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Spatial epidemiology, as an important branch of epidemiology, has undergone 
a significant paradigm shift from infectious disease prevention and control to 
chronic disease management. This paper systematically reviews the application 
progress of spatial epidemiology in the study of infectious diseases (e.g., malaria, 
HIV) and chronic diseases (e.g., cancer, cardiovascular diseases), focusing on its 
role in identifying spatial distribution patterns of diseases, assessing environmental 
exposures, and supporting health decision-making. The paper compares the 
differences in data characteristics, analytical methods, and modeling strategies 
between infectious and chronic diseases, and discusses the impact of multi-scale 
analysis, data aggregation, and the Modifiable Areal Unit Problem on research results. 
Furthermore, this paper reviews the innovative value of Geographic Information 
Systems, remote sensing technology, mobile positioning, and multi-source data 
fusion in promoting precision public health practices. Finally, the article points 
out the current challenges faced by spatial epidemiology in privacy ethics, causal 
inference, and model robustness, and prospects future directions such as AI-
enabled multi-omics integration and spatial decision support systems under global 
health governance.
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1 Introduction

1.1 Definition and development of spatial epidemiology

Spatial epidemiology, as an important sub-discipline of epidemiology, has undergone 
significant development and evolution over the past 25 years (1). This discipline primarily 
describes and analyzes the spatial distribution patterns of disease risk factors, incidence, and 
mortality, investigating their associations with demographic characteristics, socioeconomic 
status, environmental exposures, health behaviors, and genetic risk factors (2). Its origins can 
be  traced back to a critical period of development in spatial statistics and geographical 
technologies, which provided the methodological foundation for spatial disease analysis (1). 
With the evolution of technologies such as Geographic Information Systems (GIS), spatial 
epidemiology has expanded from its initial focus on infectious diseases to the field of chronic 
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diseases, forming a complete theoretical system and technical 
framework (3).

1.2 Paradigm shift from infectious disease 
control to chronic disease management

The global shift in disease spectrum has driven a major 
transformation in the research paradigm of spatial epidemiology. 
Traditionally, this field was primarily applied to the prevention and 
control of infectious diseases such as malaria and Human 
Immunodeficiency Virus (HIV) (4). However, with the increasing 
burden of chronic diseases, spatial analysis methods have been 
successfully extended to the study of non-communicable diseases (4). 
This shift reflects the transition of epidemiology from infectious to 
chronic diseases (5), while also revealing the complex associations 
between infectious pathogens and the occurrence of chronic diseases, 
such as the link between enteroviruses and various chronic diseases 
in children (6). It is noteworthy that the current public health field 
faces a complex situation where infectious and chronic degenerative 
diseases coexist and are interrelated (7), presenting new research 
challenges and opportunities for spatial epidemiology.

1.3 Value of methodological innovation 
through interdisciplinary integration

The innovative development of spatial epidemiology highly 
depends on multidisciplinary integration. This field integrates spatial 
information technologies such as GIS, remote sensing technology, and 
mobile positioning data (8–11), while also incorporating the life-
course epidemiology framework to study the long-term effects of 
biological, environmental, behavioral, and psychosocial factors on 
chronic disease risk (12). Methodologically, spatial analysis techniques 
can not only identify spatial clustering patterns of diseases (13) but 
also assess environmental exposure risks (14) and optimize the 
allocation of prevention and control resources (15). This 
multidisciplinary integration promotes the development of precision 
public health practices (16), providing a spatial dimension of scientific 
evidence for decision-making in the prevention and control of both 
infectious and chronic diseases (16, 17). However, academia still needs 
to strengthen mechanisms for translating innovative technologies into 
practical prevention and control capabilities to bridge the gap between 
theoretical research and implementation (18).

2 Application progress of spatial 
epidemiology in infectious disease 
prevention and control

2.1 Establishment and development of 
spatial transmission models for infectious 
diseases

The development of spatial transmission models for infectious 
diseases has evolved from simple statistical descriptions to complex 
spatiotemporal predictions. In recent years, with advances in GIS and 
remote sensing technology, spatial modeling techniques have been 

able to integrate multi-source data to simulate the transmission 
dynamics of pathogens (8). Modern spatial transmission models not 
only include traditional point pattern analysis and areal data analysis 
but also incorporate innovative methods such as space–time scan 
statistics, significantly improving the prediction accuracy of disease 
diffusion paths (19, 20). These models show unique advantages in 
evaluating the effects of different prevention and control measures, 
providing scientific basis for public health decision-making. It is 
noteworthy that the main challenge in current model development lies 
in how to translate the results of fine spatiotemporal scale analyses 
into actionable recommendations for practical prevention and control 
actions (18).

2.2 Case studies of spatial analysis for 
classic infectious diseases such as malaria/
HIV

Spatial analysis provides a critical perspective for understanding 
the distribution patterns and intrinsic relationships of classic 
infectious diseases such as malaria and HIV. In a study in Zimbabwe, 
spatial scan statistics revealed no spatial overlap in the primary 
clusters of HIV/AIDS and malaria, but spatial overlap of secondary 
clusters was found in five districts in the northern and eastern parts 
of the country. This finding provides a basis for targeted prevention 
and control; for example, screening and intervention measures for 
both diseases can be integrated in the overlapping areas (21). A study 
in Ethiopia found spatial co-distribution of HIV, tuberculosis, and 
malaria prevalence in some areas, which was significantly associated 
with healthcare accessibility, demographic, and climatic factors (22). 
It is noteworthy that the application of spatial analysis is not limited 
to classical infectious diseases. Taking cutaneous leishmaniasis in Iran 
as an example, analysis confirms that disease hotspots are significantly 
associated with environmental factors such as high altitude (600–1800 
meters) and specific land surface temperatures (23).

Specific cases demonstrate that spatial analysis methods can 
effectively identify disease transmission patterns. For example, when 
using Kulldorff ’s spatial scan statistic to identify high HIV/AIDS 
prevalence areas in Zimbabwe, data obtained from the District Health 
Information System (DHIS) revealed that HIV was more widely 
distributed than malaria (21). In malaria research, spatial 
autocorrelation analysis using a discrete Poisson model revealed 
significant spatiotemporal clustering in specific geographical areas 
(p < 0.05) (24). These cases confirm that spatial analysis can support 
the development of precise prevention and control strategies. For 
instance, Chiapas State in Mexico used geospatial tools to identify 
associations between malaria risk and socio-environmental factors 
(25), while China combined molecular epidemiology with spatial 
analysis to track the mobility pathways of HIV-infected 
individuals (26).

2.3 Spatial epidemiological analysis and 
early warning systems in public health 
emergencies

In public health emergencies, spatial epidemiological early 
warning systems integrate GIS, spatial statistics, and multi-source 
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real-time data to achieve dynamic monitoring of spatiotemporal 
disease transmission patterns, risk prediction, and targeted 
intervention. The core of these systems lies in transforming abstract 
case data into intuitive spatial risk maps, with their functions mainly 
manifested in three aspects:

First, in terms of early warning and source tracing, the system can 
utilize methods like spatial scan statistics for rapid anomaly detection. 
For example, during a Salmonella outbreak in New York City, the 
system successfully located the source restaurant before the official 
announcement, demonstrating its prominent value for early 
warning (27).

Second, regarding transmission pattern analysis and risk 
assessment, relevant studies on the COVID-19 pandemic in Wuhan 
through spatiotemporal analysis revealed the correlation between 
spatial clustering characteristics of cases and urban infrastructure 
such as transportation and population density, providing crucial data 
support for geography-informed emergency decision-making (28).

Finally, for dynamic risk assessment and optimization of control 
strategies, the system needs the capability to identify changes in 
transmission patterns. For instance, research in the Kenyan highlands 
showed a lack of consistency in malaria incidence hotspots over a 
10-year period, suggesting that static hotspot maps have limitations in 
areas with low and unstable transmission, necessitating the 
establishment of dynamic, continuously re-evaluated surveillance 
mechanisms (29).

Therefore, spatial epidemiological early warning systems deeply 
integrate the “location” dimension into decision-making, marking a 
strategic shift in public health management from passive response to 
active prediction.

3 Expanded application of spatial 
epidemiology in chronic disease 
research

3.1 Geographic distribution patterns of 
cancer and environmental exposure 
assessment

As a major health threat among chronic diseases today, the 
application of spatial epidemiology in cancer has shifted from 
descriptive analysis to assessing the practical impact on prevention 
strategies. Research indicates that geographic variation in cancer 
outcomes and their risk factors is significantly associated with area 
socioeconomic status and community composition (30). 
Environmental exposure assessment is a core component of spatial 
cancer analysis, including studies on the spatial association between 
the geographic distribution of environmental carcinogens (such as air 
pollution, industrial emissions) and cancer incidence rates. For 
example, in the Campania region of Italy, spatial autocorrelation 
techniques confirmed the spatial clustering of cancer mortality and 
environmental health hazards (such as industrial pollution), directly 
contributing to the delineation of priority intervention areas in the 
locality (31).

Environmental exposure assessment uses multi-scale methods (such 
as JoinPoint, SaTScan, and spatial regression models) to reveal spatial 
associations between air pollution (PM) and cancer incidence (32, 33). 
Research confirms a high degree of spatial overlap between PM exposure 

and lung cancer incidence. For instance, a study in Guangzhou, China, 
found higher PM exposure risks in densely populated areas, where lung 
cancer incidence rates were also significantly higher (34). Another study 
in Beijing identified a potential spatial association between PM and 
cancer incidence, suggesting the incorporation of PM exposure 
assessment into environmental epidemiological monitoring (33). The US 
SEER registry system, as a high-quality population-based data 
infrastructure, facilitates sophisticated spatial analyses of cancer patterns. 
For example, one study using SEER data employed spatial statistical 
methods to identify geographic disparities and service coverage gaps in 
prostate cancer care, highlighting how such registry systems can pinpoint 
areas with potential environmental and healthcare access challenges (35).

The translation of spatial epidemiology into policy confronts 
several challenges. First, although advanced methods like Bayesian 
spatial analysis can leverage cancer registry data for tailored 
interventions (36), technical limitations persist. Second, geocoding 
errors, for instance, can lead to exposure misclassification, requiring 
standardized protocols to improve data reliability (37, 38). To address 
these limitations and better capture the complexities of dynamic 
human mobility, the field is increasingly adopting Geographic 
Artificial Intelligence (GeoAI). This approach integrates high-
resolution environmental data with mobile monitoring to refine 
exposure assessment (39, 40).

3.2 Spatial clustering analysis of 
cardiovascular diseases

Spatial epidemiological research on Cardiovascular Diseases 
(CVDs) has evolved from theoretical description to supporting 
practical interventions. Using GIS and spatial statistical techniques 
(such as Moran’s I, hotspot analysis, and geographically weighted 
regression), studies have not only identified high-risk clusters in 
southern South Africa (41, 42) but also revealed spatial associations 
between population density and congenital heart disease hotspots 
(43). These findings directly guide targeted interventions: for example, 
in Ulsan, South Korea, spatial clustering analysis of social determinants 
provided a basis for developing regional policies addressing 
cardiovascular health disparities (44); while in Colombia’s Pacific 
region, spatiotemporal mortality analysis linked municipal 
socioeconomic indicators to CVD burden, optimizing resource 
allocation strategies (45). Recent cases show that spatial hotspot 
analysis can precisely identify areas requiring enhanced comprehensive 
interventions (46), such as US-based research on integrated prevention 
for CVD and cancer based on county-level mortality clusters (47), and 
the identification of high-priority intervention areas in Tanzania 
through retrospective spatiotemporal models (48). These practices 
confirm that spatial epidemiological methods can effectively promote 
the transition of public health strategies from “universal coverage” to 
“precision prevention and control” (49, 50).

3.3 Spatial heterogeneity of social 
determinants of chronic diseases

Differences in the spatial distribution of chronic diseases often 
reflect geographical inequalities in social determinants. Research 
shows a significant negative correlation between the area deprivation 
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index (SDI) and chronic disease risk, with residents in areas with 
better socioeconomic conditions showing lower overall chronic 
disease risk (51). Spatial analysis methods can effectively capture the 
non-uniform distribution characteristics of these social factors and 
their complex associations with health outcomes. Particularly 
noteworthy is that data from the China Health and Retirement 
Longitudinal Study (CHARLS) reveal that multimorbidity among the 
older adults population in China does not follow a random 
distribution but demonstrates identifiable spatial clustering patterns, 
such as high prevalence of specific combinations like hypertension 
with arthritis or gastric diseases (52). By integrating GIS with 
socioeconomic data, a more comprehensive understanding of the 
spatial heterogeneity of the chronic disease burden can be achieved, 
providing decision support for precision public health interventions 
(49, 53). This multi-dimensional spatial analysis framework is of great 
value for developing targeted chronic disease prevention and control 
strategies (54).

4 Methodological comparison of 
spatial analysis for different disease 
types

4.1 Differences in spatial data 
characteristics between infectious and 
chronic diseases

As shown in Table  1, infectious and chronic diseases exhibit 
significant differences in spatial data characteristics. Spatial data for 
infectious diseases typically manifest as point distribution patterns, 
with clear spatiotemporal transmission paths and clustering features 
(55). Such data often contain precise time and location information of 
onset, capable of reflecting the dynamic process of pathogen 
transmission through human contact or vectors (56, 57). In contrast, 
spatial data for chronic diseases more often present areal distribution 
characteristics, related to long-term cumulative effects of 
environmental exposures, socioeconomic factors, etc. (58, 59). 
Chronic disease data usually lack precise time stamps, and their spatial 
distribution more reflects regional differences in risk factors (60).

Spatial data for infectious diseases are highly dynamic and require 
support from real-time or near-real-time monitoring systems (61). 
Conversely, spatial data for chronic diseases exhibit relatively stable 

geographical distribution patterns, making them more suitable for 
cross-sectional or long-term trend analysis (62). In terms of data 
sources, infectious disease data mostly come from mandatory 
reporting systems, while chronic disease data rely more on passive 
collection methods such as disease registries and health surveys (63).

4.2 Technical choices and limitations of 
point pattern analysis and areal data 
analysis

Point pattern analysis methods for infectious disease research 
primarily include Kernel Density Estimation (64) (used to visualize 
hotspot areas of case clustering), Ripley’s K function (65) (identifies 
specific spatial scales of case clustering), and Spatial Scan Statistics 
(66) (detects statistically significant disease clusters using a moving 
window). These methods can effectively identify case cluster areas 
and transmission sources, and are suitable for individual-level data 
with precise geocoding. In studies of infectious diseases like malaria 
and HIV, point pattern analysis has been successfully applied to 
identify high-risk areas and evaluate intervention effectiveness (21).

However, these methods also have limitations. For example, the 
results of Kernel Density Estimation are highly dependent on bandwidth 
selection (67), which is subjective. Although spatial scan statistics can 
provide statistical significance, the shape and size of its scanning window 
need to be predefined (68), which may not perfectly match the true 
shape of disease clusters, thus affecting detection accuracy.

Areal data analysis is more suitable for chronic disease research. 
Commonly used methods include Spatial Autocorrelation Analysis 
[e.g., Global/Local Moran’s I, used to quantify disease spatial clustering 
across the entire region or in  local areas (69)], Geographically 
Weighted Regression [GWR, used to explore how the effect strength 
of risk factors varies across geographical space (70)], and Small Area 
Estimation [uses Bayesian models to smooth data and address the 
instability of rates in small sample areas (71)]. This approach divides 
the study area into several spatial units (e.g., administrative divisions) 
to analyze the spatial variation of disease rates or risk factors. In 
cardiovascular disease and cancer research, areal analysis helps reveal 
the spatial heterogeneity of environmental exposures and 
socioeconomic factors (72–75).

The main limitation of areal analysis is the Modifiable Areal Unit 
Problem (MAUP) (76), meaning the results can be  significantly 

TABLE 1  Comparison of spatial data characteristics between infectious and chronic diseases.

Feature Infectious diseases Chronic diseases Applicable scenarios and selection rationale

Spatial Distribution 

Pattern

Point distribution with clear 

spatiotemporal transmission 

paths

Areal distribution reflecting 

regional risk factors

Infectious diseases require point pattern analysis for dynamic transmission 

tracking; chronic diseases suit areal analysis for long-term exposure 

assessment.

Temporal dynamics

Highly dynamic, requiring 

real-time/near-real-time 

monitoring

Relatively stable, suitable for cross-

sectional or long-term trend 

analysis

Infectious disease models need short time windows; chronic disease 

studies use extended periods to identify stable clusters.

Data sources Mandatory reporting systems Disease registries, health surveys
Infectious disease data are actively reported; chronic disease data are often 

passively collected.

Key analytical 

methods

Kernel density estimation, 

Ripley’s K, spatial scan 

statistics

Patial Autocorrelation, GWR, 

small area estimation

Point pattern methods fit infectious diseases; areal methods account for 

socioeconomic and environmental exposures in chronic diseases.
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influenced by the way regional units are divided and their scale (e.g., 
county, city, province). Additionally, ecological fallacy isa potential 
risk (77), where correlations derived from aggregated data may not 
accurately infer individual-level relationships.

Technical selection must consider data availability and research 
objectives. Point pattern analysis requires precise geographic 
coordinates but may face privacy protection restrictions (78); areal 
analysis can utilize routinely collected aggregated data but may 
be affected by MAUP (79) (Table 2).

4.3 Parameter optimization strategies and 
challenges for spatiotemporal scan 
statistics

Spatiotemporal scan statistics have important applications both 
in early warning for infectious diseases and long-term monitoring of 
chronic diseases. Parameter optimization must consider disease type 
characteristics: for infectious diseases, shorter time windows (e.g., 
days to weeks) should be set to capture rapid transmission processes 
(80); for chronic diseases, the observation period needs to 
be extended (e.g., months to years) to identify stable spatial clustering 
patterns (81).

The choice of spatial scanning window shape also requires 
differentiation: infectious disease studies often use circular windows 
to detect local outbreaks (82); chronic disease studies can use elliptical 
or irregularly shaped windows to match the geographical distribution 
of environmental exposures (83). The maximum scanning window 
size should be  set to detect meaningful clusters while ensuring 
statistical power, but not so large as to obscure the internal real 
structure or produce difficult-to-interpret results.

Multiple comparison correction strategies also need adjustment: 
early warning systems for infectious diseases might use a less strict 
significance level (e.g., p < 0.1) to increase sensitivity; chronic disease 
studies should employ strict correction (e.g., p < 0.01) to reduce the 
false positive rate (84).

It is noteworthy that a key challenge for spatiotemporal scan 
statistics lies in their computational complexity and the methods for 
correcting multiple comparisons, which can impose a computational 
burden (85, 86). Furthermore, the method typically assumes the 
population at risk is uniform within the scanning window (82). This 
assumption may not hold in real-world scenarios with uneven 
population density or large-scale population movement, potentially 
leading to detection bias. Recently developed Bayesian spatiotemporal 
modeling methods (e.g., Bayesian spatiotemporal scan statistics) (87, 

88), which can better handle small area data instability and spatial 
correlation by incorporating prior distributions, show advantages in 
chronic disease studies and offer new directions for addressing 
these limitations.

5 Impact mechanism of data 
aggregation scale on research results

5.1 Empirical research on the MAUP

MAUP, which is widespread in spatial data analysis, refers to 
the sensitivity of analytical results to the arbitrarily chosen spatial 
aggregation units during data measurement (76). This issue is 
particularly prominent in disease mapping. When high-resolution 
spatial health data are aggregated for reasons such as privacy 
protection, the resulting “single-aggregation disease map” relies 
entirely on the selected aggregation units to represent the 
underlying data (89). The MAUP manifests specifically in two 
effects: the zoning effect, which occurs when the boundaries of 
analytical units are altered, and the scale effect, which arises when 
the level of aggregation is changed (90, 91). Empirical studies have 
shown that in the analysis of cancer mortality rates in Portugal 
from 2009 to 2013, choices regarding the level of aggregation can 
lead to significantly different research outcomes (92). 
Furthermore, data from COVID-19 wastewater monitoring 
projects in New York State have confirmed the substantial impact 
of the MAUP scale effect on epidemiological surveillance 
results (93).

5.2 Key role of multi-scale analysis in 
exposure assessment

To address the challenges posed by MAUP, multi-scale analysis 
methods have become an important strategy in exposure 
assessment (91). This approach establishes linkage models at 
different spatial scales, connecting convolution models at different 
scale levels using shared random effects (94). Research conducted 
in low-population-density areas of Australia showed that 
exploring intermediate aggregation levels and multi-scale methods 
can better capture subtle disease dynamics (91). Multi-scale 
models allow the integration of variables acting at different scales 
into a single model while minimizing information loss. This 
method is not only suitable for specific ecological contexts but 

TABLE 2  Technical comparison of point pattern analysis vs. areal data analysis.

Aspect Point pattern analysis Areal data analysis Applicable scenarios and selection rationale

Data requirement Precise geographic coordinates
Aggregated data by spatial units (e.g., 

administrative divisions)

Use point pattern when individual-level geocoded data are available; use 

areal analysis when only aggregated data are accessible.

Typical methods
Kernel density, spatial scan 

statistics

Global/Local Moran’s I, GWR, Bayesian 

smoothing

Point pattern detects clusters and sources; areal analysis reveals spatial 

heterogeneity and ecological associations.

Limitations
Bandwidth subjectivity, 

predefined window shape

Modifiable Areal Unit Problem 

(MAUP), ecological fallacy

Point pattern may over-smooth; areal analysis is sensitive to zoning and 

scale effects.

Application 

examples
Malaria/HIV hotspot detection

Cancer mortality mapping, CVD risk 

area identification

Infectious diseases benefit from point-based clustering; chronic diseases 

use areal units for policy-relevant mapping.
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also has application value in broader spatial analysis. Particularly 
in environmental epidemiology studies, multi-scale analysis helps 
address the issue of unmeasured confounders arising from the use 
of administratively aggregated data (95).

5.3 Integration methods for individual-level 
and group-level data

Spatial epidemiological data are often arranged hierarchically, 
where individuals are classified into smaller units, which are in turn 
grouped into larger units. This structure can produce contextual 
effects (96). To address this issue, researchers have proposed shared 
multilevel models that can simultaneously handle the scale effects 
generated by aggregating data from smaller units into larger units 
(96). In data downscaling methods, the a priori chosen scale and shape 
significantly influence the results, requiring researchers to carefully 
consider integration strategies for individual-level and group-level 
data (97). In traffic injury research, converting sparse collision point 
data into a continuous risk surface via Kernel Density Estimation 
(KDE), combined with Multiscale Geographically Weighted 
Regression (MGWR) methods, effectively overcame the impact of 
MAUP on point data aggregation (98). Furthermore, Exploratory 
Spatial Data Analysis (ESDA) methods provide a flexible solution to 
scale issues at different jurisdictional levels by iteratively assessing 
changes in spatial patterns during the process of upgrading high-
resolution maps (99).

6 Technological innovation and 
multi-source data fusion

6.1 Technological evolution of GIS

GIS, as a core technical tool for spatial epidemiology, have 
undergone significant technological innovation over the past 25 years. 
Their development trajectory has kept pace with technological 
advances in the fields of spatial statistics and geography (1). As 
presented in Table  3, modern GIS technology can integrate core 
functions such as geocoding, distance calculation, and spatial 
interpolation, providing powerful spatial analysis capabilities for 
epidemiological research (3). In the field of cancer research, GIScience 
has significantly improved the accuracy of environmental exposure 
assessment by integrating multiple geographical perspectives and 
spatial analysis methods (100). It is noteworthy that the spatial analysis 

functions of GIS, combined with genetic projection pursuit models, 
can effectively improve the reliability of assessment results (101). With 
the popularization of visualization tools, the role of GIS in public 
health decision support systems is becoming increasingly 
prominent (49).

6.2 Application breakthroughs of remote 
sensing and mobile positioning data

The combination of Remote Sensing (RS) technology and mobile 
positioning data has created a new paradigm for disease surveillance. 
In an empirical study in Hunan Province, change patch data from 
remote sensing images showed a strong correlation with Real-Time 
Kinematic (RTK) positioning data (102). This technological 
integration provides effective indicators for geographic information 
updates (102). In air pollution research, seasonal spatiotemporal 
modeling methods based on remote sensing data and GIS achieved 
analysis of PM distribution characteristics at a 1 km grid level (103). 
New digital data sources such as mobile phone call detail records 
and geotagged tweets are reshaping infectious disease surveillance 
systems (104). Particularly noteworthy is the cascaded parallel Long 
Short-Term Memory-Conditional Random Field (LSTM-CRF) 
model proposed in landslide prediction research, which 
demonstrates the innovative value of multi-source data fusion by 
integrating remote sensing images and GIS’s big spatial data 
processing capabilities (105).

6.3 Spatial big data-driven precision public 
health practice

Spatial big data, characterized by its Volume, Velocity, and Variety, 
is driving public health practice toward precision (106). New data 
sources such as medical claims data, mobile phone signaling, and 
social media geotags provide real-time dynamic information for 
infectious disease surveillance that traditional systems cannot capture 
(104). In an empirical study in Shenzhen, researchers combined 
remote sensing data with geographic big data to construct a 
neighborhood-scale urban vitality assessment model using the 
random forest method (107). The introduction of artificial intelligence 
technology further enhances the analytical capabilities of spatial big 
data. Large-scale geographic health datasets based on electronic health 
records provide new ways to trace patients’ geographical exposure 
history (108). These technological advances enable epidemiological 

TABLE 3  Evolution and applications of core technologies in spatial epidemiology.

Technology Key functions Applications in spatial 
epidemiology

Applicable scenarios and selection rationale

Geographic information 

systems (GIS)

Geocoding, distance 

calculation, spatial 

interpolation

Disease mapping, resource allocation, 

environmental exposure assessment

GIS integrates spatial data and supports visual decision-making; 

essential for both infectious and chronic disease studies.

Remote sensing (RS) 

and mobile positioning

Environmental monitoring, 

human mobility tracking

Air pollution exposure, infectious 

disease spread modeling

RS provides large-scale environmental data; mobile data capture real-

time population movements for dynamic modeling.

Spatial big data and AI
Multi-source data fusion, 

real-time prediction

Precision public health, outbreak 

early warning

Useful when high-volume, high-variety data are available; AI enhances 

predictive accuracy and intervention targeting.
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research to break through traditional data limitations and play a 
greater role in health risk communication and cross-scale public 
health coordination (104).

7 Discussion

7.1 Current challenges and controversies

7.1.1 Ethical balance between privacy protection 
and data sharing

The core ethical dilemma in spatial epidemiological research lies 
in balancing the protection of individual privacy with the need for 
scientific data sharing. On one hand, regulations such as HIPAA 
(Health Insurance Portability and Accountability Act) have ambiguous 
provisions regarding the protection of geographic data, which restricts 
the sharing and use of spatial health data (109). On the other hand, 
traditional methods (e.g., geographic masking), while capable of 
protecting individual location privacy, may compromise critical 
spatial statistical features (78, 110). Current solutions include: (1) 
Federated learning (FL), which addresses data silos through 
distributed model training (sharing only parameters rather than raw 
data), but requires integration with techniques such as differential 
privacy (DP) to enhance security (111–113); (2) Privacy-preserving 
geostatistical models (e.g., Zip4 aggregation), which achieve 
anonymization while maintaining spatial analytical accuracy (114, 
115). However, these methods still necessitate a trade-off between 
privacy strength and data utility and require interdisciplinary 
collaboration to optimize implementation frameworks.

7.1.2 Limitations of causal inference from spatial 
analysis results

Spatial epidemiology has significant methodological limitations 
in causal inference. Ecological fallacy is one of the most prominent 
issues, occurring when researchers erroneously extrapolate 
conclusions derived from spatial aggregate analysis at the group level 
to the individual level (116). In health exposure modeling, particularly 
disease mapping studies, ecological fallacy manifests as a systematic 
deviation between the relationship of aggregated disease incidence 
and average exposure level at the areal unit level, and the relationship 
between individual disease events and relevant individual exposure 
levels (77). Recent research shows that about 67% of multivariate 
model studies have causal inference defects, and only 16% of studies 
select variables based on a causal inference framework (117). Although 
the counterfactual causal inference framework provides new ideas for 
answering ecological causal questions (118), spatial epidemiology has 
not fully adapted to the contemporary emphasis in epidemiology on 
causal inference and intervention research (1). This requires 
researchers to handle spatial correlation analysis results more 
cautiously (119) and develop synthetic population data tools that can 
integrate multi-level causal structures (120).

7.1.3 Risks of model overfitting and ecological 
fallacy

Spatial epidemiological models face dual risks of overfitting 
and ecological fallacy. Unreasonable prior assumptions can 
seriously affect multiple key aspects of epidemiological research, 
including inter-regional transmission rates, importance of 

transmission paths, number of transmission events, and pathogen 
ancestry relationships (121). In spatial modeling of diseases such 
as schistosomiasis, ecological fallacy can lead to unreliability in 
identifying at-risk populations (116). Furthermore, the 
widespread phenomenon of the “Table 2 Fallacy” (i.e., 
misinterpretation of multivariate model results) in multivariate 
model studies occurs in up to 67% of orthopedic literature (117), 
highlighting the issue of standardization in the application of 
statistical methods in spatial analysis. To mitigate these risks, 
researchers need to adopt more robust prior distributions to 
enhance topic relevance analysis, and can employ modeling 
approaches based on known at-risk populations at the regional 
level and independent environmental monitoring data to avoid 
reliance on individual-level exposure information or random 
allocation assumptions (77). At the same time, it should 
be  recognized that individual-level data is irreplaceable for 
assessing causality affecting individuals (120), which provides 
important implications for the design of spatial 
epidemiological studies.

7.2 Future development directions

7.2.1 AI-enabled real-time spatial early warning 
systems

The World Health Organization’s “Global Initiative on AI for 
Health” (GI-AI4H) is coordinating the development of governance 
standards for AI in health, with particular focus on implementation 
in low- and middle-income countries (122). GeoAI, as an emerging 
interdisciplinary field, integrates spatial science, machine learning, 
and big data computing technologies, enabling the extraction of key 
knowledge from spatial big data (39). In the field of infectious disease 
surveillance, applications of spatial AI combining real-time data from 
IoT devices with GIS are building multi-dimensional disease 
surveillance decision support systems (123, 124). Future research 
should focus on developing spatiotemporal prediction models based 
on deep learning algorithms, integrating multi-source data such as 
environment, climate, and population, to achieve proactive outbreak 
management and precise intervention (124).

7.2.2 Integration pathways for multi-omics data 
and spatial analysis

Emerging technologies such as spatial transcriptomics and 
spatial proteomics are providing unprecedented spatial resolution 
for studying tumor heterogeneity (125, 126). AI-driven 
multimodal models can decipher the complex molecular 
interactions underlying cell behavior and tissue dynamics. Deep 
learning algorithms, in particular, show great potential in 
biomedical image analysis tasks such as cell segmentation, 
phenotype recognition, and cancer prognosis prediction (125). 
In tumor microenvironment research, AI-based spatial 
transcriptome analysis helps understand the mechanisms of cell–
cell interactions (127). Future development directions include 
establishing multi-center collaborative networks, promoting the 
integrated application of spatial omics technologies and 
computational tools, and facilitating the translation from research 
on tumor spatial heterogeneity to precision treatment plans 
(128, 129).
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7.2.3 Building spatial decision support systems in 
global health governance

Global AI governance should prioritize the principle of equity, 
particularly by empowering Global South nations to lead the 
development of solutions (130). In terms of ethical governance, a 
balanced mechanism that integrates both privacy protection and data 
sharing ought to be established, utilizing tools such as Participatory 
Geographic Information Systems (PGIS) to incorporate 
interdisciplinary data (124, 131). GeoAI technologies provide new 
multi-scale analytical tools for health disparity research, enabling 
improved interpretation of the spatial heterogeneity in health 
determinants at both individual and regional levels (9, 132). Future 
efforts should focus on building a global health decision-support 
system that incorporates environmental exposure assessment, social 
determinants analysis, and real-time monitoring data, while also 
addressing algorithmic biases stemming from Western-centric 
cognitive frameworks (39, 130).

8 Conclusion

Spatial epidemiology has undergone a significant paradigm shift, 
evolving from infectious disease prevention and control to chronic 
disease management. This evolution highlights its strong adaptability 
in addressing complex public health challenges.

The application of technologies such as Geographic Information 
Systems and remote sensing has greatly enhanced our understanding 
of disease spatial patterns. However, the field still faces challenges 
including privacy ethics and causal inference.

Looking ahead, the integration of artificial intelligence (AI) 
with spatial epidemiology promises revolutionary advances. AI 
can not only build real-time early warning systems by integrating 
multi-source data to improve response capabilities for infectious 
diseases but also promote the development of precision public 
health through the analysis of multi-omics data. Furthermore, 
these technologies hold potential for application in often-
neglected animal disease research, which is crucial for 
implementing the “One Health” concept and comprehensively 
safeguarding public health.

In the new era of data-driven approaches, spatial epidemiology 
will provide critical support for building a more resilient global public 
health system through technological innovation.
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