilience model for PHEs can
be categorized into three dimensions: (1) Pressure: This dimension
refers to the initial resilience level of the community when exposed to
potential pressures from PHEs, specifically its capacity to withstand
hazardous factors and risk-prone environments. (2) State: This
dimension reflects the capacity of the urban community complex
system during PHEs, characterized by robustness, redundancy, and
other key features of the community’s inherent resources. (3)
Response: This dimension relates to the community’s ability to
implement measures and adapt to recovery across social, economic,
and environmental systems under the influence of PHEs. It is defined
by the strategic and timely response capabilities that characterize
resilience. The specific framework curve is illustrated in Figure 1.

This study focuses on the factors influencing resilience as the core
domain, proposing that the three primary categories—social,
environmental, and economic factors—collectively shape resilience.
These factors interact and exert mutual influence, creating a synergistic
and interconnected mechanism driven by their inherent relational
logic. This interaction culminates in the development of a theoretical
model of the factors influencing resilience.

3.1.2 Identification of influencing factors

To comprehensively identify the influencing factors of resilience,
this study conducted a search on the Web of Science using the search
string TS = [(“urban resilience” OR “city resilience”) AND (“epidemic”
OR “COVID-19” OR “Public health emergency” OR “pandemic”)].
This search yielded the identification of 31 influencing factors, as
illustrated in Table 2.

3.2 Constructing a Bayesian network for
urban community resilience for PHEs

3.2.1 Influencing factor analysis based on
DEMATEL

Among the three subsystems of urban community resilience for
PHEs, the environmental and economic dimensions exhibit fewer
influencing factors and a flatter hierarchical structure. In contrast, the
social dimension involves a greater number of influencing factors with
more complex internal logical relationships. Therefore, this study
focuses specifically on analyzing the causal relationships among the
influencing factors within the social resilience dimension.

In this study, we selected over 10 communities in the main urban
area of Nanjing, all of which had undergone high-risk containment
and control measures. Representatives from neighborhood
committees, property volunteers, health service centers, and street
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Urban community resilience for PHEs framework curve.

offices in these communities were invited to participate in offline
interviews, and those with extensive experience were selected as
interviewees. Subsequently, using the Questionnaire Star platform, an
online survey was conducted. The survey invited these representative
community staff, as well as experts and scholars in disaster
management and urban community resilience, to complete a scoring
questionnaire based on their professional knowledge and past work
experience. The participants were asked to quantify the influence
between each pair of factors using a 0-4 scale, ranging from “no
influence” to “low;” “medium,” “high,” and “very high” influence. The
scoring form is provided in Appendix 1.

A total of 43 questionnaires were distributed, and 31 valid
responses were collected (responses completed in less than 450 s were
excluded). The questionnaire scoring data were then processed into
matrices, normalized, and aggregated according to the method
outlined in Section 2.2.1 to obtain the comprehensive influence matrix
T. Using Equations 3-6, the four-degree indicators for each social
influence factor were calculated, and the summary is shown in Table 3.
Preliminary analysis of the causality degree indicator shows that 10
factors with a positive n belong to the cause group, while 5 factors with
a negative n belong to the effect group.

The threshold method is employed to reveal the mechanisms of
influence among social resilience factors within the community, as
illustrated in Figure 2. In this study, drawing on methodological
precedents from the literature, we utilized percentile-based threshold
determination criteria. The threshold « was set at the 95th percentile
of all coefficients within the comprehensive impact matrix T (35). This
statistical boundary demarcation ensures that the assessment results
prioritize the identification of operationally significant influence
pathways, while effectively filtering out noise from low-impact
connections that could otherwise distort model outcomes. Based on
the threshold calculation result (0.35746), relationships with a
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comprehensive influence coefficient exceeding this threshold are
identified as key influence pathways. Risk awareness, public
participation, social network relationships, and community
emergency management capacity each exhibit more than two key
pathways, suggesting closer and more significant connections with
other factors. Except for the two dashed lines representing influence
pathways between the effect factors, all other pathways flow from
cause factors to effect factors, aligning with causal logic. Key influence
pathways are differentiated by color based on the effect factors they
lead to: blue pathways exclusively connect to state-bearing factors,
while purple pathways exclusively connect to response and disaster
relief factors. One red pathway connects rules and regulations to
community emergency management capacity, indicating that the
community’s social state-bearing capacity can influence its social
response and disaster relief capabilities to some extent, consistent with
the internal mechanism of the PSR model. A black pathway from
social network relationships to the level of PHEs suggests that
community social response and disaster relief can influence social
pressures to some extent, aligning with the feedback mechanism of the
PSR model.

3.2.2 Bayesian network structure of urban
community resilience for PHEs

The internal hierarchy of resilience, along with the degree of
influence and causal attributes among the influencing factors, has
been clarified. Factors with high causality degrees are designated as
root nodes in the BN structure, while factors such as risk awareness,
public participation, and community emergency management
capacity, which exhibit negative causality degrees, are classified as
non-root nodes in the BN structure. Finally, key causal pathways
within the same dimension are prioritized, with pathways exhibiting
higher influence coefficients preferred when factors reside within the
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TABLE 2 Framework of influencing factors for urban community resilience for PHEs.

Resilience

Dimension

Influencing factor layer

10.3389/fpubh.2025.1691666

References

characterization

Social resilience (Soc)

Pressure (P)

Level of PHEs (SocP1)

Vulnerable groups (SocP2)

Scherzer et al. (39), Zhang et al. (6)

State (S)

Population structure (SocS1)

Resident health status (SocS2)

Resident educational level (SocS3)

Risk awareness (SocS4)

Rules and regulations (SocS5)

Publicity and education (SocS6)

Cui et al. (40), Deng et al. (41), Kais and Islam (42), Liu et al. (43), Niu et al.
(44), Wang et al. (45), Yan et al. (46), Zhao et al. (47)

Response (R)

Resident belongingness (SocR1)

Public service (SocR2)

Public participation (SocR3)

Social network relationships (SocR4)

Community emergency management

capability (SocR5)

Past experience (SocR6)

Government leadership functions

(SocR7)

Liu et al. (48), Niu et al. (44), Pfefferbaum et al. (49), Reveilhac (50), Shi et al.
(22), Wang et al. (51), Yan et al. (46), Zhao et al. (47)

Environmental Resilience (Env)

State (S)

Sanitation state (EnvS1)

Community quality (EnvS2)

Public space (EnvS3)

Entrance/exit management (EnvS4)

Chen et al. (52), Liu et al. (53), Niu et al. (44), Shi et al. (22), Su et al. (54)

Response (R)

Accessibility of medical facilities

(EnvR1)

Emergency shelter (EnvR2)

Living supporting facilities (EnvR3)

Transportation robustness (EnvR4)

Deng et al. (41), Jiang et al. (55), Li et al. (56), Niu et al. (44), Scherzer et al.
(39), Summers et al. (57), Zhao et al. (47)

Economic Resilience (Eco)

State (S)

Resident employment (EcoS1)

Resident income (EcoS2)

Social insurance (EcoS3)

Community assets (EcoS4)

Deng et al. (41), Niu et al. (44), Shi et al. (22), Summers et al. (57), Zhao et al.
(47)

Response (R)

Medical supplies (EcoR1)

Capital investment (EcoR2)

Communication system (EcoR3)

Intelligent supervision (EcoR4)

Niu et al. (44), Su et al. (54), Summers et al. (57), Wang et al. (51), Zhao et al.
(47)

same dimension. This methodology ultimately determines the BN
structure of resilience, as illustrated in Figure 3.

3.3 Case study

3.3.1 Basic information of the case

This study undertook a comprehensive survey of the fundamental
characteristics of communities in Nanjing’s urban core, including
their founding year, geographic location, and construction scale.
Four communities—A, B, C, and D—were selected as case studies,
with their profiles provided in Table 4. Each of these communities

Frontiers in Public Health

has distinct characteristics, which allow the urban community
resilience BN model developed in this study to demonstrate
broad applicability.

The survey was conducted online, as detailed in Appendix 2. The
respondents included frontline managers from the four selected
communities, as well as experts and scholars in the fields of urban
community resilience and emergency management. A total of 32
questionnaires were distributed, with 22 valid responses received. The
criteria for selecting valid questionnaires were as follows: (1)
Respondents had limited knowledge of urban community public
health safety issues (e.g., policies, technology, knowledge), categorized
as either “almost unaware” or having “little knowledge”; (2) the time
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TABLE 3 DEMATEL analysis of social influencing factors of urban community resilience for PHEs.

Influencing factors Influence degree

Affected degree

Centrality (m) Causality (n) Factor attribute

(f) ©)
SocP1 3.977 4.408 8.385 —0.431 Effect group
SocP2 3.387 3.309 6.696 0.078 Cause group
SocS1 2.100 1.667 3.767 0.433 Cause group
SocS2 2.901 4.184 7.085 —1.283 Effect group
SocS3 3.556 1.529 5.086 2.027 Cause group
SocS4 2.474 4.428 6.903 —1.954 Effect group
SocS5 4.081 3.480 7.561 0.601 Cause group
SocS6 3.794 3.607 7.401 0.187 Cause group
SocR1 3.550 3.242 6.792 0.308 Cause group
SocR2 3.963 3.491 7.454 0.473 Cause group
SocR3 3.537 4.646 8.183 —1.109 Effect group
SocR4 4.530 4.031 8.561 0.500 Cause group
SocR5 3.163 4.764 7.927 —1.601 Effect group
SocR6 3.719 3.196 6.915 0.523 Cause group
SocR7 3.530 2.282 5.812 1.249 Cause group
Based on the valid questionnaire data, the prior probabilities of
1l 1 the root nodes of BN are calculated using Equations 7-12. The results
21 SocS3 are summarized in Table 5.
Soc (2) Calculation of Conditional Probabilities for Non-root Nodes
o'
H SocR6 ¢SS SocR4
g mSocS1 \iﬂcm /7\ Based on the prior probabilities obtained from the fuzzy
g o z comprehensive evaluation and the Leaky Noisy-OR model, the
E /; conditional probabilities of the non-root nodes in the BN of resilience
c . - s
3 are calculated using Equation 15. Table 6 presents the conditional
Che probability for the non-root node “Community emergency
N~
management capability;” while the conditional probability tables for
5 the remaining non-root nodes can be found in Appendix 3.
SocS4
101 v
3 4 5 6 7 8 9 3.3.3 Key resilience failure chains based on
Centrality (m) backward diagnostic inference
FIGURE 2 The BN model structure was manually constructed using Netica
Critical i t path bet iabl f resili i ial . N
di%‘g:si'g;pac path between variables of resfience in socia software and the node probabilities were imported. The resilience value
of urban community resilience for PHEs was evolved through positive

taken to complete the questionnaire was less than 600 s; and (3)
had less than
research experience.

respondents lyear of relevant work or

Among the 22 valid respondents, 81% held a bachelor’s degree or
higher, and 75% had at least 5years of work experience. The
respondents’ job positions were distributed as follows: 31% were
involved in emergency management, 14% in party and human
resources, 18% in healthcare, and 36% held academic positions

at universities.

3.3.2 Solving the BN of urban community
resilience for PHEs

(1) Solving the Prior Probabilities of Root Nodes

Frontiers in Public Health

causality. The results showed that the probability of non-failure in
resilience within Nanjing is 39.6%, with the non-failure probabilities
for social, environmental, and economic resilience in communities
being 37.8, 43.3, and 49.5%, respectively. The failure probabilities of the
seven intermediate nodes introduced based on the PSR theory range
from 50 to 60%. The failure probabilities of response resilience, with
the exception of the economic system, are slightly higher than those of
state resilience, with the highest being the environmental response
failure probability (61.7%) and the social response failure probability
(58%). This suggests that, compared to the community’s ability to
defend against and respond to the pandemic using inherent resources,
grassroots communities in Nanjing lack the capacity and experience to
comprehensively mobilize social forces and rapidly restore normal
order in environmental facilities following PHEs.

This study employs backward diagnostic analysis using BN to
identify the most critical causal chain leading to the complete failure
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FIGURE 3
BN structure of urban community resilience for PHEs.
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of urban community resilience in response to PHEs, providing a
foundation for subsequent adjustments and improvements aimed at
addressing weak factors. In NETICA software, the probability P
(Resilience = statel) was set to 100%, and the backward diagnostic
results for each node’s probability are presented in Figure 4. When
resilience completely fails, the community’s social resilience system
exhibits the highest failure probability, reaching 74%. Among the
parent nodes of urban community resilience, social response has the
highest failure probability. As a result, the most critical causal chain
leading to resilience failure is: “Social network relationships —
Community emergency management capability — Social response —
Social resilience — Urban community resilience for PHEs” This
finding underscores that well-developed social networks enable
individuals to efficiently share critical information and collaboratively
solve problems during crises, thereby strengthening collective action

Frontiers in Public Health

capacity. Robust social network ties not only facilitate resource sharing
but also enhance residents’ compliance with and implementation of
containment measures, significantly improving communities’
responsiveness to PHEs (16). Moreover, communities with strong
social networks demonstrate superior capabilities in mobilizing
residents and social organizations, thereby establishing agile
emergency management systems capable of rapid response (23).
Supported by cohesive social networks and enhanced emergency
management capacity, communities can implement timely
interventions and develop systematic, comprehensive response
mechanisms. Ultimately manifested as social resilience, these
networked interactions reflect the enduring impacts of social capital
and institutional preparedness on communities’ adaptive capacities.
Through these relational pathways, communities maintain essential

functionality post-crisis while progressively restoring stability.
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TABLE 4 Community basic information.

Total
households

Resident
population

Community Area

(km?)

Population density
(persons/km?)

10.3389/fpubh.2025.1691666

Community characteristics

A 0.090 1,827 4,775

53,055

The community has a long history, with relatively outdated facilities.
The majority of residents are older adults, consisting primarily of

teachers, students, and other intellectuals.

B 0.175 3,520 8,700

49,714

Residents are highly educated, have access to excellent medical care,

and the neighborhood fosters a strong sense of community life.

C 0.500 3,000 9,000

18,000

Younger households predominate, the community environment is

newer, and the facilities are well-equipped.

D 1.500 6,373 17,000

11,333

The community has a low population density, with a significant influx
of non-local residents, and it has experienced pandemic lockdown

management.

At the same time, this causal chain highlights a significant issue:
social networks primarily focused on entertainment and services
often struggle to transform spontaneously into community
emergency resources or to effectively exercise self-governance. The
core issue lies in the fact that residents, as the main participants,
typically engage individually or passively, seldom participating
continuously and proactively in collective activities based on the
community’s shared interests. As a result, it is challenging to establish
cooperative, partnership-based social network relationships, which
naturally impedes the community’s ability to organize and respond
effectively during sudden disasters.

This diagnostic analysis serves as a crucial reminder for urban
communities, like the case study, emphasizing the importance of
fostering cooperation and communication among key stakeholders.
Strengthening these relationships is essential for enhancing the
community’s capacity to function as an effective emergency
organization during crises, as well as improving its responsiveness
following PHEs.

3.4 Optimization suggestions for urban
community resilience for PHEs

This study further employs Sensitivity Analysis, Dynamic
Bayesian Network (DBN) simulation, and Importance Analysis to
optimize strategies for enhancing community resilience.

3.4.1 Static optimization of urban community
resilience based on sensitivity analysis

In this study, the sensitivity analysis model is expressed as y = f (x;,
Xas ...» Xn), Where x; represents the i-th root node. When the non-failure
probability of x; varies within its defined range by a specified
increment, the impact of each root node’s variation on the resilience
output is quantitatively assessed. This impact is denoted by the
sensitivity coeflicient S. A larger value of S indicates a greater influence
of changes in that particular factor, signifying a higher sensitivity of
community resilience to it. The sensitivity coefficient S is computed as
shown in Equation 16.

R -R!

§ !
B B

(16)
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Where Bl and P represent the non-failure probability values of
the i-th root node at the left and right ends of the variation interval,
respectively. R,l and R represent the non-failure probabilities of urban
PHEs,
environmental system resilience, and economic system resilience

community resilience for social system resilience,
when the non-failure probability of the i-th root node is P,'l and P/,
respectively.

Based on the resilience measurement results from forward causal
evolution, the highest non-failure probability (state 0) among the
three parent nodes of resilience is 49.5%. The initial non-failure
probability for the three parent nodes—community social,
environmental, and economic resilience—is set at 50%, and
gradually increased to 1 in increments of 10%. The changes in the
non-failure probability of urban community resilience for PHEs (R)
are shown in Figure 5. The slopes of the three lines represent the
sensitivity coeflicients of the different parent nodes, which are
calculated using Equation 16. From the height, slope, and trend of
the lines, it is evident that community social resilience is the most
sensitive factor, exerting the greatest influence on changes in urban
community resilience for PHEs. This is followed by community
environmental resilience and community economic resilience, both
of which exhibit similar sensitivity levels. The sensitivity of the three
parent nodes is positively correlated with their respective

failure probabilities.
(1) Community Social Resilience

First, we analyze the social resilience component, which exerts the
most significant impact on changes in overall community resilience.
In GeNle, the “Set Target” function was utilized to determine the
sensitivity levels, as shown in Figure 6.

The darker the color of the influencing factor nodes, the higher
their sensitivity. Factors such as the level of PHEs, vulnerable groups,
population structure, and social network relationships are depicted in
darker colors, indicating greater sensitivity. Conversely, factors such
as resident health status, rules and regulations, resident belongingness,
and public participation appear lighter in color, reflecting lower
sensitivity. Therefore, urban communities should prioritize these
social factors to effectively enhance resilience to PHEs. Given that the
severity of future PHEs and community population structure are
objective factors that are difficult to alter through human intervention,
it is essential to focus on improving regulations related to community
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TABLE 5 Prior probabilities of root nodes in the BN of urban community
resilience for PHEs.

Root node Failure probability = Non-failure
probability

EnvS1 0.353502 0.646498
EnvS2 0.513808 0.486192
EnvS3 0303115 0.696885
EnvS4 0.551406 0.448594
EnvR1 0.678637 0321363
EnvR2 0.410195 0.589805
EnvR3 0322598 0.677402
EnvR4 0.375086 0.624914
SocP1 0.295805 0.704195
SocP2 0.384659 0.615341
SocS1 0.421253 0.578747
SocS2 0.555276 0.444724
SocS3 0.337594 0.662406
SocS5 0.362025 0.637975
SocS6 0.271336 0.728664
SocR1 0318983 0.681017
SocR2 0.57406 0.42594
SocR4 0.647044 0.352956
SocRé6 0.486191 0.513809
SocR7 0.256169 0.743831
EcoS1 0.342277 0.657723
Eco$2 0.587509 0.412491
EcoS3 0.283614 0.716386
EcoS4 0.405252 0.594748
EcoRl1 0.616297 0.383703
EcoR2 0.242033 0.757967
EcoR3 0265175 0.734825
EcoR4 0.527876 0.472124

public health and emergency management, as well as fostering greater
trust and cooperation among residents.

(2) Environmental Resilience and Economic Resilience

According to the forward evolution results of the BN, the
highest non-failure probability (state 0) for the root nodes of
environmental resilience is 69.7%, while for economic resilience, it
is 75.8%. The initial non-failure probability for the root nodes of
environmental resilience is set at 70%, and for economic resilience,
it is set at 80%. Both are gradually increased to 1 in increments of
5%. Sensitivity coefficients were calculated for different change
intervals. Factors such as sanitation state, community quality,
entrance/exit management, accessibility of medical facilities,
resident income, medical supplies, capital investment, and
intelligent supervision have sensitivity coefficients above the
average, indicating that these variables should be given particular
attention and optimization recommendations.
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TABLE 6 Conditional probability table of the non-root node “SocR5.”

SocR4 SocR6 @ SocR7  Failure Non-failure
probability = probability

State 0 State 0 State 0 0.1 0.9

State 0 State 0 State 1 0.352674 0.647326

State 0 State 1 State 0 0.398835 0.601165

State 0 State 1 State 1 0.567611 0.432389

State 1 State 0 State 0 0.620758 0.379242

State 1 State 0 State 1 0.72723 0.27277

State 1 State 1 State 0 0.746681 0.253319

State 1 State 1 State 1 0.8178 0.1822

This paper comprehensively considers both the BN reasoning
probability and the magnitude of sensitivity, summarizing the static
optimization strategy for urban community resilience for PHEs.
The strategy is structured around the prioritization of social,
environmental, and economic factors, while comparing the
resilience of subsystems (state and response) under constraints of
resources and time. The key strategies include: This article outlines
the following optimization strategies: @ Communities should
proactively develop interactive platforms, organize activities related
to public health, health safety, and disaster prevention and
mitigation, establish residents’ committees, encourage community
participation, and promote the transformation of residents’ social
networks into self-help networks. @ Communities should
strengthen the protection of vulnerable groups, collaborate with
community hospitals to establish green channels, and ensure timely
assistance for vulnerable individuals. ® Communities should
develop management systems for pre-disaster warnings, disaster
response, and post-disaster recovery. Risk assessments should
be conducted through public health safety monitoring systems, and
timely emergency plans and implementation strategies should
be established. @ Medical institutions should enhance medical
services, provide intelligent contactless consultation equipment,
collaborate with large hospitals to attract talent, and improve
medical standards. ® Communities should adapt the arrangement
of entrances and exits, set up access control systems based on
epidemic prevention levels, and regularly inspect the hygiene and
safety of these areas. ® Communities should establish multi-tiered
material reserve mechanisms, collaborate with supermarkets,
pharmacies, and other entities to ensure the supply of essential
materials, and set up logistics and emergency material information-
sharing platforms to strengthen material reserves and supply
capabilities in emergencies. @ Communities should enhance
financial management, establish community funds, attract resources
from residents, social enterprises, and other sources, and improve
the flexibility of community funds and their ability to respond to
public crises.

3.4.2 DBN inference and simulation of urban
community resilience for PHEs

This study introduces DBN that incorporates temporal
characteristics to simulate and predict urban community resilience for
PHEs, taking into account the changes in influencing factors over
time. This approach enables the development of more scientifically
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grounded strategies for optimizing resilience from a dynamic

perspective. To simplify the complex analysis of the DBN, the

following reasonable assumptions are made: (1) The BN structure

remains constant over time (f), and the process of conditional
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probability transitions over finite, adjacent time intervals is stable and
consistent; (2) Probability transitions adhere to a first-order Markov
chain, meaning that the probability distribution at time (¢+ 1)
depends solely on the state at time () and is independent of any prior
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states. The specific modeling steps for the DBN of resilience are
outlined as follows:

@ Constructing the Static Bayesian Network (B,): The BN of
resilience, as presented in Section 3.3 of this study, serves as Bo.
It represents the joint probability distribution at the initial state
of the DBN.

Constructing the Bayesian Transition Network (B—): A DBN
combines both the BN structure and Markov assumptions to
model temporal data. It decomposes the data into a series of
time slices, where the node variables within each time slice
form a static BN, and standard arcs represent relationships
within the same time slice. Temporal arcs, on the other hand,
represent relationships between nodes in different time slices
and are defined by transition probabilities that describe the
relationships between root nodes in adjacent time slices.
Determine the State Transition Probability Matrix: Define the
corresponding probability transition matrices according to the
different types of variables. The causes of safety risks are
typically categorized into human, equipment, environmental,
and management factors. In this study, the failure transition
matrices for root node variables are constructed from three
perspectives—human  factors, physical factors, and
management factors—based on the community resilience
subsystems and influencing factor systems. Root nodes that

lack significant temporal characteristics (e.g., the level of PHEs)
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are excluded from the scope of the DBN analysis. The
classification of the three types of root nodes and their
corresponding transition probabilities are outlined as follows:

(1) Human Factor Root Nodes

Human factors refer to the behaviors, work, characteristics,
emotions, and interactions of various personnel involved in
community epidemic prevention and control, including community
residents, community workers, and grassroots managers. It is assumed
that human factors (nodes) will be in one of two states in the future:
positive (0) or negative (1). Negative or non-compliant behaviors that
result in errors are generally independent of random events. Assuming
that the average frequency of human errors per unit time is 4,, the
human factor transition probabilities, as shown in Table 7, follow a
Poisson distribution (59). The root nodes for human factors include
sanitation state, resident health status, resident belongingness, public
service, and social network relationships.

(2) Physical Factor Root Nodes

Physical factors refer to common community resources,
infrastructure, or disaster prevention and mitigation facilities. It is
assumed that physical factors (nodes) are in one of two states: normal
(0) or failed (1). Community environmental resources, infrastructure,
and disaster prevention facilities inevitably deteriorate over time,
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TABLE 7 State transition probability matrix of DBN.

Root node Time t + At
variable type
o State 0 State 1
State 0 1_ /119_}“‘ /116—&
Human node
State 1 e 1_e
State 0 oAt 1_ g~ AL
Physical node
State 1 1 e—,UAT e—yAt
State 0 1 0
Management node
State 1 c 1-¢

requiring community staff to perform regular maintenance and
updates to ensure proper functioning. Assuming the facility failure
rate is A, and the facility maintenance and repair rate is u, the
transition probabilities, as shown in Table 7, follow an exponential
distribution (58). The root nodes for physical factors include
accessibility of medical facilities, living support facilities,
transportation robustness, public space, entrance/exit management,

communication system, and intelligent supervision.
(3) Management Factor Root Nodes

It is assumed that all management factors (nodes) are in one of
two states: reasonable (0) or unreasonable (1). As the duration of
community public health governance increases, members accumulate
relevant management experience. The introduction of the
enhancement coefficient ¢, as shown in Table 7, reflects the
improvement in comprehensive management capabilities, such as
decision-making, execution, and learning, brought about by
experience accumulation. The management factor root nodes include
medical supplies, capital investment, emergency shelter, rules and
regulations, publicity and education, past experience, and government
leadership functions.

To construct the DBN, it is necessary to set the facility failure
rate 1,, the maintenance and repair rate y, the frequency of human
errors A, and the management enhancement coefficient ¢. Drawing
on relevant literature and the principles of control variables, this
study created 12 simulation scenarios, as shown in Table 8. Based
on simulation experiments and expert insights, the parameter
values of the transition probability matrices for the three root nodes
were appropriately set to ensure that the dynamic simulation results
of urban community resilience for PHEs are scientifically robust
and accurate. In this context, 4, = 1, 4, 12 represent the probabilities
of human-caused negligence occurring once a year, once a quarter,
and once a month, respectively. These values cover scenarios
ranging from “low-frequency and occasional” to “high-frequency
and habitual” 1, = 1/365, 12/365, 48/365 represent the probabilities
of facility failure occurring once a year, once a month, and once a
week, respectively. These values reflect scenarios ranging from
“low-fault in new communities” to “high-fault in older
communities” y = 1, 0.1, 0.01 represent the maintenance cycles of
1 day, 10 days, and 100 days, respectively, covering scenarios from
“high-frequency maintenance” to “low-frequency maintenance.”
Lastly, ¢ =1, 0.1, 0.01 represent varying levels of management
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TABLE 8 Design simulation scenarios for DBN.

Observation Scenario M As 7} c
group no.

(1) 1
Human errors

(2) 4 12/365 0.1 0.1
A

3) 12

) 1/365
Facility failure rate

(5) 4 12/365 0.1 0.1
A

(6) 48/365
Maintenance and @) 1
repair rate (8) 4 12/365 0.1 0.1
K ©) 0.01
Management (10) 1
enhancement

an 4 12365 | 0.1 0.1
coefficient
. (12) 0.01

intervention, ranging from “strong management intervention” to
“no management intervention”

Based on the designed simulation scenarios, the original BN
was transformed 8 times using GeNle to construct a DBN for
simulating and predicting resilience. The changes in resilience
probability obtained from the simulation experiments across the
four groups of control variables are shown in Figure 7. Group (a):
Only the number of human errors (4,) was observed. Comparing
scenarios (1) and (3), scenario (2) exhibits a relatively slow upward
trend in resilience, indicating that extreme situations where
human errors occur either too infrequently or too frequently tend
to stimulate and enhance community resilience. Conversely,
occasional errors can lead to community complacency. Therefore,
setting the probability of human-induced errors to once per
quarter aligns more closely with practical circumstances. Group
(b): Only the failure rate of facilities (4,) was observed. Resilience
in scenario (6) initially declines slowly and then stabilizes around
t,, after which it begins to recover gradually. The state of resilience
in this scenario is suboptimal. The lower the 4, in scenarios (4) and
(5), the faster the resilience increases. Group (c): Only the
maintenance and repair rate of facilities (#) was observed. The
higher the repair rate (), the faster the resilience grows. However,
in specific cases, such as scenario (9), where facility maintenance
cannot keep up with the failure rate, resilience declines at a steady
rate. Group (d): Only the management enhancement coefficient
(c) was observed. In scenario (10), when the management
enhancement coefficient reaches its maximum value of 1, resilience
rises sharply at ¢, and then remains stable over the long term,
representing a rare scenario.

Based on the analysis of the simulation scenario results, expert
experience, and literature references (36), it is relatively reasonable to
set A; =4, A, =12/365, u = 0.1, and ¢ = 0. Using these parameters, the
DBN for resilience was constructed. This DBN reflects the changes in
the state of each influencing factor over time, as well as the resilience
level at different time points. It enables dynamic simulation and
prediction of urban community resilience for PHEs, providing a basis
for formulating long-term dynamic strategies to enhance urban
community resilience.
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FIGURE 7
Dynamic inference simulation of urban community resilience for PHEs

3.4.3 Dynamic optimization of urban community
resilience based on importance analysis

Bayesian network importance analysis is a method used to assess
the influence of initial nodes on outcome nodes. This technique
determines the significance of variables by considering both the
structure and parameters of the BN, revealing the degree to which
initial variables impact the target outcomes. Importance analysis is
commonly employed to identify key factors, optimize model design,
and enhance efficiency. Its main advantage lies in accounting for
dependencies between variables, thus preventing the neglect of crucial
interaction effects. Additionally, it can handle various uncertainties,
such as model structure uncertainty and data variability, and is
applicable to complex nonlinear models without assuming specific
model forms or relying on similar methods. Bayesian network
importance analysis is particularly useful for evaluating how uncertain
factors affect model outcomes in fields such as risk analysis, decision
support, and knowledge discovery (37, 38).

This study evaluates the significance of each root node factor in
urban community resilience for PHEs. Using BN inference
algorithms, three types of importance parameters—probabilistic,
critical, and structural—are derived for the root nodes. Subsequently,
by integrating DBN analysis, the temporal variations in the
importance of influencing factors are assessed. Based on these results,
strategies are proposed to facilitate the dynamic enhancement of
urban community resilience. The specific steps are outlined
as follows:

@ Calculation of Probabilistic Importance

Probabilistic importance (PI) refers to the degree to which a unit
change in the failure probability of a specific root node influences the
failure probability of the leaf node. It is denoted as PI and calculated
using Equation 17. PI effectively categorizes the importance of factors
from a sensitivity perspective. By calculating the PI for each root node,
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the factors that most effectively and rapidly reduce the failure rate of
urban community resilience can be identified.

PI;=P(R=1X;=1)-P(R=1|X; =0) 17)

® Calculation of Critical Importance

Critical importance (CI) is defined as the ratio of the change rate
in the failure probability of the leaf node to the change rate in the
failure probability of a specific root node. It is denoted as CI and
calculated using Equation 18. Compared to PI, CI provides a more
comprehensive metric by evaluating the significance of factors from
both sensitivity and failure rate perspectives. A higher CI indicates
that the root node (influencing factor) is more likely to trigger the
failure of the leaf node (resilience). Additionally, it suggests that
optimizing this influencing factor may be more feasible, as it is
generally easier to reduce the failure probability of a root node with a
high initial failure probability than one with a low initial
failure probability.

(18)

® Calculation of Structural Importance

Structural importance (SI) is defined as the impact of the failure
of a particular root node on the probability of community resilience
failure, assuming that the failure probabilities of all other root nodes
are held constant. SI is calculated using Equation 19 and reflects the
significance of each influencing factor node within the BN structure.
This metric provides valuable insight for enhancing the structure of
the BN model for urban community resilience in the context of PHEs.
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(19)

In the above three equations, x; represents the i-th root node; R
represents the leaf node (urban community resilience for PHEs); X;
denotes any root node other than x; 1 indicates node failure; and 0
indicates node non-failure.

The corresponding probability values were obtained by adjusting
the BN model in GeNle software and calculating them according to
Equations 17-19, as shown in Appendix 4. The results indicate that
factors with high PI also tend to have high CI (e.g., medical supplies,
entrance/exit management, accessibility of medical facilities), whereas
factors with low CI generally exhibit low PI (e.g., resident educational
level, publicity and education, public space). Notably, there is no
significant difference in their overall rankings.

The top 10 SI rankings are predominantly occupied by factors from
the social and environmental dimensions, indicating that the economic
dimension is relatively less significant. When simplifying the BN model
structure, factors with lower SI should be prioritized for consideration.
Based on the formula and the concept of structural importance, SI is
solely determined by the constructed BN structure. Since the DBN
structure in this study remains unchanged, this indicator is not
influenced by time.

10.3389/fpubh.2025.1691666

Among the three indicators—PI, CI, and SI—CI provides a more
comprehensive reflection of issues and is therefore relatively more
significant. Consequently, this study prioritizes the analysis of the
temporal changes in this indicator. Based on the initial CI ranking at
time t0, the top eight influencing factors with temporal characteristics
were selected. The CI trends over the eight transitions of the DBN are
shown in Figure 8. The critical importance of sanitation state, resident
health status, and social network relationships increases monotonically
over time, with sanitation state showing the fastest and most
significant growth. Conversely, the critical importance of accessibility
of medical facilities, medical supplies, entrance/exit management, and
rules and regulations decreases monotonically, while the trend of
intelligent supervision remains relatively stable.

In summary, the comparison results of the three importance
parameters of root nodes in the BN of resilience at time f, are shown
in Figure 9. The larger the volume of the bubble, the higher the SI. The
direction of the arrows indicates the dynamic changes in PI and CI of
the influencing factors over time. The bubbles are divided into three
levels by dashed lines, with importance decreasing from the outer to
the inner levels. In the long-term process of building resilient
communities to adapt to and prevent PHEs, the influencing factors
located at the top right of the bubble chart, especially those with
arrows pointing upwards to the top right, should be prioritized for
optimization. These include factors such as sanitation state, social
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network relationships, and resident health status. In the medium term,
attention should be given to enhancing the factors between the two
dashed lines, which also have arrows pointing upwards to the top
right, such as the communication system and emergency shelter.
Finally, in the short term, consider the influencing factors near the
inner dashed line with a trend of crossing levels, such as past
experience and living supporting facilities.

Based on the results of the importance analysis, the focus of
community work should be adjusted in response to the changing
importance of influencing factors over different time periods during
long-term public health crisis prevention and control. This paper
proposes a dynamic optimization strategy for enhancing urban
community resilience for PHEs, from the perspectives of the short,
medium, and long term. ® The initial strategy prioritizes “social network
development + environmental health management” Governments
incentivize businesses to engage in community governance during PHEs,
ensuring the continuous flow and supply of resources during outbreaks.
Neighborhood committee activities cultivate close-knit, mutually
supportive relationships among residents, while communities enhance
sanitation management by promptly clearing waste and debris. @
Mid-term strategies emphasize “intelligent platform integration + spatial
function adaptation,” combining community management with medical
and daily services to create seamless living ecosystems. The flexible
repurposing of spaces such as parking lots and hotels allows for their
conversion into emergency medical facilities and material storage areas.
® Long-term strategies focus on the “simultaneous enhancement of both
software and hardware” Managers improve governance efficiency
through skill development and resident feedback, while upgrading
essential living infrastructure. This fosters a living services network that
balances equity and pandemic preparedness. By dynamically adjusting
priorities, communities establish a resilience-building pathway that
spans the entire “prevention-response-recovery” cycle.
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4 Conclusion

This study follows the research paradigm of “comprehensive multi-
dimensional identification—bidirectional inference measurement—
effective targeted optimization,” and has drawn the following conclusions:

The study developed a resilience model for urban community
resilience for PHEs based on the PSR-SENCE framework, identifying
31 influencing factors. The DEMATEL method was then employed to
identify 10 key causal pathways in social resilience, providing a
scientific foundation for comprehensive resilience assessment. Using
BN, the study conducted a case analysis of the response process of a
disaster-resistant model community in Nanjing to the epidemic. The
results revealed that the most critical failure chain in terms of resilience
was: “Social network relationships — Community emergency
management capability — Social response — Social resilience —
urban community resilience for PHEs” Under PHEs, urban
community resilience for PHEs is significantly influenced by social
network relationships. Individuals share information and collaborate
through social networks, while communities can more effectively
mobilize residents and leverage emergency management capabilities
via these networks to respond promptly and implement measures.

This study employed scenario simulation and importance analysis,
concluding that the social dimension is central to resilience building
and plays a pivotal role in establishing effective emergency response
systems. To promote continuous enhancement of urban community
resilience for PHEs, the study proposes short-term, medium-term,
and long-term dynamic optimization strategies for urban community
resilience, enabling adaptation to evolving PHEs and changing
internal community conditions.

In comparison to existing studies, this research comprehensively
considers the combined attributes of resilience in systems and
processes, and constructs a city community resilience model under
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sudden PHEs. Additionally, this study introduces DBN for simulation,
offering new perspectives and tools for the long-term dynamic
management and optimization of community resilience. This work
provides valuable guidance for urban communities in formulating
epidemic prevention and disaster mitigation plans, thereby enhancing
their resilience and improving their ability to manage future
uncertainties and risks.

This study has several limitations: ® The limited sample size and
the subjectivity of expert opinions hinder the ability of this study to
fully represent all communities. Significant variations, particularly
across different regions or types of communities, may affect the
generalizability and representativeness of the findings. Future research
should expand the sample size and scope to include a broader range
of regions, scales, and community types, and incorporate digital
technologies such as blockchain and big data to enhance the
robustness of the conclusions. @ The Bayesian network model relies
on several assumptions, which may not fully capture the complexity
of real-world conditions. Future studies could introduce additional
models for validation.
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