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Introduction: Urban communities, as the basic unit of urban governance, play a 
crucial role in responding to public health emergencies (PHEs). This study aims 
to investigate the resilience measurement and optimization strategies of urban 
communities in responding to PHEs in order to improve their resilience.
Methods: The study constructed a resilience assessment framework and identified 
31 key influencing factors to measure the resilience of case communities in Nanjing. 
Through sensitivity analysis, static optimization strategies were proposed from 
social, environmental, and economic levels. Dynamic Bayesian network inference 
simulation and importance analysis were used to propose dynamic optimization 
strategies from pre, during, and long-term perspectives.
Results: Through the combination of dynamic and static strategies, community 
managers promote resilience building from both short-term and long-term 
perspectives.
Discussion: The study provides a valuable reference for comprehensively 
improving the emergency management system.
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1 Introduction

As cities continue to expand, they are increasingly vulnerable to a range of uncertainties 
originating from both external and internal sources (1). In addition to common natural 
disasters such as earthquakes, typhoons, and floods, the severe consequences of public health 
emergencies (PHEs) should not be  underestimated. Since the implementation of the 
International Health Regulations in 2007, the WHO has declared seven global PHEs, including 
outbreaks of H1N1 influenza, Ebola virus, Zika virus, and monkeypox. Although PHEs occur 
infrequently, they have a broad-reaching impact and spread rapidly, posing substantial threats 
to human health and socio-economic stability. The global outbreak of the COVID-19 
pandemic in 2020 has had profound effects on global economic development. According to 
World Health Organization statistics, as of August 2024, the cumulative number of globally 
diagnosed cases stands at 776 million, with approximately 7.06 million confirmed deaths. This 
public health crisis has had a profound impact on global economic development (2), leading 
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to significant deterioration in the economic conditions of sectors such 
as manufacturing, agriculture, the food industry, education, sports, 
and entertainment (3).

The COVID-19 pandemic has presented substantial challenges to 
existing urban response systems for PHEs, spanning from pre-disaster 
prevention to mid-disaster management. Communities, as 
fundamental units of human activity and foundational elements of 
urban governance, play a pivotal role in the early stages of emergency 
response and are critical for the development of comprehensive public 
health service systems. During the pandemic, stringent measures at 
the community level, such as community blockades (4, 5) and strict 
restrictions on entry and exit (6), were effective in preventing the 
spread of the outbreak, controlling its transmission, and reducing the 
loss of life and property (7).

In the face of unpredictable and interconnected public health 
crises, post-disaster mitigation tends to be reactive, allowing for only 
limited reductions in losses once a disaster has occurred. The most 
effective approach to disaster risk reduction involves fostering 
communities that can self-organize and self-adjust to evolving 
emergencies, thereby achieving optimization and stability—essentially 
embedding urban community resilience. The concept of “resilience,” 
encompassing elasticity, resistance, and adaptability, originated in 
engineering before being widely adopted across various disciplines, 
including ecology (8), psychology (9), economics (10), and safety 
management (11). In the context of disaster risk, resilience is defined 
as “the ability of a system or its components to absorb disturbance and 
still retain its essential functions following a disaster event” (12). The 
process of resilience in mitigating disasters and reducing damage can 
be divided into four stages: prevention and preparation, absorption, 
rapid recovery, and adaptation and transformation. In this study, 
urban community resilience refers to the capacity of community 
systems to resist disruptions caused by uncertainty, while also 
recovering and adapting as necessary (13).

Since the Second United Nations World Conference on Disaster 
Risk Reduction, governments, institutions, and academic communities 
in countries such as the United States, Germany, Japan, and others 
have been exploring the development of resilient communities. 
Identifying appropriate dimensions to analyze the factors influencing 
resilience and establishing standardized and effective metrics for 
measuring resilience are essential steps in assessing the progress of 
resilience-building efforts within communities. To evaluate urban 
community resilience, scholars have employed various frameworks, 
including the 4R Theory (14), the Disaster Resilience Local Framework 
Model (DROP) (15), the Community Climate Resilience Assessment 
(CCRAM) (16), the Interpretive Structural Modeling  - Analytic 
Hierarchy Process (ISM-AHP) model (17), the Community Disaster 
Resilience Framework (CDRF) (18), and the iRe-CoDeS Framework 
(19). These frameworks incorporate dimensions such as spatial 
resilience, capital resilience, social resilience, and governance 
resilience (20–22) to quantify the level of urban community resilience.

In recent years, scholars have progressively incorporated the 
concept of resilience into the prevention, control, and comprehensive 
management of communities during PHEs. This paradigm not only 
leverages the inherent advantages of communities in crisis situations 
but also introduces innovative strategies for preventing and managing 
public health challenges in non-crisis periods. Research has 
emphasized the importance of efficient collaboration and coordinated 
prevention and control efforts among community stakeholders. 

Findings suggest that critical factors such as government policy 
prioritization and tiered guidance (23), neighborhood social capital 
(6), resource allocation (24), and the active engagement of community 
residents and volunteer organizations (6) significantly enhance the 
effectiveness of community-based prevention and control measures 
(23, 25). Additionally, several scholars have proposed frameworks for 
prevention and control planning informed by resilience theory (7, 
26–28). Research on urban community resilience in the context of 
PHEs predominantly focuses on collaborative governance, resident 
participation, external interventions, and the development of 
organizational systems (29). However, there is limited exploration of 
urban community resilience as a sociological construct from an 
overarching network perspective, incorporating essential elements 
such as resources, the environment, and activities. Consequently, 
integrating resilience theory into the framework of urban community 
prevention and control during PHEs—by identifying critical factor 
nodes, clarifying the hierarchical relationships among resilience 
factors, and modeling the likelihood of resilience actions—is 
paramount for enhancing communities’ capacity to proactively adapt 
to emergencies and safeguarding vulnerable populations at the 
grassroots level.

Building upon identified research, this study aims to achieve the 
following objectives: First, a novel framework is proposed to assess 
urban community resilience for PHEs, incorporating key influencing 
factors across three dimensions: social, environmental, and economic. 
Second, leveraging Bayesian networks, an optimization strategy is 
introduced to enhance urban community resilience in addressing 
future public health challenges. This study not only offers actionable 
strategies for community administrators to implement resilience-
building initiatives but also provides theoretical foundations to 
improve the effectiveness of PHEs management systems.

2 Methods

2.1 Research idea

This study aims to investigate the application of urban community 
resilience for PHEs using an “Identification-Measurement-
Optimization” approach. The methodology follows these steps: (1) 
Through a comprehensive literature review, this study identifies 
influencing factors within the resilience framework. Identify the 
influencing factors within the frameworks of social, environmental, 
and economic resilience through a comprehensive literature review; 
(2) Apply the Decision-Making Trial and Evaluation Laboratory 
(DEMATEL) method to assess the relationships between these factors 
through matrix transformation and threshold filtering; (3) Develop a 
Bayesian network-based model to measure urban community 
resilience for PHEs, using communities in Nanjing, China, as a case 
study; (4) Measure resilience levels and diagnose the key factor chains 
that lead to resilience failure through reverse reasoning; (5) Generate 
static optimization strategies for urban community resilience for 
PHEs based on sensitivity analysis of the influencing factors; (6) 
Design simulation scenarios to analyze changes in community 
resilience values and importance indicators over time, subsequently 
generating dynamic optimization strategies for urban community 
resilience for PHEs, thereby maximizing the role of community 
resilience during emergencies.
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2.2 Establishment of the Bayesian network

Given the numerous uncertainties associated with PHEs, 
Bayesian Network (BN) can quantify these uncertainties through 
probabilistic reasoning and represent the causal relationships 
between factors (30). Accordingly, this study chooses to construct a 
BN model to assess urban community resilience for PHEs. Initially, 
influencing factors are defined as network nodes, and based on their 
internal hierarchical relationships, the paths of influence are 
delineated to construct a resilient network structure. Subsequently, 
expert assessments regarding the state distribution of influencing 
factors are obtained through surveys. Next, fuzzy comprehensive 
evaluation is employed to calculate the prior probabilities of root 
nodes, and the Leaky Noisy-OR model is introduced to determine 
the conditional probability tables for non-root nodes. Finally, data are 
imported into NETICA software to perform forward and backward 
inference diagnostics on the BN of urban community resilience 
for PHEs.

2.2.1 Determination of the relationship between 
influencing factors

This study employs the DEMATEL method to identify causal 
relationships among nodes and to delineate the structure of the BN 
for urban community resilience for PHEs. The BN is represented as a 
directed acyclic graph illustrating the interrelationships among 
influencing factors. The DEMATEL method has been extensively 
applied in disaster management research (31–33) and is particularly 
effective in analyzing the factors that influence community resilience 
during PHEs. The relationships between these factors are established 
through a structured survey, which is conducted as follows:

	 ①	 Form a direct impact matrix

The survey scores are summarized, averaged, and then rounded 
to form the direct influence matrix A = [aij]n × n, where aij represents 
the degree of influence that factor xi has on factor Xj, with aij = 0 
when i = j.

	 ②	 Normalizing the Direct Influence Matrix

To standardize the dimensions, the maximum value normalization 
method is applied. The sum of each row in matrix A is calculated, and 
the maximum value is identified. Using this value, the standardized 
matrix B = [bij]n × n is derived according to Equation 1, where bij ranges 
between 0 and 1.

	 =

=
∑ 1max

ij
n

ijj

a
B

a
	

(1)

	 ③	 Solving the Comprehensive Influence Matrix

The community functions as a micro-urban unit comprised of 
multiple entities and elements, characterized by complex and diverse 
network relationships. The interconnections among urban community 
resilience factors are multifaceted. Matrix A captures the direct 
influences between these factors, while successive multiplications of 

matrix B represent the growing indirect influences among elements. 
This process culminates in the comprehensive influence matrix T, as 
shown in Equation 2:

	 ( )−= − 1T B I B 	 (2)

	 ④	 Calculation of Four Metric Indices

Based on matrix T, four metric indices for influencing factors of 
urban community resilience for PHEs are derived. The influence 
degree fi is calculated as the sum of each row in matrix T, representing 
the overall impact of each factor on others, as shown in Equation 3:
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The affected degree ei is the sum of each column in matrix T, 
indicating the overall influence received by each factor from others, as 
shown in Equation 4:
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The centrality mi is calculated as the sum of fi and ei, reflecting the 
overall significance of the factor within the evaluation system, as 
shown in Equation 5:

	 = +i i im f e 	 (5)

The causality degree ni is defined as the difference between fi and 
ei. If ni > 0 indicates that the factor exerts a greater influence on others, 
serving as a causal factor for resilience. Conversely, ni < 0 suggests that 
the factor is more influenced by others, functioning as an effect factor.

	 = −i i in f e 	 (6)

2.2.2 Calculating the prior probabilities of root 
nodes

The prior probability values of the root nodes in the BN are 
derived through expert questionnaires combined with the fuzzy 
comprehensive evaluation method, representing the failure 
probabilities of the corresponding influencing factors. In accordance 
with Wickens’ Signal Detection Theory, the failure probabilities of the 
variable factors are classified into seven levels using fuzzy linguistic 
terms. The specific trapezoidal fuzzy numbers and the corresponding 
evaluation levels are presented in Table 1.

Due to variations in the understanding and experience of 
experts in urban community resilience and emergency 
management, the arithmetic mean method is insufficient for 
addressing these discrepancies and obtaining accurate results. 
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This study employs the weighted average method to process fuzzy 
ratings, comparing each expert’s evaluation with the mean value 
and assigning distinct weight coefficients to each expert. The 
weight assigned to an expert is proportional to the proximity of 
their rating to the mean, with experts whose evaluations are 
closer to the mean receiving higher weights. Suppose the fuzzy 
rating of a particular expert is kF  = (Fk1, Fk2, Fk3, Fk4) where k = 1, 
2, …, n.

	 ①	 Calculating the Arithmetic Mean of Trapezoidal Fuzzy 
Numbers aF , from n Experts, as shown in Equation 7:
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	 ②	 Calculating the Distance Between kF  and aF , as shown in 
Equation 8:

	
( ) ( )= − + − + − + −1 1 2 2 3 3 4 4
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	 ③	 Calculating the Similarity Between kF  and aF , as shown in 
Equation 9:
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	 ④	 Calculating the Expert Evaluation Weight kW , as shown in 
Equation 10:
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	 ⑤	 Calculating the Weighted Comprehensive Fuzzy Evaluation 
Number F, as shown in Equation 11:
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	 ⑥	 Calculating the Weighted Aggregated Fuzzy Evaluation Value, 
as shown in Equation 12:

	
+ + +

= 1 2 3 4
4
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(12)

2.2.3 Calculating the conditional probabilities of 
non-root nodes

(1) The Noisy-OR model is a commonly used simplification tool 
in BN to represent the relationship between n mutually independent 
parent nodes Z1, Z2, …, Zn and a child node Y. All nodes are binary 
variables, with only two states: “0” representing no failure and “1” 
representing failure. Additionally, the Noisy-OR model assumes that 
the outcome of Y depends solely on the values of Xi (i = 1, 2, …, n) and 
is independent of other variables. In other words, there is a failure 
connection probability Pi (i = 1, 2, …, n) between each xi and Y which 
satisfies Equation 13:

	 ( ) ( )= = … …1 2| | , , , , ,i i i nP Y X Y X X X X
	

(13)

It represents the probability that Y fails given that only xi fails. In 
other words, if Y = 1 (failure), then at least one of the xi must be 1 
(failure). Assuming that all parent nodes with xi = 1 (failure) form the 
set XT, the conditional probability of Y failing is calculated as shown 
in Equation 14:

	
( )∈

= − −∏ :1 1
i T

ii X XP P
	

(14)

Although the Noisy-OR model cannot capture complex 
interactions or non-monotonic relationships, it is often used to explain 
and analyze causal relationships in practical problems due to its 
simplicity, intuitiveness, and computational efficiency. However, the 
BN for urban community resilience may not encompass all influencing 
factors of PHEs, which undermines the assumption in the Noisy-OR 
model that “the failure of a child node is independent of variables 
other than its parent nodes.” Although these potential variables are not 
identified or selected as parent nodes, they can still introduce biases 
into the results. The Leaky Noisy-OR model can compensate for this 
shortcoming by introducing a default node ZL to represent other 
potential variables that are not considered but may still cause the child 
node to fail.

Even if all parent nodes Zi do not fail, the child node Y may still 
fail due to the failure of the default node ZL. Let PL denote the 
probability that the child node Y fails when only the default node ZL 
fails and all other parent nodes do not, with the confidence interval in 

TABLE 1  Forms of fuzzy numbers.

Level Fuzzy linguistic term Fuzzy number

1 Very Low (VL) (0, 0, 0.1, 0.2)

2 Low (L) (0.1, 0.2, 0.2, 0.3)

3 Fairly Low (FL) (0.2, 0.3, 0.4, 0.5)

4 Medium (M) (0.4, 0.5, 0.5, 0.6)

5 Fairly High (FH) (0.5, 0.6, 0.7, 0.8)

6 High (H) (0.7, 0.8, 0.8, 0.9)

7 Very High (VH) (0.8, 0.9, 1, 1)
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this study set to 0.9 (34), i.e., PL = 0.1. A 90% confidence level indicates 
that, if the sampling process were repeated numerous times, 
approximately 90% of the resulting confidence intervals would 
encompass the true parameter value. This approach balances the need 
for a high degree of reliability with the provision of more precise 
estimates, thereby mitigating the risk of being excessively conservative. 
Assume that the set of all failed parent nodes is ZT, and Pi represents 
the probability that the child node Y fails when only parent node Zi 
fails while all other parent nodes do not. This probability is primarily 
obtained using the same method as for root nodes. The conditional 
probability of failure for each non-root node can then be calculated 
using Equation 15.

	
( ) ( )

( )∈

−
= − −

−∏ :
1

1 1
1i T

i
L i Z Z L

P
P P

P 	
(15)

3 Results

3.1 Identification of influencing factors of 
urban community resilience for PHEs

3.1.1 Theoretical framework for assessing urban 
community resilience

PHEs are defined by their abrupt onset and inherent uncertainty. 
Therefore, the assessment of urban community resilience must 
account for these dynamic changes. The Pressure-State-Response 
(PSR) model serves as a framework to analyze the relationship 
between environmental pressures, system status, and policy responses. 
This framework aligns closely with the dynamic processes urban 
communities undergo in the face of PHEs. During such incidents, 
communities initially face external pressures, which prompt changes 
in their status. In response, communities implement various measures 
to mitigate the pressure and restore stability. The PSR model offers a 
robust theoretical framework for understanding the “pressure-status-
response” dynamic cycle, facilitating a comprehensive understanding 
of the formation and evolution of urban community resilience in 
urban settings.

The Social-Economic-Natural Composite Ecosystem (SENCE) 
theory conceptualizes society, economy, and nature as an 
interconnected composite system, emphasizing their interdependence 
and mutual influence. As a complex system, the resilience of urban 
communities is shaped by a range of interrelated factors, including the 
characteristics of community residents, social capital, material 
resources, financial assets, the natural environment, and infrastructure. 
The SENCE theory integrates these three dimensions, offering a 
systematic framework for analyzing the multi-level impacts on urban 
community resilience, thereby overcoming the limitations of 
unidimensional analyses.

In conclusion, the PSR model centers on the causal chain of 
“pressure - status - response,” emphasizing the logical relationship 
between external shocks and system responses. The SENCE theory 
enhances the understanding of the “status” dimension by revealing the 
intricate interactions among the social, economic, and environmental 
subsystems. Consequently, this study integrates the PSR model with 
the SENCE theory, combining the two to form a more comprehensive 
framework for resilience analysis. The dimensions of pressure, status, 

and response align with the pre-disaster, during-disaster, and post-
disaster phases, respectively, facilitating resilience evaluation across 
these distinct stages. In accordance with the SENCE theory, the factors 
influencing urban community resilience are classified into social, 
economic, and environmental dimensions. The social dimension 
addresses the personal characteristics of community residents and 
factors related to community management. The economic dimension 
encompasses the community’s available financial resources and its 
capacity for effective resource allocation. The environmental 
dimension includes a wide array of environmental factors from a 
public health perspective, such as natural conditions, built 
environments, and physical infrastructure within the community.

The urban community resilience model for PHEs can 
be categorized into three dimensions: (1) Pressure: This dimension 
refers to the initial resilience level of the community when exposed to 
potential pressures from PHEs, specifically its capacity to withstand 
hazardous factors and risk-prone environments. (2) State: This 
dimension reflects the capacity of the urban community complex 
system during PHEs, characterized by robustness, redundancy, and 
other key features of the community’s inherent resources. (3) 
Response: This dimension relates to the community’s ability to 
implement measures and adapt to recovery across social, economic, 
and environmental systems under the influence of PHEs. It is defined 
by the strategic and timely response capabilities that characterize 
resilience. The specific framework curve is illustrated in Figure 1.

This study focuses on the factors influencing resilience as the core 
domain, proposing that the three primary categories—social, 
environmental, and economic factors—collectively shape resilience. 
These factors interact and exert mutual influence, creating a synergistic 
and interconnected mechanism driven by their inherent relational 
logic. This interaction culminates in the development of a theoretical 
model of the factors influencing resilience.

3.1.2 Identification of influencing factors
To comprehensively identify the influencing factors of resilience, 

this study conducted a search on the Web of Science using the search 
string TS = [(“urban resilience” OR “city resilience”) AND (“epidemic” 
OR “COVID-19” OR “Public health emergency” OR “pandemic”)]. 
This search yielded the identification of 31 influencing factors, as 
illustrated in Table 2.

3.2 Constructing a Bayesian network for 
urban community resilience for PHEs

3.2.1 Influencing factor analysis based on 
DEMATEL

Among the three subsystems of urban community resilience for 
PHEs, the environmental and economic dimensions exhibit fewer 
influencing factors and a flatter hierarchical structure. In contrast, the 
social dimension involves a greater number of influencing factors with 
more complex internal logical relationships. Therefore, this study 
focuses specifically on analyzing the causal relationships among the 
influencing factors within the social resilience dimension.

In this study, we selected over 10 communities in the main urban 
area of Nanjing, all of which had undergone high-risk containment 
and control measures. Representatives from neighborhood 
committees, property volunteers, health service centers, and street 
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offices in these communities were invited to participate in offline 
interviews, and those with extensive experience were selected as 
interviewees. Subsequently, using the Questionnaire Star platform, an 
online survey was conducted. The survey invited these representative 
community staff, as well as experts and scholars in disaster 
management and urban community resilience, to complete a scoring 
questionnaire based on their professional knowledge and past work 
experience. The participants were asked to quantify the influence 
between each pair of factors using a 0–4 scale, ranging from “no 
influence” to “low,” “medium,” “high,” and “very high” influence. The 
scoring form is provided in Appendix 1.

A total of 43 questionnaires were distributed, and 31 valid 
responses were collected (responses completed in less than 450 s were 
excluded). The questionnaire scoring data were then processed into 
matrices, normalized, and aggregated according to the method 
outlined in Section 2.2.1 to obtain the comprehensive influence matrix 
T. Using Equations 3–6, the four-degree indicators for each social 
influence factor were calculated, and the summary is shown in Table 3. 
Preliminary analysis of the causality degree indicator shows that 10 
factors with a positive n belong to the cause group, while 5 factors with 
a negative n belong to the effect group.

The threshold method is employed to reveal the mechanisms of 
influence among social resilience factors within the community, as 
illustrated in Figure  2. In this study, drawing on methodological 
precedents from the literature, we utilized percentile-based threshold 
determination criteria. The threshold α was set at the 95th percentile 
of all coefficients within the comprehensive impact matrix T (35). This 
statistical boundary demarcation ensures that the assessment results 
prioritize the identification of operationally significant influence 
pathways, while effectively filtering out noise from low-impact 
connections that could otherwise distort model outcomes. Based on 
the threshold calculation result (0.35746), relationships with a 

comprehensive influence coefficient exceeding this threshold are 
identified as key influence pathways. Risk awareness, public 
participation, social network relationships, and community 
emergency management capacity each exhibit more than two key 
pathways, suggesting closer and more significant connections with 
other factors. Except for the two dashed lines representing influence 
pathways between the effect factors, all other pathways flow from 
cause factors to effect factors, aligning with causal logic. Key influence 
pathways are differentiated by color based on the effect factors they 
lead to: blue pathways exclusively connect to state-bearing factors, 
while purple pathways exclusively connect to response and disaster 
relief factors. One red pathway connects rules and regulations to 
community emergency management capacity, indicating that the 
community’s social state-bearing capacity can influence its social 
response and disaster relief capabilities to some extent, consistent with 
the internal mechanism of the PSR model. A black pathway from 
social network relationships to the level of PHEs suggests that 
community social response and disaster relief can influence social 
pressures to some extent, aligning with the feedback mechanism of the 
PSR model.

3.2.2 Bayesian network structure of urban 
community resilience for PHEs

The internal hierarchy of resilience, along with the degree of 
influence and causal attributes among the influencing factors, has 
been clarified. Factors with high causality degrees are designated as 
root nodes in the BN structure, while factors such as risk awareness, 
public participation, and community emergency management 
capacity, which exhibit negative causality degrees, are classified as 
non-root nodes in the BN structure. Finally, key causal pathways 
within the same dimension are prioritized, with pathways exhibiting 
higher influence coefficients preferred when factors reside within the 

FIGURE 1

Urban community resilience for PHEs framework curve.
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same dimension. This methodology ultimately determines the BN 
structure of resilience, as illustrated in Figure 3.

3.3 Case study

3.3.1 Basic information of the case
This study undertook a comprehensive survey of the fundamental 

characteristics of communities in Nanjing’s urban core, including 
their founding year, geographic location, and construction scale. 
Four communities—A, B, C, and D—were selected as case studies, 
with their profiles provided in Table 4. Each of these communities 

has distinct characteristics, which allow the urban community 
resilience BN model developed in this study to demonstrate 
broad applicability.

The survey was conducted online, as detailed in Appendix 2. The 
respondents included frontline managers from the four selected 
communities, as well as experts and scholars in the fields of urban 
community resilience and emergency management. A total of 32 
questionnaires were distributed, with 22 valid responses received. The 
criteria for selecting valid questionnaires were as follows: (1) 
Respondents had limited knowledge of urban community public 
health safety issues (e.g., policies, technology, knowledge), categorized 
as either “almost unaware” or having “little knowledge”; (2) the time 

TABLE 2  Framework of influencing factors for urban community resilience for PHEs.

Resilience 
characterization

Dimension Influencing factor layer References

Social resilience (Soc)

Pressure (P)
Level of PHEs (SocP1)

Scherzer et al. (39), Zhang et al. (6)
Vulnerable groups (SocP2)

State (S)

Population structure (SocS1)

Cui et al. (40), Deng et al. (41), Kais and Islam (42), Liu et al. (43), Niu et al. 

(44), Wang et al. (45), Yan et al. (46), Zhao et al. (47)

Resident health status (SocS2)

Resident educational level (SocS3)

Risk awareness (SocS4)

Rules and regulations (SocS5)

Publicity and education (SocS6)

Response (R)

Resident belongingness (SocR1)

Liu et al. (48), Niu et al. (44), Pfefferbaum et al. (49), Reveilhac (50), Shi et al. 

(22), Wang et al. (51), Yan et al. (46), Zhao et al. (47)

Public service (SocR2)

Public participation (SocR3)

Social network relationships (SocR4)

Community emergency management 

capability (SocR5)

Past experience (SocR6)

Government leadership functions 

(SocR7)

Environmental Resilience (Env)

State (S)

Sanitation state (EnvS1)

Chen et al. (52), Liu et al. (53), Niu et al. (44), Shi et al. (22), Su et al. (54)
Community quality (EnvS2)

Public space (EnvS3)

Entrance/exit management (EnvS4)

Response (R)

Accessibility of medical facilities 

(EnvR1)
Deng et al. (41), Jiang et al. (55), Li et al. (56), Niu et al. (44), Scherzer et al. 

(39), Summers et al. (57), Zhao et al. (47)
Emergency shelter (EnvR2)

Living supporting facilities (EnvR3)

Transportation robustness (EnvR4)

Economic Resilience (Eco)

State (S)

Resident employment (EcoS1)

Deng et al. (41), Niu et al. (44), Shi et al. (22), Summers et al. (57), Zhao et al. 

(47)

Resident income (EcoS2)

Social insurance (EcoS3)

Community assets (EcoS4)

Response (R)

Medical supplies (EcoR1)

Niu et al. (44), Su et al. (54), Summers et al. (57), Wang et al. (51), Zhao et al. 

(47)

Capital investment (EcoR2)

Communication system (EcoR3)

Intelligent supervision (EcoR4)
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taken to complete the questionnaire was less than 600 s; and (3) 
respondents had less than 1 year of relevant work or 
research experience.

Among the 22 valid respondents, 81% held a bachelor’s degree or 
higher, and 75% had at least 5 years of work experience. The 
respondents’ job positions were distributed as follows: 31% were 
involved in emergency management, 14% in party and human 
resources, 18% in healthcare, and 36% held academic positions 
at universities.

3.3.2 Solving the BN of urban community 
resilience for PHEs

	(1)	 Solving the Prior Probabilities of Root Nodes

Based on the valid questionnaire data, the prior probabilities of 
the root nodes of BN are calculated using Equations 7–12. The results 
are summarized in Table 5.

	(2)	 Calculation of Conditional Probabilities for Non-root Nodes

Based on the prior probabilities obtained from the fuzzy 
comprehensive evaluation and the Leaky Noisy-OR model, the 
conditional probabilities of the non-root nodes in the BN of resilience 
are calculated using Equation 15. Table 6 presents the conditional 
probability for the non-root node “Community emergency 
management capability,” while the conditional probability tables for 
the remaining non-root nodes can be found in Appendix 3.

3.3.3 Key resilience failure chains based on 
backward diagnostic inference

The BN model structure was manually constructed using Netica 
software and the node probabilities were imported. The resilience value 
of urban community resilience for PHEs was evolved through positive 
causality. The results showed that the probability of non-failure in 
resilience within Nanjing is 39.6%, with the non-failure probabilities 
for social, environmental, and economic resilience in communities 
being 37.8, 43.3, and 49.5%, respectively. The failure probabilities of the 
seven intermediate nodes introduced based on the PSR theory range 
from 50 to 60%. The failure probabilities of response resilience, with 
the exception of the economic system, are slightly higher than those of 
state resilience, with the highest being the environmental response 
failure probability (61.7%) and the social response failure probability 
(58%). This suggests that, compared to the community’s ability to 
defend against and respond to the pandemic using inherent resources, 
grassroots communities in Nanjing lack the capacity and experience to 
comprehensively mobilize social forces and rapidly restore normal 
order in environmental facilities following PHEs.

This study employs backward diagnostic analysis using BN to 
identify the most critical causal chain leading to the complete failure 

TABLE 3  DEMATEL analysis of social influencing factors of urban community resilience for PHEs.

Influencing factors Influence degree 
(f)

Affected degree 
(e)

Centrality (m) Causality (n) Factor attribute

SocP1 3.977 4.408 8.385 −0.431 Effect group

SocP2 3.387 3.309 6.696 0.078 Cause group

SocS1 2.100 1.667 3.767 0.433 Cause group

SocS2 2.901 4.184 7.085 −1.283 Effect group

SocS3 3.556 1.529 5.086 2.027 Cause group

SocS4 2.474 4.428 6.903 −1.954 Effect group

SocS5 4.081 3.480 7.561 0.601 Cause group

SocS6 3.794 3.607 7.401 0.187 Cause group

SocR1 3.550 3.242 6.792 0.308 Cause group

SocR2 3.963 3.491 7.454 0.473 Cause group

SocR3 3.537 4.646 8.183 −1.109 Effect group

SocR4 4.530 4.031 8.561 0.500 Cause group

SocR5 3.163 4.764 7.927 −1.601 Effect group

SocR6 3.719 3.196 6.915 0.523 Cause group

SocR7 3.530 2.282 5.812 1.249 Cause group

FIGURE 2

Critical impact path between variables of resilience in social 
dimension.
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of urban community resilience in response to PHEs, providing a 
foundation for subsequent adjustments and improvements aimed at 
addressing weak factors. In NETICA software, the probability P 
(Resilience = state1) was set to 100%, and the backward diagnostic 
results for each node’s probability are presented in Figure 4. When 
resilience completely fails, the community’s social resilience system 
exhibits the highest failure probability, reaching 74%. Among the 
parent nodes of urban community resilience, social response has the 
highest failure probability. As a result, the most critical causal chain 
leading to resilience failure is: “Social network relationships → 
Community emergency management capability → Social response → 
Social resilience → Urban community resilience for PHEs.” This 
finding underscores that well-developed social networks enable 
individuals to efficiently share critical information and collaboratively 
solve problems during crises, thereby strengthening collective action 

capacity. Robust social network ties not only facilitate resource sharing 
but also enhance residents’ compliance with and implementation of 
containment measures, significantly improving communities’ 
responsiveness to PHEs (16). Moreover, communities with strong 
social networks demonstrate superior capabilities in mobilizing 
residents and social organizations, thereby establishing agile 
emergency management systems capable of rapid response (23). 
Supported by cohesive social networks and enhanced emergency 
management capacity, communities can implement timely 
interventions and develop systematic, comprehensive response 
mechanisms. Ultimately manifested as social resilience, these 
networked interactions reflect the enduring impacts of social capital 
and institutional preparedness on communities’ adaptive capacities. 
Through these relational pathways, communities maintain essential 
functionality post-crisis while progressively restoring stability.

FIGURE 3

BN structure of urban community resilience for PHEs.
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At the same time, this causal chain highlights a significant issue: 
social networks primarily focused on entertainment and services 
often struggle to transform spontaneously into community 
emergency resources or to effectively exercise self-governance. The 
core issue lies in the fact that residents, as the main participants, 
typically engage individually or passively, seldom participating 
continuously and proactively in collective activities based on the 
community’s shared interests. As a result, it is challenging to establish 
cooperative, partnership-based social network relationships, which 
naturally impedes the community’s ability to organize and respond 
effectively during sudden disasters.

This diagnostic analysis serves as a crucial reminder for urban 
communities, like the case study, emphasizing the importance of 
fostering cooperation and communication among key stakeholders. 
Strengthening these relationships is essential for enhancing the 
community’s capacity to function as an effective emergency 
organization during crises, as well as improving its responsiveness 
following PHEs.

3.4 Optimization suggestions for urban 
community resilience for PHEs

This study further employs Sensitivity Analysis, Dynamic 
Bayesian Network (DBN) simulation, and Importance Analysis to 
optimize strategies for enhancing community resilience.

3.4.1 Static optimization of urban community 
resilience based on sensitivity analysis

In this study, the sensitivity analysis model is expressed as y = f (x1, 
x2, …, xn), where xi represents the i-th root node. When the non-failure 
probability of xi varies within its defined range by a specified 
increment, the impact of each root node’s variation on the resilience 
output is quantitatively assessed. This impact is denoted by the 
sensitivity coefficient S. A larger value of S indicates a greater influence 
of changes in that particular factor, signifying a higher sensitivity of 
community resilience to it. The sensitivity coefficient S is computed as 
shown in Equation 16.
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Where l
iP  and r

iP  represent the non-failure probability values of 
the i-th root node at the left and right ends of the variation interval, 
respectively. l

iR  and r
iR  represent the non-failure probabilities of urban 

community resilience for PHEs, social system resilience, 
environmental system resilience, and economic system resilience 
when the non-failure probability of the i-th root node is l

iP  and r
iP , 

respectively.
Based on the resilience measurement results from forward causal 

evolution, the highest non-failure probability (state 0) among the 
three parent nodes of resilience is 49.5%. The initial non-failure 
probability for the three parent nodes—community social, 
environmental, and economic resilience—is set at 50%, and 
gradually increased to 1 in increments of 10%. The changes in the 
non-failure probability of urban community resilience for PHEs (R) 
are shown in Figure 5. The slopes of the three lines represent the 
sensitivity coefficients of the different parent nodes, which are 
calculated using Equation 16. From the height, slope, and trend of 
the lines, it is evident that community social resilience is the most 
sensitive factor, exerting the greatest influence on changes in urban 
community resilience for PHEs. This is followed by community 
environmental resilience and community economic resilience, both 
of which exhibit similar sensitivity levels. The sensitivity of the three 
parent nodes is positively correlated with their respective 
failure probabilities.

	(1)	 Community Social Resilience

First, we analyze the social resilience component, which exerts the 
most significant impact on changes in overall community resilience. 
In GeNIe, the “Set Target” function was utilized to determine the 
sensitivity levels, as shown in Figure 6.

The darker the color of the influencing factor nodes, the higher 
their sensitivity. Factors such as the level of PHEs, vulnerable groups, 
population structure, and social network relationships are depicted in 
darker colors, indicating greater sensitivity. Conversely, factors such 
as resident health status, rules and regulations, resident belongingness, 
and public participation appear lighter in color, reflecting lower 
sensitivity. Therefore, urban communities should prioritize these 
social factors to effectively enhance resilience to PHEs. Given that the 
severity of future PHEs and community population structure are 
objective factors that are difficult to alter through human intervention, 
it is essential to focus on improving regulations related to community 

TABLE 4  Community basic information.

Community Area 
(km2)

Total 
households

Resident 
population

Population density 
(persons/km2)

Community characteristics

A 0.090 1,827 4,775 53,055

The community has a long history, with relatively outdated facilities. 

The majority of residents are older adults, consisting primarily of 

teachers, students, and other intellectuals.

B 0.175 3,520 8,700 49,714
Residents are highly educated, have access to excellent medical care, 

and the neighborhood fosters a strong sense of community life.

C 0.500 3,000 9,000 18,000
Younger households predominate, the community environment is 

newer, and the facilities are well-equipped.

D 1.500 6,373 17,000 11,333

The community has a low population density, with a significant influx 

of non-local residents, and it has experienced pandemic lockdown 

management.
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public health and emergency management, as well as fostering greater 
trust and cooperation among residents.

	(2)	 Environmental Resilience and Economic Resilience

According to the forward evolution results of the BN, the 
highest non-failure probability (state 0) for the root nodes of 
environmental resilience is 69.7%, while for economic resilience, it 
is 75.8%. The initial non-failure probability for the root nodes of 
environmental resilience is set at 70%, and for economic resilience, 
it is set at 80%. Both are gradually increased to 1 in increments of 
5%. Sensitivity coefficients were calculated for different change 
intervals. Factors such as sanitation state, community quality, 
entrance/exit management, accessibility of medical facilities, 
resident income, medical supplies, capital investment, and 
intelligent supervision have sensitivity coefficients above the 
average, indicating that these variables should be given particular 
attention and optimization recommendations.

This paper comprehensively considers both the BN reasoning 
probability and the magnitude of sensitivity, summarizing the static 
optimization strategy for urban community resilience for PHEs. 
The strategy is structured around the prioritization of social, 
environmental, and economic factors, while comparing the 
resilience of subsystems (state and response) under constraints of 
resources and time. The key strategies include: This article outlines 
the following optimization strategies: ① Communities should 
proactively develop interactive platforms, organize activities related 
to public health, health safety, and disaster prevention and 
mitigation, establish residents’ committees, encourage community 
participation, and promote the transformation of residents’ social 
networks into self-help networks. ② Communities should 
strengthen the protection of vulnerable groups, collaborate with 
community hospitals to establish green channels, and ensure timely 
assistance for vulnerable individuals. ③ Communities should 
develop management systems for pre-disaster warnings, disaster 
response, and post-disaster recovery. Risk assessments should 
be conducted through public health safety monitoring systems, and 
timely emergency plans and implementation strategies should 
be  established. ④ Medical institutions should enhance medical 
services, provide intelligent contactless consultation equipment, 
collaborate with large hospitals to attract talent, and improve 
medical standards. ⑤ Communities should adapt the arrangement 
of entrances and exits, set up access control systems based on 
epidemic prevention levels, and regularly inspect the hygiene and 
safety of these areas. ⑥ Communities should establish multi-tiered 
material reserve mechanisms, collaborate with supermarkets, 
pharmacies, and other entities to ensure the supply of essential 
materials, and set up logistics and emergency material information-
sharing platforms to strengthen material reserves and supply 
capabilities in emergencies. ⑦ Communities should enhance 
financial management, establish community funds, attract resources 
from residents, social enterprises, and other sources, and improve 
the flexibility of community funds and their ability to respond to 
public crises.

3.4.2 DBN inference and simulation of urban 
community resilience for PHEs

This study introduces DBN that incorporates temporal 
characteristics to simulate and predict urban community resilience for 
PHEs, taking into account the changes in influencing factors over 
time. This approach enables the development of more scientifically 

TABLE 5  Prior probabilities of root nodes in the BN of urban community 
resilience for PHEs.

Root node 
ID

Failure probability Non-failure 
probability

EnvS1 0.353502 0.646498

EnvS2 0.513808 0.486192

EnvS3 0.303115 0.696885

EnvS4 0.551406 0.448594

EnvR1 0.678637 0.321363

EnvR2 0.410195 0.589805

EnvR3 0.322598 0.677402

EnvR4 0.375086 0.624914

SocP1 0.295805 0.704195

SocP2 0.384659 0.615341

SocS1 0.421253 0.578747

SocS2 0.555276 0.444724

SocS3 0.337594 0.662406

SocS5 0.362025 0.637975

SocS6 0.271336 0.728664

SocR1 0.318983 0.681017

SocR2 0.57406 0.42594

SocR4 0.647044 0.352956

SocR6 0.486191 0.513809

SocR7 0.256169 0.743831

EcoS1 0.342277 0.657723

EcoS2 0.587509 0.412491

EcoS3 0.283614 0.716386

EcoS4 0.405252 0.594748

EcoR1 0.616297 0.383703

EcoR2 0.242033 0.757967

EcoR3 0.265175 0.734825

EcoR4 0.527876 0.472124

TABLE 6  Conditional probability table of the non-root node “SocR5.”

SocR4 SocR6 SocR7 Failure 
probability

Non-failure 
probability

State 0 State 0 State 0 0.1 0.9

State 0 State 0 State 1 0.352674 0.647326

State 0 State 1 State 0 0.398835 0.601165

State 0 State 1 State 1 0.567611 0.432389

State 1 State 0 State 0 0.620758 0.379242

State 1 State 0 State 1 0.72723 0.27277

State 1 State 1 State 0 0.746681 0.253319

State 1 State 1 State 1 0.8178 0.1822
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grounded strategies for optimizing resilience from a dynamic 
perspective. To simplify the complex analysis of the DBN, the 
following reasonable assumptions are made: (1) The BN structure 
remains constant over time (t), and the process of conditional 

probability transitions over finite, adjacent time intervals is stable and 
consistent; (2) Probability transitions adhere to a first-order Markov 
chain, meaning that the probability distribution at time (t + 1) 
depends solely on the state at time (t) and is independent of any prior 

FIGURE 4

Reverse diagnosis of BN for urban community resilience for PHEs.

FIGURE 5

Sensitivity analysis of the parent node of urban community resilience for PHEs.
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states. The specific modeling steps for the DBN of resilience are 
outlined as follows:

	 ①	 Constructing the Static Bayesian Network (B₀): The BN of 
resilience, as presented in Section 3.3 of this study, serves as B₀. 
It represents the joint probability distribution at the initial state 
of the DBN.

	 ②	 Constructing the Bayesian Transition Network (B→): A DBN 
combines both the BN structure and Markov assumptions to 
model temporal data. It decomposes the data into a series of 
time slices, where the node variables within each time slice 
form a static BN, and standard arcs represent relationships 
within the same time slice. Temporal arcs, on the other hand, 
represent relationships between nodes in different time slices 
and are defined by transition probabilities that describe the 
relationships between root nodes in adjacent time slices.

	 ③	 Determine the State Transition Probability Matrix: Define the 
corresponding probability transition matrices according to the 
different types of variables. The causes of safety risks are 
typically categorized into human, equipment, environmental, 
and management factors. In this study, the failure transition 
matrices for root node variables are constructed from three 
perspectives—human factors, physical factors, and 
management factors—based on the community resilience 
subsystems and influencing factor systems. Root nodes that 
lack significant temporal characteristics (e.g., the level of PHEs) 

are excluded from the scope of the DBN analysis. The 
classification of the three types of root nodes and their 
corresponding transition probabilities are outlined as follows:

	(1)	 Human Factor Root Nodes

Human factors refer to the behaviors, work, characteristics, 
emotions, and interactions of various personnel involved in 
community epidemic prevention and control, including community 
residents, community workers, and grassroots managers. It is assumed 
that human factors (nodes) will be in one of two states in the future: 
positive (0) or negative (1). Negative or non-compliant behaviors that 
result in errors are generally independent of random events. Assuming 
that the average frequency of human errors per unit time is λ1, the 
human factor transition probabilities, as shown in Table 7, follow a 
Poisson distribution (59). The root nodes for human factors include 
sanitation state, resident health status, resident belongingness, public 
service, and social network relationships.

	(2)	 Physical Factor Root Nodes

Physical factors refer to common community resources, 
infrastructure, or disaster prevention and mitigation facilities. It is 
assumed that physical factors (nodes) are in one of two states: normal 
(0) or failed (1). Community environmental resources, infrastructure, 
and disaster prevention facilities inevitably deteriorate over time, 

FIGURE 6

The strength level of social resilience sensitive sources.

https://doi.org/10.3389/fpubh.2025.1691666
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Cui et al.� 10.3389/fpubh.2025.1691666

Frontiers in Public Health 14 frontiersin.org

requiring community staff to perform regular maintenance and 
updates to ensure proper functioning. Assuming the facility failure 
rate is λ₂ and the facility maintenance and repair rate is μ, the 
transition probabilities, as shown in Table 7, follow an exponential 
distribution (58). The root nodes for physical factors include 
accessibility of medical facilities, living support facilities, 
transportation robustness, public space, entrance/exit management, 
communication system, and intelligent supervision.

	(3)	 Management Factor Root Nodes

It is assumed that all management factors (nodes) are in one of 
two states: reasonable (0) or unreasonable (1). As the duration of 
community public health governance increases, members accumulate 
relevant management experience. The introduction of the 
enhancement coefficient c, as shown in Table  7, reflects the 
improvement in comprehensive management capabilities, such as 
decision-making, execution, and learning, brought about by 
experience accumulation. The management factor root nodes include 
medical supplies, capital investment, emergency shelter, rules and 
regulations, publicity and education, past experience, and government 
leadership functions.

To construct the DBN, it is necessary to set the facility failure 
rate λ2, the maintenance and repair rate μ, the frequency of human 
errors λ1, and the management enhancement coefficient c. Drawing 
on relevant literature and the principles of control variables, this 
study created 12 simulation scenarios, as shown in Table 8. Based 
on simulation experiments and expert insights, the parameter 
values of the transition probability matrices for the three root nodes 
were appropriately set to ensure that the dynamic simulation results 
of urban community resilience for PHEs are scientifically robust 
and accurate. In this context, λ₁ = 1, 4, 12 represent the probabilities 
of human-caused negligence occurring once a year, once a quarter, 
and once a month, respectively. These values cover scenarios 
ranging from “low-frequency and occasional” to “high-frequency 
and habitual.” λ₂ = 1/365, 12/365, 48/365 represent the probabilities 
of facility failure occurring once a year, once a month, and once a 
week, respectively. These values reflect scenarios ranging from 
“low-fault in new communities” to “high-fault in older 
communities.” μ = 1, 0.1, 0.01 represent the maintenance cycles of 
1 day, 10 days, and 100 days, respectively, covering scenarios from 
“high-frequency maintenance” to “low-frequency maintenance.” 
Lastly, c = 1, 0.1, 0.01 represent varying levels of management 

intervention, ranging from “strong management intervention” to 
“no management intervention.”

Based on the designed simulation scenarios, the original BN 
was transformed 8 times using GeNIe to construct a DBN for 
simulating and predicting resilience. The changes in resilience 
probability obtained from the simulation experiments across the 
four groups of control variables are shown in Figure 7. Group (a): 
Only the number of human errors (λ1) was observed. Comparing 
scenarios (1) and (3), scenario (2) exhibits a relatively slow upward 
trend in resilience, indicating that extreme situations where 
human errors occur either too infrequently or too frequently tend 
to stimulate and enhance community resilience. Conversely, 
occasional errors can lead to community complacency. Therefore, 
setting the probability of human-induced errors to once per 
quarter aligns more closely with practical circumstances. Group 
(b): Only the failure rate of facilities (λ2) was observed. Resilience 
in scenario (6) initially declines slowly and then stabilizes around 
t7, after which it begins to recover gradually. The state of resilience 
in this scenario is suboptimal. The lower the λ2 in scenarios (4) and 
(5), the faster the resilience increases. Group (c): Only the 
maintenance and repair rate of facilities (μ) was observed. The 
higher the repair rate (μ), the faster the resilience grows. However, 
in specific cases, such as scenario (9), where facility maintenance 
cannot keep up with the failure rate, resilience declines at a steady 
rate. Group (d): Only the management enhancement coefficient 
(c) was observed. In scenario (10), when the management 
enhancement coefficient reaches its maximum value of 1, resilience 
rises sharply at t1 and then remains stable over the long term, 
representing a rare scenario.

Based on the analysis of the simulation scenario results, expert 
experience, and literature references (36), it is relatively reasonable to 
set λ1 = 4, λ2 = 12/365, μ = 0.1, and c = 0. Using these parameters, the 
DBN for resilience was constructed. This DBN reflects the changes in 
the state of each influencing factor over time, as well as the resilience 
level at different time points. It enables dynamic simulation and 
prediction of urban community resilience for PHEs, providing a basis 
for formulating long-term dynamic strategies to enhance urban 
community resilience.

TABLE 7  State transition probability matrix of DBN.

Root node 
variable type

Time t Time t + ∆t

State 0 State 1

Human node
State 0 λ λ− − 11 1e λ λ− 11e

State 1 λ− 1e λ− − 11 e

Physical node

State 0 2e tλ− ∆ 21 e tλ− − ∆

State 1 1 e tµ− − ∆ e tµ− ∆

Management node
State 0 1 0

State 1 c 1 − c

TABLE 8  Design simulation scenarios for DBN.

Observation 
group

Scenario 
no.

λ1 λ2 μ c

Human errors

λ1

(1) 1

12/365 0.1 0.1(2) 4

(3) 12

Facility failure rate

λ2

(4)

4

1/365

0.1 0.1(5) 12/365

(6) 48/365

Maintenance and 

repair rate

μ

(7)

4 12/365

1

0.1(8) 0.1

(9) 0.01

Management 

enhancement 

coefficient

c

(10)

4 12/365 0.1

1

(11) 0.1

(12) 0.01
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3.4.3 Dynamic optimization of urban community 
resilience based on importance analysis

Bayesian network importance analysis is a method used to assess 
the influence of initial nodes on outcome nodes. This technique 
determines the significance of variables by considering both the 
structure and parameters of the BN, revealing the degree to which 
initial variables impact the target outcomes. Importance analysis is 
commonly employed to identify key factors, optimize model design, 
and enhance efficiency. Its main advantage lies in accounting for 
dependencies between variables, thus preventing the neglect of crucial 
interaction effects. Additionally, it can handle various uncertainties, 
such as model structure uncertainty and data variability, and is 
applicable to complex nonlinear models without assuming specific 
model forms or relying on similar methods. Bayesian network 
importance analysis is particularly useful for evaluating how uncertain 
factors affect model outcomes in fields such as risk analysis, decision 
support, and knowledge discovery (37, 38).

This study evaluates the significance of each root node factor in 
urban community resilience for PHEs. Using BN inference 
algorithms, three types of importance parameters—probabilistic, 
critical, and structural—are derived for the root nodes. Subsequently, 
by integrating DBN analysis, the temporal variations in the 
importance of influencing factors are assessed. Based on these results, 
strategies are proposed to facilitate the dynamic enhancement of 
urban community resilience. The specific steps are outlined 
as follows:

	 ①	 Calculation of Probabilistic Importance

Probabilistic importance (PI) refers to the degree to which a unit 
change in the failure probability of a specific root node influences the 
failure probability of the leaf node. It is denoted as PI and calculated 
using Equation 17. PI effectively categorizes the importance of factors 
from a sensitivity perspective. By calculating the PI for each root node, 

the factors that most effectively and rapidly reduce the failure rate of 
urban community resilience can be identified.

	 ( ) ( )= = = − = =1| 1 1| 0i i iPI P R X P R X 	 (17)

	 ②	 Calculation of Critical Importance

Critical importance (CI) is defined as the ratio of the change rate 
in the failure probability of the leaf node to the change rate in the 
failure probability of a specific root node. It is denoted as CI and 
calculated using Equation 18. Compared to PI, CI provides a more 
comprehensive metric by evaluating the significance of factors from 
both sensitivity and failure rate perspectives. A higher CI indicates 
that the root node (influencing factor) is more likely to trigger the 
failure of the leaf node (resilience). Additionally, it suggests that 
optimizing this influencing factor may be  more feasible, as it is 
generally easier to reduce the failure probability of a root node with a 
high initial failure probability than one with a low initial 
failure probability.

	

( )
( )
= ×

=
=

1
1

i i
i

P X PI
CI

P R 	
(18)

	 ③	 Calculation of Structural Importance

Structural importance (SI) is defined as the impact of the failure 
of a particular root node on the probability of community resilience 
failure, assuming that the failure probabilities of all other root nodes 
are held constant. SI is calculated using Equation 19 and reflects the 
significance of each influencing factor node within the BN structure. 
This metric provides valuable insight for enhancing the structure of 
the BN model for urban community resilience in the context of PHEs.

FIGURE 7

Dynamic inference simulation of urban community resilience for PHEs.
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(19)

In the above three equations, xi represents the i-th root node; R 
represents the leaf node (urban community resilience for PHEs); Xj 
denotes any root node other than xi; 1 indicates node failure; and 0 
indicates node non-failure.

The corresponding probability values were obtained by adjusting 
the BN model in GeNIe software and calculating them according to 
Equations 17–19, as shown in Appendix 4. The results indicate that 
factors with high PI also tend to have high CI (e.g., medical supplies, 
entrance/exit management, accessibility of medical facilities), whereas 
factors with low CI generally exhibit low PI (e.g., resident educational 
level, publicity and education, public space). Notably, there is no 
significant difference in their overall rankings.

The top 10 SI rankings are predominantly occupied by factors from 
the social and environmental dimensions, indicating that the economic 
dimension is relatively less significant. When simplifying the BN model 
structure, factors with lower SI should be prioritized for consideration. 
Based on the formula and the concept of structural importance, SI is 
solely determined by the constructed BN structure. Since the DBN 
structure in this study remains unchanged, this indicator is not 
influenced by time.

Among the three indicators—PI, CI, and SI—CI provides a more 
comprehensive reflection of issues and is therefore relatively more 
significant. Consequently, this study prioritizes the analysis of the 
temporal changes in this indicator. Based on the initial CI ranking at 
time t0, the top eight influencing factors with temporal characteristics 
were selected. The CI trends over the eight transitions of the DBN are 
shown in Figure 8. The critical importance of sanitation state, resident 
health status, and social network relationships increases monotonically 
over time, with sanitation state showing the fastest and most 
significant growth. Conversely, the critical importance of accessibility 
of medical facilities, medical supplies, entrance/exit management, and 
rules and regulations decreases monotonically, while the trend of 
intelligent supervision remains relatively stable.

In summary, the comparison results of the three importance 
parameters of root nodes in the BN of resilience at time t0 are shown 
in Figure 9. The larger the volume of the bubble, the higher the SI. The 
direction of the arrows indicates the dynamic changes in PI and CI of 
the influencing factors over time. The bubbles are divided into three 
levels by dashed lines, with importance decreasing from the outer to 
the inner levels. In the long-term process of building resilient 
communities to adapt to and prevent PHEs, the influencing factors 
located at the top right of the bubble chart, especially those with 
arrows pointing upwards to the top right, should be prioritized for 
optimization. These include factors such as sanitation state, social 

FIGURE 8

Dynamic changes in CI of some influencing factors.
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network relationships, and resident health status. In the medium term, 
attention should be given to enhancing the factors between the two 
dashed lines, which also have arrows pointing upwards to the top 
right, such as the communication system and emergency shelter. 
Finally, in the short term, consider the influencing factors near the 
inner dashed line with a trend of crossing levels, such as past 
experience and living supporting facilities.

Based on the results of the importance analysis, the focus of 
community work should be  adjusted in response to the changing 
importance of influencing factors over different time periods during 
long-term public health crisis prevention and control. This paper 
proposes a dynamic optimization strategy for enhancing urban 
community resilience for PHEs, from the perspectives of the short, 
medium, and long term. ① The initial strategy prioritizes “social network 
development + environmental health management.” Governments 
incentivize businesses to engage in community governance during PHEs, 
ensuring the continuous flow and supply of resources during outbreaks. 
Neighborhood committee activities cultivate close-knit, mutually 
supportive relationships among residents, while communities enhance 
sanitation management by promptly clearing waste and debris. ② 
Mid-term strategies emphasize “intelligent platform integration + spatial 
function adaptation,” combining community management with medical 
and daily services to create seamless living ecosystems. The flexible 
repurposing of spaces such as parking lots and hotels allows for their 
conversion into emergency medical facilities and material storage areas. 
③ Long-term strategies focus on the “simultaneous enhancement of both 
software and hardware.” Managers improve governance efficiency 
through skill development and resident feedback, while upgrading 
essential living infrastructure. This fosters a living services network that 
balances equity and pandemic preparedness. By dynamically adjusting 
priorities, communities establish a resilience-building pathway that 
spans the entire “prevention-response-recovery” cycle.

4 Conclusion

This study follows the research paradigm of “comprehensive multi-
dimensional identification—bidirectional inference measurement—
effective targeted optimization,” and has drawn the following conclusions:

The study developed a resilience model for urban community 
resilience for PHEs based on the PSR-SENCE framework, identifying 
31 influencing factors. The DEMATEL method was then employed to 
identify 10 key causal pathways in social resilience, providing a 
scientific foundation for comprehensive resilience assessment. Using 
BN, the study conducted a case analysis of the response process of a 
disaster-resistant model community in Nanjing to the epidemic. The 
results revealed that the most critical failure chain in terms of resilience 
was: “Social network relationships → Community emergency 
management capability → Social response → Social resilience → 
urban community resilience for PHEs.” Under PHEs, urban 
community resilience for PHEs is significantly influenced by social 
network relationships. Individuals share information and collaborate 
through social networks, while communities can more effectively 
mobilize residents and leverage emergency management capabilities 
via these networks to respond promptly and implement measures.

This study employed scenario simulation and importance analysis, 
concluding that the social dimension is central to resilience building 
and plays a pivotal role in establishing effective emergency response 
systems. To promote continuous enhancement of urban community 
resilience for PHEs, the study proposes short-term, medium-term, 
and long-term dynamic optimization strategies for urban community 
resilience, enabling adaptation to evolving PHEs and changing 
internal community conditions.

In comparison to existing studies, this research comprehensively 
considers the combined attributes of resilience in systems and 
processes, and constructs a city community resilience model under 

FIGURE 9

Importance analysis results of community epidemic resilience factors.
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sudden PHEs. Additionally, this study introduces DBN for simulation, 
offering new perspectives and tools for the long-term dynamic 
management and optimization of community resilience. This work 
provides valuable guidance for urban communities in formulating 
epidemic prevention and disaster mitigation plans, thereby enhancing 
their resilience and improving their ability to manage future 
uncertainties and risks.

This study has several limitations: ① The limited sample size and 
the subjectivity of expert opinions hinder the ability of this study to 
fully represent all communities. Significant variations, particularly 
across different regions or types of communities, may affect the 
generalizability and representativeness of the findings. Future research 
should expand the sample size and scope to include a broader range 
of regions, scales, and community types, and incorporate digital 
technologies such as blockchain and big data to enhance the 
robustness of the conclusions. ② The Bayesian network model relies 
on several assumptions, which may not fully capture the complexity 
of real-world conditions. Future studies could introduce additional 
models for validation.
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