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Over the past decademany researchers have appliedmachine learning algorithms
with computational chemistry andmaterials science tools to explore properties of
catalysts. There is a rapid increase in publications demonstrating the use of
machine learning for rational catalyst design. In our perspective, targeted tools
for rational catalyst design will continue to make significant contributions.
However, the community should focus on developing high-throughput
simulation tools that utilize molecular dynamics capabilities for thorough
exploration of the complex potential energy surfaces that exist, particularly in
heterogeneous catalysis. Catalyst-specific databases should be developed to
contain enough data to represent the complex multi-dimensional space that
defines structure-function relationships. Machine learning tools will continue to
impact rational catalyst design; however, we believe that more sophisticated
pattern recognition algorithms would yield better understanding of structure-
function relationships for heterogeneous catalysis.
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Introduction

The “magic” of catalysts is in the ability of these materials to transform the chemical
world around us through a complex collective behavior. The rate of a chemical reaction is
determined by a kinetic process that describes how molecules react via intermediates to an
eventual product. A catalyst accelerates the rate of a reaction without being consumed in the
process. There are several factors that enable a catalyst to perform its role; some factors are
microscopic or mesoscopic in nature which are defined by material processing and some
factors are macroscopic in nature as defined by industrial processing. Hence, the catalysts’
ability to energetically reduce the overall barrier for a reaction cannot be defined by a single
factor, or feature, but rather many features working collectively to enable chemical
conversion via an exceptionally complex route. From a fundamental viewpoint, the
researcher struggles with trying to understand structure-function relationships of
catalysts, and from an industrial viewpoint, the engineer struggles with finding industrial
processes that maximize efficiency. Similarly, there are significant challenges to continuously
find “green” or earth-abundant catalysts operating at lower temperature environments
without reducing turn-over frequency, selectivity, or yield (Roger et al., 2017; Schneider and
Thomas, 2020).

The role of computational chemistry and materials science calculations in catalysis is to
find correlations between microscopic structure and performance in the hopes of
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understanding features that lead to rational catalyst design. Catalytic
reactions mainly occur at some special sites on the surface, called
active centers. From the microscopic viewpoint, the catalyst
structure determines the electronic structure and reactivity of
these active centers. The performance of the catalyst encompasses
the reactivity, selectivity, and stability as well as other factors that
define the structure-function relationships targeted to a specific
reaction. Evaluation of structure-function relationships require
collecting sets of features that describe a catalyst’s structure with
its corresponding properties and further examining correlations
between these features and performance (Norskov et al., 2009;
Vojvodic and Nørskov, 2015). Structure-related features are based
on structural parameters such as element types and geometry (bond
lengths, angles, and dihedrals). Bond valence descriptions, proposed
by Pauling, are also structure based as these features solely depend
on element type and bond length (Ma et al., 2020a). Property-related
features are based on the properties of a particular catalyst, for
example, electronic structure, densities, electrostatic potentials, as
well as the energetics of the reaction profiles (Li et al., 2017;
Giordano et al., 2022). Computational chemistry and materials
science calculations are an extremely useful tool for calculating
the catalyst’s properties and evaluating property-related features.
In the world of machine learning finally meets quantum chemistry
in catalysis (see Figure 1) the interface between structure and
functions is complex in that there are many iterations between
structure properties, predicted function from machine learning
algorithms, and the influence on reactivity and selectivity of the
catalyst.

Quantum chemistry contributions to
catalysis

Computational chemistry and materials science calculations for
catalysts are roughly grouped into two classes–calculations of
structural properties and calculations of energy profiles to
evaluate selectivity/reactivity function. Both are dependent on the

potential energy surface. The potential energy surface and hence, the
corresponding electronic structure plays a central role for the
structure of the catalysts just as in any other computational
chemistry and materials science exploration. The potential energy
surface is multi-dimensional information that will offer many details
about how reactants and products will bind to the catalysts and
define a catalyst’s selectivity and reactivity. For heterogeneous
catalysts, the potential energy surfaces are largely dependent on
surface changes due to the environmental conditions, the
stoichiometry of the catalyst, and the morphology of the catalyst
which is most certainly affected by the substrate where the catalysts
are deposited. Properties based on the electronic structure include
the very popular d-band center theory, Fermi softness, Fukui
functions, to name a few, all which depend significantly on the
catalyst structure and the corresponding electronic structure and
potential energy surface. Calculation of catalyst’s structures should
thereby primarily focus on the surface properties, particularly the
defect or interfacial sites or undercoordinated sites which are highly
reactive.

Computational models should incorporate hundreds, if not
thousands, of atoms to reasonably probe physically and
chemically meaningful active sites. The calculation of a catalyst
for exploring its corresponding potential energy surface is therefore
quite time consuming. Developing efficient and accurate
computational methodologies that pertain to more relevant
computational models (i.e., scale to 1000s of atoms) is an urgent
prospect for the catalyst community. Many computational
chemistry and materials science tools based on density functional
theory exist. One such tool developed by Lewis et al. is the efficient
FIREBALL method, a standard density functional code based on
pseudo-potentials and a numerical local-orbital basis set (Lewis
et al., 2011). An important feature of FIREBALL is the flexibility
of constructing real-space-based localized basis functions to take
advantage of fundamental chemistry in atomic bonding. Over the
previous years, Lewis et al. has invested significant time and effort to
develop high-throughput and machine-learning algorithms for
heterogenous catalysts (Haycock et al., 2014a; Haycock et al.,

FIGURE 1
Future machine learning projects must be able to evaluate many different aspects of material properties from the underlying potential energy
surfaces. The corresponding evaluation of reactivity must include understanding many underlying functional properties of the catalyst.
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2014b; Wang et al., 2015; Ranasingha et al., 2016; Wang et al., 2016;
Senty et al., 2017; Panapitiya et al., 2018; Tavadze et al., 2018;
Panapitiya et al., 2019).

Machine learning improves quantum
chemistry accuracy

Over the past few decades, density functional theory has been a
proven approach for quantum chemistry calculations of catalyst’s
potential energy surfaces. Unfortunately, many functionals give
incorrect dissociation energy limits which are critical for
exploring the energy barriers between reactants and products.
Slowly, improvements have been made with hybrid functionals,
but these approaches add significant computational time to
quantum chemistry calculations. Many researchers have
developed machine learning methods to reduce the
computational time by replacing the calculation expense of
hybrid functionals with neural network potentials fit to high level
quantum chemistry data (Liu et al., 2017; Zhou et al., 2019). These
approaches are yielding some promising results that will greatly
improve the accuracy and computational time for evaluating
potential energy surfaces and corresponding properties of
catalysts. Unfortunately, challenges for the quantum chemistry
community to reduce the computational costs and increase
accuracy will continue.

Machine learning meets quantum
chemistry in reaction pathways

Evaluating accurate energy barriers relies on correctly
calculating potential energy surfaces along a variety of primary
reaction coordinates. Transition State Theory is the predominant
tool for obtaining the reaction rate corresponding to a specific
reaction mechanism. Two approaches are considered for these
kinetic simulations–mean field theory and kinetic Monte Carlo
(Salciccioli et al., 2011); the former is more efficient but neglects
the heterogeneity of active sites and diffusion effects. Both methods
require calculating transition states which is a bottleneck for
obtaining energy barriers as it required searching for saddle
points on the multi-dimensional potential energy surface.
Calculating saddle points adds extra computational loops and
nuances to the overall computational costs and therefore are
expensive to calculate. Unfortunately, traditional transition state
searching will not always accurately portray the full picture of
reactivity and selectivity. Most transition state searching
algorithms follow a single reaction pathway to one saddle point;
whereas many saddle points are likely to exist within the potential
energy surface.

One approach to simplify searching for transition states is
Brønsted-Evans-Polanyi theory - there is a linear relationship
between intermediate binding energies and activation barriers
(Bligaard et al., 2004). This relationship can be utilized to reduce
some of the computational costs in transition state searching and is
quite accurate for many elemental reactions in transition metal
catalysts. Brønsted-Evans-Polanyi theory is also found to be relevant
for situations with two different intermediates (Calle-Vallejo et al.,

2012). Reducing errors in calculating saddle points is a challenge for
quantum chemistry calculations. Our perspective is that rational
catalysts design by the computational catalyst community will
require more sensitivity analysis of the energy barriers to
generate more robust kinetic models. The concept of degree of
rate control by Campbell et al. is one approach to quantify the
contributions from intermediate adsorption energies and barriers to
overall reaction rates which will provide fruitful understanding of
the reaction mechanism for complex networks (Campbell, 2017).

Recently, Margraf et al. have also discussed the current state of
machine learning for exploring catalytic reaction networks and have
expressed their assessment that computational approaches are
insightful; but, the predictive power is uncertain due to the
underlying approximations and the utilization of idealized
structures to obtain results (Margraf et al., 2023). While current
approaches are not extremely accurate in predictability, the data
generated can still be beneficial. We believe that despite the failings
of computational approaches, the data produced will be greatly
beneficial in exploiting correlation trends that cannot otherwise be
obtained from any experimental approach. Therefore, high-
throughput simulations of many structures and systems can
more fully explore potential energy surfaces and subsequently
provide information on short-lived intermediate states that would
otherwise be unknown from experimental probing as also noted by
Margraf et al. It is our perspective that challenges for the quantum
chemistry community to reduce the computational costs and
increase accuracy will always exist; however, machine learning
tools that recognize patterns in the current data availability will
still yield “nuggets” of information.

Machine learning meets quantum
chemistry in volcano plots

In the early stages of catalysis research, Sabatier, in the 1920s,
proposed a simple and intuitive principle that the interaction
between the reactants and catalyst should be moderate for
enhanced performance. Interactions that are either too strong or
too weak will hinder the catalytic activity. Weak interactions will not
induce enough change in the reactant density to break covalent
bonds of the reactant and subsequently form products. Strong
interactions will covalently bind the reactant and any potential
products to the catalysts thereby trapping these molecules on the
surface. According to Sabatier’s principle, the interaction energy
between the reactant and the catalyst is an energy-based descriptor
and is represented by a volcano-shape curve. Chemists will
frequently utilize quantum chemistry calculations to evaluate
these interaction energy descriptors and investigate one-
dimensional volcano plots to predict optimal catalysts (Zhong
et al., 2020; Liu et al., 2022). A qualitative example of a three-
dimensional volcano plot for different types of catalysts is shown in
Figure 2. The reality is that more effective searching of optimal
catalysts will require multi-dimensional volcano plots that explore
resulting properties as a function of several features (Lai et al., 2022).

As energy-based features mainly result from transition barriers,
binding of intermediates, etc., then the calculation results for
volcano plots can also be utilized to examine elementary rate-
limiting reaction steps. Such features directly come from the
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reaction potential surface, so volcano plots can only yield enhanced
predictability with affordable computational costs. Corminboeuf’s
et al. applied machine learning concept for homogeneous catalyst
screening by constructing a thermodynamics-only volcano plot for
the Suzuki cross-coupling reaction and constructed a library of
potential catalysts (or metal-ligand combinations). They have
successfully demonstrated that exploring volcano plots using
machine learning is an efficient approach for screening catalysts
(Meyer et al., 2018). However, for heterogeneous catalysts, the
screening would require multi-dimensional volcano plots with a
much greater complexity than what has been explored by the
community. Only machine learning algorithms can effectively
explore the complexities between descriptors and catalyst
properties to thereby observe patterns found within the data of
multi-dimensional volcano plots.

Exploring rational catalyst design

Machine learning applied to materials science has perhaps made
its greatest impact in two areas–structure prediction and data
analysis for materials searching of a specific optimal property
(e.g., band gaps). In structure prediction, many neural networks
algorithms have been developed and machine learning potentials
have already made a significant impact in structural prediction
(Behler and Parrinello, 2007; Bartók and Csányi, 2015; Ryan
et al., 2018; Xie and Grossman, 2018; Ma et al., 2020a). Despite
that neural network potentials are commonly used; such potentials
are not rigorously proven as the most ideal for supervised learning in
structure prediction. Catalysts, particularly heterogeneous catalysts
are very sophisticated complex systems where one should proceed
with caution when using black box approaches. Machine learning is
based on statistical algorithms. The features defined by users in the

scientific community are often based on physical/chemical
properties which unfortunately are not the most effective features
from a statistical point of view. It is our perspective that machine
learning should be considered physics and chemistry agnostic.
Physically defined features will often lead to overlapping
information within a given set of features as many physical
properties stem from some common underlying characteristic
(i.e., the structural properties all correspond to some underlying
potential energy surface). Overlapping information within features
leads to highly correlated features resulting in overfit data with
increased requirements for training data.

Certainly, deep learning approaches can improve machine
learning and optimize machine efficiency; however, researchers
can greatly improve their models by first exploring feature
analysis through Pearson correlation or mutual information
techniques. The computational catalyst community should only
develop efficient machine learning tools with the understanding
that there is no “free lunch” within machine learning. Statistical
models will work more efficiently if the features are “engineered” to
reduce information sharing between features.

The potential energy surface is a multi-dimensional function
based on the size of the system. Exploring the full potential energy
surface is a significant challenge due to the variety of pathways
resulting from the dimensionality. Additional challenges to this
dimensionality are the effects of temperature, solvation effects,
and many other environmental factors that will contribute to the
multi-dimensionality of the potential energy surface. High
throughput approaches using faster and efficient quantum
chemistry codes are required to explore fully the properties of
the potential energy surfaces. Many high-throughput tools have
been developed that have benefited the community (Curtarolo et al.,
2012; Ong et al., 2013; Jain et al., 2015; Hjorth Larsen et al., 2017).
However, many of these tools are materials specific for searching a

FIGURE 2
Proposed example of three-dimensional volcano plot for several representative bimetallic catalysts. The reaction barriers of different catalysts can
be calculated from quantum chemistry calculations and their results plotted versus different features. This approach will producemuch data that enables
machine learning algorithms to hunt for optimal catalysts and target specific reactions.
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specific property and are geared towards structure optimizations;
few can address the variety of structure-function relationships that
are associated with catalysts. Many databases exist that provide
results from these high-throughput calculations, for example, the
Materials Project (Jain et al., 2013). These databases provide a
framework by which machine learning can be used to evaluate
important features of the potential energy surface that are generated
from these high-throughput calculations. Only recently the
Materials Project has started to build databases of materials for
specific applications (e.g., Battery Explorer or Catalysis Explorer),
but a catalyst specific database that focuses on structure-function
relationships including data from reaction pathways, volcano plots
or d-band information, etc., Would be more meaningful to the
catalyst community.

Machine learning potentials will improve the exploration and
prediction of high-throughput calculations by utilizing pattern
recognition of the data (Ong et al., 2013; Jain et al., 2015; Pizzi
et al., 2016). Machine learning approaches can explore subtle
features and patterns in the potential energy surface that may go
unnoticed through visual inspection of data. The importance of
dynamics in catalysis warrants the development of high-throughput

tools centered on analyzing ensembles of 100s of molecular
dynamics trajectories, not only geometry optimizations, and
incorporating these results into databases. From these ensembles
one could utilize machine learning methods that increasingly
explore statistical patterns of the potential energy surface and
evaluate transition state pathways for catalysts and targeted
reactions (Ma et al., 2019). Although there are several tools for
performing high-throughput calculations of materials, it is our
perspective that the computational catalyst community should
build more specific tools targeting rational catalyst design. More
specifically, develop high-throughput simulation tools that utilize
efficient computational materials science software with molecular
dynamics capabilities with data stored in large databases for ready
access by machine-learning algorithms. We propose a rational
catalyst design platform should be represented by something
similar as Figure 3.

Incorporating experimental results will certainly improve
rational catalyst design. Unfortunately, there is typically a
disconnect between computational results and experimental data.
This disconnect is based on several reasons. First, experimental data
is by default based on an ensemble, one sample will contain within it

FIGURE 3
Proposed platform for rational catalyst design with all components.
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a statistical distribution of properties because there is a distribution
of configurations. For example, in a prepared sample of metal
catalysts deposited on a substrate many different-sized clusters
within one sample. A distribution of interfacial properties,
stoichiometries (for alloyed metallic clusters), morphologies will
exist leading to a distribution of reactivity and selectivity;
experimental measurements are observations of the distribution
average rather than specific configurations. Computational results
focus rather on singular conditions and cannot represent the variety
of distributions found within experiments. Machine learning
methods can incorporate both experimental data as well as
quantum chemistry data and including the former improves the
predictability of the latter. Chen and coworkers have employed the
limited experimental data to calibrate the first principles calculation
results to match the corresponding experimental results, and have
applied the method to compute the heat of formation of organic
molecules (Hu et al., 2003; Zheng et al., 2004; Yang et al., 2022). The
catalyst community should further explore high-throughput
calculations coupled with machine learning methods that also
incorporate experimental data. Furthermore, the interpretation of
experimental data will be enhanced by calculating a large variety of
systems to bridge the disconnect between computational results and
experimental results. An ensemble of calculations can be assembled
by evaluating 100s or 1000s of computational results. This
computational ensemble can be organized with statistical
approaches such as building partition functions, etc., to compare
to the experimental data more directly.

The importance of the interface between the catalyst and
substrate for determining catalytic performance is critical for
rational catalysts design. Statistical learning by O’Connor et al.
demonstrated that correlations of the quality of interactions
between single atom catalysts and the substrate support
determine catalytic activity (O’Connor et al., 2018). More
complex systems of catalysts, such as including the interface, will
require larger and larger systems of calculations which will make
quantum chemistry simulations including molecular dynamics
computationally expensive. In these situations, the call for more
efficient quantum chemistry codes is greater as high-throughput
calculations will require 100s of atoms and perhaps 1000s of atoms
to represent complex systems more accurately. Even quantum
chemistry packages that can scale on parallel machines will be
undesirable as these simulations will occupy vast amounts of
computational resources. The average research group does not
have access to such resources. High-throughput calculations
using highly efficient quantum chemistry packages coupled with
machine learning methods is the best approach to achieving the
necessary calculation of properties for developing a complete
database of structure-function relationships.

Will quantum computing contribute to
rational catalyst design?

Quantum computers are expected to perform exponentially
faster than classical computers for solving electronic interactions
because the curse of dimensionality in many-particle quantum
mechanics will be overcome. Particularly, quantum computing
will yield greater efficiency for simulations of strongly correlated

material systems which is a quagmire for traditional electronic
structure methods. Perhaps the plethora of potential applications
make chemistry and materials science sound like the “killer
application” for quantum computing (Bourzac, 2017). And, there
has been progress - the present quantum computers have on the
order of 100 qubits. This progress has renewed excitement for the
quantum algorithms development and applications in chemistry
and material science (Bauer et al., 2020; Ma et al., 2020b; Becerra
et al., 2021; Paudel et al., 2022; von Burg et al., 2021). Specifically, for
catalytic system simulation, von Burg et al. presented a quantum
algorithm on the homogeneous ruthenium catalyst that transforms
carbon dioxide to methanol (von Burg et al., 2021). Despite the
advances reported in these works, the simulation on heterogeneous
systems is still just a dream for the researcher. The number of qubits
limits the simulations of catalysts which usually includes hundreds
of atoms and thousands to millions of electronic wavefunctions. The
tiny number of available quantum computers currently limits access
for the average researcher. Quantum computers have the potential
to fundamentally change the future of computational chemistry and
materials science. However, realistically, it will require at least a
decade and more likely 2–3 decades before any significant impact
can be realized due to the complete infrastructure changes that are
required–both in hardware and software.

Summary

The community is continuing to make significant strides in
utilizing computational chemistry and materials science
approaches for rational catalyst design. Machine-learning
approaches are making some impact as well; however, the
premise that there is no free lunch in machine learning should
be more closely heeded. Simulations of very complex systems and
properties of catalysts are better managed using high throughput
approaches to generate large amounts of data for machine
learning. Properties that evolve from molecular dynamics
simulations are more important for incorporating kinetic
effects–static-property calculations are becoming less
meaningful for the future of rational catalyst design. Large
databases should be developed to store not only static
electronic structure properties, but also to store time-
dependent properties as they evolve during molecular
dynamics simulations. These types of databases will enable
machine learning algorithms to recognize patterns that emerge
from the molecular dynamics simulations - kinetic effects
influencing multi-dimensional volcano plots, reaction pathway
profiles from fully explored potential energy surfaces, density-
related features, as well as other time-dependent properties.

Experimental data provides a means for further validating
computational results. More impact will be gained from
hypothesis testing the calculated data using statistical approaches.
High throughput microreactor testing is already being utilized by
academic researchers and can be incorporated easily into machine
learning algorithms driven by computational chemistry and
materials science simulations. Even better, data from catalytic
reactors at the industrial testing level would make the impact of
quantum chemistry even more meaningful if this data is
incorporated as well. Databases that incorporate data from
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industrial processes would bring a dose of realism to computational
chemistry and materials science approaches.

The community would benefit from the development of more
robust approaches and algorithms in machine learning without
making the mistake of treating machine learning approaches as a
black box. Machine learning publications have largely addressed
minor research questions in the field of catalysis; a more serious
pursuit of structure-function relationships will require serious
machine learning applied to vast complex systems that more
accurately represent heterogeneous catalysis. A successful
approach will include much feedback with further calculations,
experimental, and industrial data. It is an exciting time to be
engaged in rational catalyst design with the luring attraction of
machine learning using much data that can be generated efficiently
from computational chemistry and materials science software.
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