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Spatial epidemiology, as an important branch of epidemiology, has undergone
a significant paradigm shift from infectious disease prevention and control to
chronic disease management. This paper systematically reviews the application
progress of spatial epidemiology in the study of infectious diseases (e.g., malaria,
HIV) and chronic diseases (e.g., cancer, cardiovascular diseases), focusing on its
role in identifying spatial distribution patterns of diseases, assessing environmental
exposures, and supporting health decision-making. The paper compares the
differences in data characteristics, analytical methods, and modeling strategies
between infectious and chronic diseases, and discusses the impact of multi-scale
analysis, data aggregation, and the Modifiable Areal Unit Problem on research results.
Furthermore, this paper reviews the innovative value of Geographic Information
Systems, remote sensing technology, mobile positioning, and multi-source data
fusion in promoting precision public health practices. Finally, the article points
out the current challenges faced by spatial epidemiology in privacy ethics, causal
inference, and model robustness, and prospects future directions such as Al-
enabled multi-omics integration and spatial decision support systems under global
health governance.

KEYWORDS
spatial epidemiology, infectious disease prevention and control, chronic disease

management, spatial analysis methods, data aggregation scale, geographic
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1 Introduction
1.1 Definition and development of spatial epidemiology

Spatial epidemiology, as an important sub-discipline of epidemiology, has undergone
significant development and evolution over the past 25 years (1). This discipline primarily
describes and analyzes the spatial distribution patterns of disease risk factors, incidence, and
mortality, investigating their associations with demographic characteristics, socioeconomic
status, environmental exposures, health behaviors, and genetic risk factors (2). Its origins can
be traced back to a critical period of development in spatial statistics and geographical
technologies, which provided the methodological foundation for spatial disease analysis (1).
With the evolution of technologies such as Geographic Information Systems (GIS), spatial
epidemiology has expanded from its initial focus on infectious diseases to the field of chronic
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diseases, forming a complete theoretical system and technical
framework (3).

1.2 Paradigm shift from infectious disease
control to chronic disease management

The global shift in disease spectrum has driven a major
transformation in the research paradigm of spatial epidemiology.
Traditionally, this field was primarily applied to the prevention and
control of infectious diseases such as malaria and Human
Immunodeficiency Virus (HIV) (4). However, with the increasing
burden of chronic diseases, spatial analysis methods have been
successfully extended to the study of non-communicable diseases (4).
This shift reflects the transition of epidemiology from infectious to
chronic diseases (5), while also revealing the complex associations
between infectious pathogens and the occurrence of chronic diseases,
such as the link between enteroviruses and various chronic diseases
in children (6). It is noteworthy that the current public health field
faces a complex situation where infectious and chronic degenerative
diseases coexist and are interrelated (7), presenting new research
challenges and opportunities for spatial epidemiology.

1.3 Value of methodological innovation
through interdisciplinary integration

The innovative development of spatial epidemiology highly
depends on multidisciplinary integration. This field integrates spatial
information technologies such as GIS, remote sensing technology, and
mobile positioning data (8-11), while also incorporating the life-
course epidemiology framework to study the long-term effects of
biological, environmental, behavioral, and psychosocial factors on
chronic disease risk (12). Methodologically, spatial analysis techniques
can not only identify spatial clustering patterns of diseases (13) but
also assess environmental exposure risks (14) and optimize the
allocation of prevention and control resources (15). This
multidisciplinary integration promotes the development of precision
public health practices (16), providing a spatial dimension of scientific
evidence for decision-making in the prevention and control of both
infectious and chronic diseases (16, 17). However, academia still needs
to strengthen mechanisms for translating innovative technologies into
practical prevention and control capabilities to bridge the gap between
theoretical research and implementation (18).

2 Application progress of spatial
epidemiology in infectious disease
prevention and control

2.1 Establishment and development of
spatial transmission models for infectious
diseases

The development of spatial transmission models for infectious
diseases has evolved from simple statistical descriptions to complex
spatiotemporal predictions. In recent years, with advances in GIS and
remote sensing technology, spatial modeling techniques have been
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able to integrate multi-source data to simulate the transmission
dynamics of pathogens (8). Modern spatial transmission models not
only include traditional point pattern analysis and areal data analysis
but also incorporate innovative methods such as space-time scan
statistics, significantly improving the prediction accuracy of disease
diffusion paths (19, 20). These models show unique advantages in
evaluating the effects of different prevention and control measures,
providing scientific basis for public health decision-making. It is
noteworthy that the main challenge in current model development lies
in how to translate the results of fine spatiotemporal scale analyses
into actionable recommendations for practical prevention and control
actions (18).

2.2 Case studies of spatial analysis for
classic infectious diseases such as malaria/
HIV

Spatial analysis provides a critical perspective for understanding
the distribution patterns and intrinsic relationships of classic
infectious diseases such as malaria and HIV. In a study in Zimbabwe,
spatial scan statistics revealed no spatial overlap in the primary
clusters of HIV/AIDS and malaria, but spatial overlap of secondary
clusters was found in five districts in the northern and eastern parts
of the country. This finding provides a basis for targeted prevention
and control; for example, screening and intervention measures for
both diseases can be integrated in the overlapping areas (21). A study
in Ethiopia found spatial co-distribution of HIV, tuberculosis, and
malaria prevalence in some areas, which was significantly associated
with healthcare accessibility, demographic, and climatic factors (22).
It is noteworthy that the application of spatial analysis is not limited
to classical infectious diseases. Taking cutaneous leishmaniasis in Iran
as an example, analysis confirms that disease hotspots are significantly
associated with environmental factors such as high altitude (600-1800
meters) and specific land surface temperatures (23).

Specific cases demonstrate that spatial analysis methods can
effectively identify disease transmission patterns. For example, when
using Kulldorff’s spatial scan statistic to identify high HIV/AIDS
prevalence areas in Zimbabwe, data obtained from the District Health
Information System (DHIS) revealed that HIV was more widely
distributed than malaria (21). In malaria research, spatial
autocorrelation analysis using a discrete Poisson model revealed
significant spatiotemporal clustering in specific geographical areas
(p < 0.05) (24). These cases confirm that spatial analysis can support
the development of precise prevention and control strategies. For
instance, Chiapas State in Mexico used geospatial tools to identify
associations between malaria risk and socio-environmental factors
(25), while China combined molecular epidemiology with spatial
analysis to track the mobility pathways of HIV-infected
individuals (26).

2.3 Spatial epidemiological analysis and
early warning systems in public health
emergencies

In public health emergencies, spatial epidemiological early
warning systems integrate GIS, spatial statistics, and multi-source
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real-time data to achieve dynamic monitoring of spatiotemporal
disease transmission patterns, risk prediction, and targeted
intervention. The core of these systems lies in transforming abstract
case data into intuitive spatial risk maps, with their functions mainly
manifested in three aspects:

First, in terms of early warning and source tracing, the system can
utilize methods like spatial scan statistics for rapid anomaly detection.
For example, during a Salmonella outbreak in New York City, the
system successfully located the source restaurant before the official
announcement, demonstrating its prominent value for early
warning (27).

Second, regarding transmission pattern analysis and risk
assessment, relevant studies on the COVID-19 pandemic in Wuhan
through spatiotemporal analysis revealed the correlation between
spatial clustering characteristics of cases and urban infrastructure
such as transportation and population density, providing crucial data
support for geography-informed emergency decision-making (28).

Finally, for dynamic risk assessment and optimization of control
strategies, the system needs the capability to identify changes in
transmission patterns. For instance, research in the Kenyan highlands
showed a lack of consistency in malaria incidence hotspots over a
10-year period, suggesting that static hotspot maps have limitations in
areas with low and unstable transmission, necessitating the
establishment of dynamic, continuously re-evaluated surveillance
mechanisms (29).

Therefore, spatial epidemiological early warning systems deeply
integrate the “location” dimension into decision-making, marking a
strategic shift in public health management from passive response to
active prediction.

3 Expanded application of spatial
epidemiology in chronic disease
research

3.1 Geographic distribution patterns of
cancer and environmental exposure
assessment

As a major health threat among chronic diseases today, the
application of spatial epidemiology in cancer has shifted from
descriptive analysis to assessing the practical impact on prevention
strategies. Research indicates that geographic variation in cancer
outcomes and their risk factors is significantly associated with area
(30).
Environmental exposure assessment is a core component of spatial

socioeconomic status and community composition
cancer analysis, including studies on the spatial association between
the geographic distribution of environmental carcinogens (such as air
pollution, industrial emissions) and cancer incidence rates. For
example, in the Campania region of Italy, spatial autocorrelation
techniques confirmed the spatial clustering of cancer mortality and
environmental health hazards (such as industrial pollution), directly
contributing to the delineation of priority intervention areas in the
locality (31).

Environmental exposure assessment uses multi-scale methods (such
as JoinPoint, SaTScan, and spatial regression models) to reveal spatial
associations between air pollution (PM) and cancer incidence (32, 33).

Research confirms a high degree of spatial overlap between PM exposure
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and lung cancer incidence. For instance, a study in Guangzhou, China,
found higher PM exposure risks in densely populated areas, where lung
cancer incidence rates were also significantly higher (34). Another study
in Beijing identified a potential spatial association between PM and
cancer incidence, suggesting the incorporation of PM exposure
assessment into environmental epidemiological monitoring (33). The US
SEER registry system, as a high-quality population-based data
infrastructure, facilitates sophisticated spatial analyses of cancer patterns.
For example, one study using SEER data employed spatial statistical
methods to identify geographic disparities and service coverage gaps in
prostate cancer care, highlighting how such registry systems can pinpoint
areas with potential environmental and healthcare access challenges (35).

The translation of spatial epidemiology into policy confronts
several challenges. First, although advanced methods like Bayesian
spatial analysis can leverage cancer registry data for tailored
interventions (36), technical limitations persist. Second, geocoding
errors, for instance, can lead to exposure misclassification, requiring
standardized protocols to improve data reliability (37, 38). To address
these limitations and better capture the complexities of dynamic
human mobility, the field is increasingly adopting Geographic
Artificial Intelligence (GeoAl). This approach integrates high-
resolution environmental data with mobile monitoring to refine
exposure assessment (39, 40).

3.2 Spatial clustering analysis of
cardiovascular diseases

Spatial epidemiological research on Cardiovascular Diseases
(CVDs) has evolved from theoretical description to supporting
practical interventions. Using GIS and spatial statistical techniques
(such as Moran’s I, hotspot analysis, and geographically weighted
regression), studies have not only identified high-risk clusters in
southern South Africa (41, 42) but also revealed spatial associations
between population density and congenital heart disease hotspots
(43). These findings directly guide targeted interventions: for example,
in Ulsan, South Korea, spatial clustering analysis of social determinants
provided a basis for developing regional policies addressing
cardiovascular health disparities (44); while in Colombia’s Pacific
region, spatiotemporal mortality analysis linked municipal
socioeconomic indicators to CVD burden, optimizing resource
allocation strategies (45). Recent cases show that spatial hotspot
analysis can precisely identify areas requiring enhanced comprehensive
interventions (46), such as US-based research on integrated prevention
for CVD and cancer based on county-level mortality clusters (47), and
the identification of high-priority intervention areas in Tanzania
through retrospective spatiotemporal models (48). These practices
confirm that spatial epidemiological methods can effectively promote
the transition of public health strategies from “universal coverage” to
“precision prevention and control” (49, 50).

3.3 Spatial heterogeneity of social
determinants of chronic diseases

Differences in the spatial distribution of chronic diseases often

reflect geographical inequalities in social determinants. Research
shows a significant negative correlation between the area deprivation
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index (SDI) and chronic disease risk, with residents in areas with
better socioeconomic conditions showing lower overall chronic
disease risk (51). Spatial analysis methods can effectively capture the
non-uniform distribution characteristics of these social factors and
their complex associations with health outcomes. Particularly
noteworthy is that data from the China Health and Retirement
Longitudinal Study (CHARLS) reveal that multimorbidity among the
older adults population in China does not follow a random
distribution but demonstrates identifiable spatial clustering patterns,
such as high prevalence of specific combinations like hypertension
with arthritis or gastric diseases (52). By integrating GIS with
socioeconomic data, a more comprehensive understanding of the
spatial heterogeneity of the chronic disease burden can be achieved,
providing decision support for precision public health interventions
(49, 53). This multi-dimensional spatial analysis framework is of great
value for developing targeted chronic disease prevention and control
strategies (54).

4 Methodological comparison of
spatial analysis for different disease

types

4.1 Differences in spatial data
characteristics between infectious and
chronic diseases

As shown in Table 1, infectious and chronic diseases exhibit
significant differences in spatial data characteristics. Spatial data for
infectious diseases typically manifest as point distribution patterns,
with clear spatiotemporal transmission paths and clustering features
(55). Such data often contain precise time and location information of
onset, capable of reflecting the dynamic process of pathogen
transmission through human contact or vectors (56, 57). In contrast,
spatial data for chronic diseases more often present areal distribution
characteristics, related to long-term cumulative effects of
environmental exposures, socioeconomic factors, etc. (58, 59).
Chronic disease data usually lack precise time stamps, and their spatial
distribution more reflects regional differences in risk factors (60).

Spatial data for infectious diseases are highly dynamic and require
support from real-time or near-real-time monitoring systems (61).

Conversely, spatial data for chronic diseases exhibit relatively stable

10.3389/fpubh.2025.1698964

geographical distribution patterns, making them more suitable for
cross-sectional or long-term trend analysis (62). In terms of data
sources, infectious disease data mostly come from mandatory
reporting systems, while chronic disease data rely more on passive
collection methods such as disease registries and health surveys (63).

4.2 Technical choices and limitations of
point pattern analysis and areal data
analysis

Point pattern analysis methods for infectious disease research
primarily include Kernel Density Estimation (64) (used to visualize
hotspot areas of case clustering), Ripley’s K function (65) (identifies
specific spatial scales of case clustering), and Spatial Scan Statistics
(66) (detects statistically significant disease clusters using a moving
window). These methods can effectively identify case cluster areas
and transmission sources, and are suitable for individual-level data
with precise geocoding. In studies of infectious diseases like malaria
and HIV, point pattern analysis has been successfully applied to
identify high-risk areas and evaluate intervention effectiveness (21).

However, these methods also have limitations. For example, the
results of Kernel Density Estimation are highly dependent on bandwidth
selection (67), which is subjective. Although spatial scan statistics can
provide statistical significance, the shape and size of its scanning window
need to be predefined (68), which may not perfectly match the true
shape of disease clusters, thus affecting detection accuracy.

Areal data analysis is more suitable for chronic disease research.
Commonly used methods include Spatial Autocorrelation Analysis
[e.g., Global/Local Moran’s I, used to quantify disease spatial clustering
across the entire region or in local areas (69)], Geographically
Weighted Regression [GWR, used to explore how the effect strength
of risk factors varies across geographical space (70)], and Small Area
Estimation [uses Bayesian models to smooth data and address the
instability of rates in small sample areas (71)]. This approach divides
the study area into several spatial units (e.g., administrative divisions)
to analyze the spatial variation of disease rates or risk factors. In
cardiovascular disease and cancer research, areal analysis helps reveal
the spatial heterogeneity of environmental exposures and
socioeconomic factors (72-75).

The main limitation of areal analysis is the Modifiable Areal Unit
Problem (MAUP) (76), meaning the results can be significantly

TABLE 1 Comparison of spatial data characteristics between infectious and chronic diseases.

Feature Infectious diseases Chronic diseases

Applicable scenarios and selection rationale

Point distribution with clear
Spatial Distribution
spatiotemporal transmission
Pattern regional risk factors

paths

Areal distribution reflecting

Infectious diseases require point pattern analysis for dynamic transmission
tracking; chronic diseases suit areal analysis for long-term exposure

assessment.

Highly dynamic, requiring
Temporal dynamics real-time/near-real-time

monitoring analysis

Relatively stable, suitable for cross-

sectional or long-term trend

Infectious disease models need short time windows; chronic disease

studies use extended periods to identify stable clusters.

Data sources Mandatory reporting systems

Disease registries, health surveys

Infectious disease data are actively reported; chronic disease data are often

passively collected.

Kernel density estimation,

Key analytical , Patial Autocorrelation, GWR, Point pattern methods fit infectious diseases; areal methods account for
Ripley’s K, spatial scan
methods small area estimation socioeconomic and environmental exposures in chronic diseases.
statistics
Frontiers in Public Health 04 frontiersin.org
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influenced by the way regional units are divided and their scale (e.g.,
county, city, province). Additionally, ecological fallacy isa potential
risk (77), where correlations derived from aggregated data may not
accurately infer individual-level relationships.

Technical selection must consider data availability and research
objectives. Point pattern analysis requires precise geographic
coordinates but may face privacy protection restrictions (78); areal
analysis can utilize routinely collected aggregated data but may
be affected by MAUP (79) (Table 2).

4.3 Parameter optimization strategies and
challenges for spatiotemporal scan
statistics

Spatiotemporal scan statistics have important applications both
in early warning for infectious diseases and long-term monitoring of
chronic diseases. Parameter optimization must consider disease type
characteristics: for infectious diseases, shorter time windows (e.g.,
days to weeks) should be set to capture rapid transmission processes
(80); for chronic diseases, the observation period needs to
be extended (e.g., months to years) to identify stable spatial clustering
patterns (81).

The choice of spatial scanning window shape also requires
differentiation: infectious disease studies often use circular windows
to detect local outbreaks (82); chronic disease studies can use elliptical
or irregularly shaped windows to match the geographical distribution
of environmental exposures (83). The maximum scanning window
size should be set to detect meaningful clusters while ensuring
statistical power, but not so large as to obscure the internal real
structure or produce difficult-to-interpret results.

Multiple comparison correction strategies also need adjustment:
early warning systems for infectious diseases might use a less strict
significance level (e.g., p < 0.1) to increase sensitivity; chronic disease
studies should employ strict correction (e.g., p < 0.01) to reduce the
false positive rate (84).

It is noteworthy that a key challenge for spatiotemporal scan
statistics lies in their computational complexity and the methods for
correcting multiple comparisons, which can impose a computational
burden (85, 86). Furthermore, the method typically assumes the
population at risk is uniform within the scanning window (82). This
assumption may not hold in real-world scenarios with uneven
population density or large-scale population movement, potentially
leading to detection bias. Recently developed Bayesian spatiotemporal
modeling methods (e.g., Bayesian spatiotemporal scan statistics) (87,

10.3389/fpubh.2025.1698964

88), which can better handle small area data instability and spatial
correlation by incorporating prior distributions, show advantages in
chronic disease studies and offer new directions for addressing
these limitations.

5 Impact mechanism of data
aggregation scale on research results

5.1 Empirical research on the MAUP

MAUP, which is widespread in spatial data analysis, refers to
the sensitivity of analytical results to the arbitrarily chosen spatial
aggregation units during data measurement (76). This issue is
particularly prominent in disease mapping. When high-resolution
spatial health data are aggregated for reasons such as privacy
protection, the resulting “single-aggregation disease map” relies
entirely on the selected aggregation units to represent the
underlying data (89). The MAUP manifests specifically in two
effects: the zoning effect, which occurs when the boundaries of
analytical units are altered, and the scale effect, which arises when
the level of aggregation is changed (90, 91). Empirical studies have
shown that in the analysis of cancer mortality rates in Portugal
from 2009 to 2013, choices regarding the level of aggregation can
lead to (92).
Furthermore, data from COVID-19 wastewater monitoring

significantly different research outcomes
projects in New York State have confirmed the substantial impact
of the MAUP scale effect on epidemiological surveillance
results (93).

5.2 Key role of multi-scale analysis in
exposure assessment

To address the challenges posed by MAUP, multi-scale analysis
methods have become an important strategy in exposure
assessment (91). This approach establishes linkage models at
different spatial scales, connecting convolution models at different
scale levels using shared random effects (94). Research conducted
in low-population-density areas of Australia showed that
exploring intermediate aggregation levels and multi-scale methods
can better capture subtle disease dynamics (91). Multi-scale
models allow the integration of variables acting at different scales
into a single model while minimizing information loss. This
method is not only suitable for specific ecological contexts but

TABLE 2 Technical comparison of point pattern analysis vs. areal data analysis.

Point pattern analysis

Data requirement Precise geographic coordinates

administrative divisions)

Areal data analysis

Aggregated data by spatial units (e.g.,

Applicable scenarios and selection rationale

Use point pattern when individual-level geocoded data are available; use

areal analysis when only aggregated data are accessible.

Kernel density, spatial scan
Typical methods

Global/Local Moran’s I, GWR, Bayesian

Point pattern detects clusters and sources; areal analysis reveals spatial

statistics smoothing heterogeneity and ecological associations.
Bandwidth subjectivity, Modifiable Areal Unit Problem Point pattern may over-smooth; areal analysis is sensitive to zoning and
Limitations
predefined window shape (MAUP), ecological fallacy scale effects.
Application Cancer mortality mapping, CVD risk Infectious diseases benefit from point-based clustering; chronic diseases
Malaria/HIV hotspot detection
examples area identification use areal units for policy-relevant mapping.
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also has application value in broader spatial analysis. Particularly
in environmental epidemiology studies, multi-scale analysis helps
address the issue of unmeasured confounders arising from the use
of administratively aggregated data (95).

5.3 Integration methods for individual-level
and group-level data

Spatial epidemiological data are often arranged hierarchically,
where individuals are classified into smaller units, which are in turn
grouped into larger units. This structure can produce contextual
effects (96). To address this issue, researchers have proposed shared
multilevel models that can simultaneously handle the scale effects
generated by aggregating data from smaller units into larger units
(96). In data downscaling methods, the a priori chosen scale and shape
significantly influence the results, requiring researchers to carefully
consider integration strategies for individual-level and group-level
data (97). In traffic injury research, converting sparse collision point
data into a continuous risk surface via Kernel Density Estimation
(KDE), combined with Multiscale Geographically Weighted
Regression (MGWR) methods, effectively overcame the impact of
MAUP on point data aggregation (98). Furthermore, Exploratory
Spatial Data Analysis (ESDA) methods provide a flexible solution to
scale issues at different jurisdictional levels by iteratively assessing
changes in spatial patterns during the process of upgrading high-
resolution maps (99).

6 Technological innovation and
multi-source data fusion

6.1 Technological evolution of GIS

GIS, as a core technical tool for spatial epidemiology, have
undergone significant technological innovation over the past 25 years.
Their development trajectory has kept pace with technological
advances in the fields of spatial statistics and geography (1). As
presented in Table 3, modern GIS technology can integrate core
functions such as geocoding, distance calculation, and spatial
interpolation, providing powerful spatial analysis capabilities for
epidemiological research (3). In the field of cancer research, GIScience
has significantly improved the accuracy of environmental exposure
assessment by integrating multiple geographical perspectives and
spatial analysis methods (100). It is noteworthy that the spatial analysis

10.3389/fpubh.2025.1698964

functions of GIS, combined with genetic projection pursuit models,
can effectively improve the reliability of assessment results (101). With
the popularization of visualization tools, the role of GIS in public
health decision support systems is becoming increasingly
prominent (49).

6.2 Application breakthroughs of remote
sensing and mobile positioning data

The combination of Remote Sensing (RS) technology and mobile
positioning data has created a new paradigm for disease surveillance.
In an empirical study in Hunan Province, change patch data from
remote sensing images showed a strong correlation with Real-Time
Kinematic (RTK) positioning data (102). This technological
integration provides effective indicators for geographic information
updates (102). In air pollution research, seasonal spatiotemporal
modeling methods based on remote sensing data and GIS achieved
analysis of PM distribution characteristics at a 1 km grid level (103).
New digital data sources such as mobile phone call detail records
and geotagged tweets are reshaping infectious disease surveillance
systems (104). Particularly noteworthy is the cascaded parallel Long
Short-Term Memory-Conditional Random Field (LSTM-CRF)
model proposed in landslide prediction research, which
demonstrates the innovative value of multi-source data fusion by
integrating remote sensing images and GIS’s big spatial data
processing capabilities (105).

6.3 Spatial big data-driven precision public
health practice

Spatial big data, characterized by its Volume, Velocity, and Variety,
is driving public health practice toward precision (106). New data
sources such as medical claims data, mobile phone signaling, and
social media geotags provide real-time dynamic information for
infectious disease surveillance that traditional systems cannot capture
(104). In an empirical study in Shenzhen, researchers combined
remote sensing data with geographic big data to construct a
neighborhood-scale urban vitality assessment model using the
random forest method (107). The introduction of artificial intelligence
technology further enhances the analytical capabilities of spatial big
data. Large-scale geographic health datasets based on electronic health
records provide new ways to trace patients’ geographical exposure
history (108). These technological advances enable epidemiological

TABLE 3 Evolution and applications of core technologies in spatial epidemiology.

Technology Key functions

epidemiology

Applications in spatial

Applicable scenarios and selection rationale

Geocoding, distance
Geographic information
calculation, spatial
systems (GIS)
interpolation

Disease mapping, resource allocation,

environmental exposure assessment

GIS integrates spatial data and supports visual decision-making;

essential for both infectious and chronic disease studies.

Remote sensing (RS) Environmental monitoring,

and mobile positioning | human mobility tracking disease spread modeling

Air pollution exposure, infectious

RS provides large-scale environmental data; mobile data capture real-

time population movements for dynamic modeling.

Multi-source data fusion,
Spatial big data and AT

real-time prediction early warning

Precision public health, outbreak

Useful when high-volume, high-variety data are available; AT enhances

predictive accuracy and intervention targeting.
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research to break through traditional data limitations and play a
greater role in health risk communication and cross-scale public
health coordination (104).

7 Discussion
7.1 Current challenges and controversies

7.1.1 Ethical balance between privacy protection
and data sharing

The core ethical dilemma in spatial epidemiological research lies
in balancing the protection of individual privacy with the need for
scientific data sharing. On one hand, regulations such as HIPAA
(Health Insurance Portability and Accountability Act) have ambiguous
provisions regarding the protection of geographic data, which restricts
the sharing and use of spatial health data (109). On the other hand,
traditional methods (e.g., geographic masking), while capable of
protecting individual location privacy, may compromise critical
spatial statistical features (78, 110). Current solutions include: (1)
Federated learning (FL), which addresses data silos through
distributed model training (sharing only parameters rather than raw
data), but requires integration with techniques such as differential
privacy (DP) to enhance security (111-113); (2) Privacy-preserving
geostatistical models (e.g., Zip4 aggregation), which achieve
anonymization while maintaining spatial analytical accuracy (114,
115). However, these methods still necessitate a trade-off between
privacy strength and data utility and require interdisciplinary
collaboration to optimize implementation frameworks.

7.1.2 Limitations of causal inference from spatial
analysis results

Spatial epidemiology has significant methodological limitations
in causal inference. Ecological fallacy is one of the most prominent
issues, occurring when researchers erroneously extrapolate
conclusions derived from spatial aggregate analysis at the group level
to the individual level (116). In health exposure modeling, particularly
disease mapping studies, ecological fallacy manifests as a systematic
deviation between the relationship of aggregated disease incidence
and average exposure level at the areal unit level, and the relationship
between individual disease events and relevant individual exposure
levels (77). Recent research shows that about 67% of multivariate
model studies have causal inference defects, and only 16% of studies
select variables based on a causal inference framework (117). Although
the counterfactual causal inference framework provides new ideas for
answering ecological causal questions (118), spatial epidemiology has
not fully adapted to the contemporary emphasis in epidemiology on
causal inference and intervention research (1). This requires
researchers to handle spatial correlation analysis results more
cautiously (119) and develop synthetic population data tools that can
integrate multi-level causal structures (120).

7.1.3 Risks of model overfitting and ecological
fallacy

Spatial epidemiological models face dual risks of overfitting
and ecological fallacy. Unreasonable prior assumptions can
seriously affect multiple key aspects of epidemiological research,
including inter-regional transmission rates, importance of
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transmission paths, number of transmission events, and pathogen
ancestry relationships (121). In spatial modeling of diseases such
as schistosomiasis, ecological fallacy can lead to unreliability in
(116).
widespread phenomenon of the “Table 2 Fallacy” (i.e.,

identifying at-risk populations Furthermore, the
misinterpretation of multivariate model results) in multivariate
model studies occurs in up to 67% of orthopedic literature (117),
highlighting the issue of standardization in the application of
statistical methods in spatial analysis. To mitigate these risks,
researchers need to adopt more robust prior distributions to
enhance topic relevance analysis, and can employ modeling
approaches based on known at-risk populations at the regional
level and independent environmental monitoring data to avoid
reliance on individual-level exposure information or random
allocation assumptions (77). At the same time, it should
be recognized that individual-level data is irreplaceable for
assessing causality affecting individuals (120), which provides
important implications for the

design of spatial

epidemiological studies.

7.2 Future development directions

7.2.1 Al-enabled real-time spatial early warning
systems

The World Health Organization’s “Global Initiative on Al for
Health” (GI-AI4H) is coordinating the development of governance
standards for Al in health, with particular focus on implementation
in low- and middle-income countries (122). GeoAl, as an emerging
interdisciplinary field, integrates spatial science, machine learning,
and big data computing technologies, enabling the extraction of key
knowledge from spatial big data (39). In the field of infectious disease
surveillance, applications of spatial AI combining real-time data from
IoT devices with GIS are building multi-dimensional disease
surveillance decision support systems (123, 124). Future research
should focus on developing spatiotemporal prediction models based
on deep learning algorithms, integrating multi-source data such as
environment, climate, and population, to achieve proactive outbreak
management and precise intervention (124).

7.2.2 Integration pathways for multi-omics data
and spatial analysis

Emerging technologies such as spatial transcriptomics and
spatial proteomics are providing unprecedented spatial resolution
126). Al-driven
multimodal models can decipher the complex molecular

for studying tumor heterogeneity (125,

interactions underlying cell behavior and tissue dynamics. Deep
learning algorithms, in particular, show great potential in
biomedical image analysis tasks such as cell segmentation,
phenotype recognition, and cancer prognosis prediction (125).
research, Al-based
transcriptome analysis helps understand the mechanisms of cell-

In tumor microenvironment spatial
cell interactions (127). Future development directions include
establishing multi-center collaborative networks, promoting the
integrated application of spatial omics technologies and
computational tools, and facilitating the translation from research
on tumor spatial heterogeneity to precision treatment plans

(128, 129).
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7.2.3 Building spatial decision support systems in
global health governance

Global AI governance should prioritize the principle of equity,
particularly by empowering Global South nations to lead the
development of solutions (130). In terms of ethical governance, a
balanced mechanism that integrates both privacy protection and data
sharing ought to be established, utilizing tools such as Participatory
(PGIS) to
interdisciplinary data (124, 131). GeoAl technologies provide new

Geographic  Information  Systems incorporate
multi-scale analytical tools for health disparity research, enabling
improved interpretation of the spatial heterogeneity in health
determinants at both individual and regional levels (9, 132). Future
efforts should focus on building a global health decision-support
system that incorporates environmental exposure assessment, social
determinants analysis, and real-time monitoring data, while also
addressing algorithmic biases stemming from Western-centric

cognitive frameworks (39, 130).

8 Conclusion

Spatial epidemiology has undergone a significant paradigm shift,
evolving from infectious disease prevention and control to chronic
disease management. This evolution highlights its strong adaptability
in addressing complex public health challenges.

The application of technologies such as Geographic Information
Systems and remote sensing has greatly enhanced our understanding
of disease spatial patterns. However, the field still faces challenges
including privacy ethics and causal inference.

Looking ahead, the integration of artificial intelligence (AI)
with spatial epidemiology promises revolutionary advances. Al
can not only build real-time early warning systems by integrating
multi-source data to improve response capabilities for infectious
diseases but also promote the development of precision public
health through the analysis of multi-omics data. Furthermore,
these technologies hold potential for application in often-
neglected animal disease research, which is crucial for
implementing the “One Health” concept and comprehensively
safeguarding public health.

In the new era of data-driven approaches, spatial epidemiology
will provide critical support for building a more resilient global public
health system through technological innovation.
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