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The quantum approximate optimization algorithm (QAOA) was originally
proposed to find approximate solutions to combinatorial optimization
problems on quantum computers. However, the algorithm has also attracted
interest for sampling purposes since it was theoretically demonstrated under
reasonable complexity assumptions that one layer of the algorithm already
engineers a probability distribution beyond what can be simulated by classical
computers. In this regard, a recent study has also shown that, in universal Ising
models, this global probability distribution resembles pure but thermal-like
distributions at a temperature that depends on the internal correlations of the
spin model. In this work, through an interferometric interpretation of the
algorithm, we extend the theoretical derivation of the amplitudes of the
eigenstates and the Boltzmann distributions generated by a single-layer
QAOA. We also review the implications of this behavior from practical and
fundamental perspectives.
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1 Introduction

Variational quantum algorithms (VQAs) are a promising framework for solving
computationally hard tasks (Cerezo et al., 2021; Bharti et al., 2022). These algorithms
are based on a quantum circuit with tunable parameters acting as an ansatz. Finding the
minimum energy state among a discrete set of possible solutions (combinatorial
optimization problems) (Nemhauser and Wolsey, 1988; Moll et al., 2018) and drawing
samples from a classical probability distribution (sampling problems) (Lund et al., 2017;
Wild et al., 2021) are two examples of worthwhile challenges addressed in this framework.

Among the plethora of proposed VQAs, the quantum approximate optimization
algorithm (QAOA) (Farhi et al., 2014) has received special attention from the scientific
community, with remarkable empirical and theoretical results on the algorithm’s
performance (Harrigan et al., 2021; Farhi et al., 2022; Blekos et al., 2023). The ansatz of
the QAOA is inspired by a Trotterized adiabatic evolution capable of approximating the
minimum energy state of a given cost function. An advantage of the practical
implementation of the QAOA is that the number of variational parameters in the
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quantum circuit to be optimized is independent of the problem size;
in contrast, the depth of the circuit increases with the quality of the
approximation of the fundamental state.

Beyond its original use in approximating ground states, the
QAOA has recently demonstrated utility from a global sampling
perspective (Farhi and Harrow, 2019). It has been shown that the
shallowest version of the algorithm produces a probability
distribution that cannot be simulated by classical computation
because otherwise, the polynomial hierarchy would collapse.
Therefore, sampling the QAOA circuit in some variational
parameter ranges could exhibit quantum supremacy (Preskill,
2018), which is understood as a task that can be more efficiently
done using a quantum computer than a classical one. This result is
connected to previous demonstrations of the hardness of simulating
quantum circuits, for instance, Boson sampling (Brod, 2015) or
instantaneous quantum polynomial time (IQP) circuits (Bremner
et al., 2010, 2016).

Despite the importance of this theoretical result, it gives no
clue about the nature of the probability distribution generated by
the QAOA, nor whether sampling from it has any practical
interest beyond combinatorial optimization or a quantum
supremacy demonstration. Following this direction, we studied
the global structure and probability distribution in the energy
space of the single-layer QAOA ansatz in Díez-Valle et al. (2023).
In that letter, we provide evidence for a clear connection between
the QAOA and thermal distribution sampling with probability
amplitude distributions resembling Boltzmann distributions at
low temperatures. We call such distributions QAOA pseudo-
Boltzmann states. The excellent performance of QAOA
revealed at temperatures below the state-of-the-art theoretical
limit to fast mixing of Markov Chain Monte Carlo methods
(Eldan et al., 2021).

In the current manuscript, we expand the theoretical derivation
of pure thermal-like QAOA states introduced in Díez-Valle et al.
(2023). More specifically, we extend the discussion of single-layer
QAOA amplitudes by portraying the algorithm as an energy
interferometer and providing details on the mathematical
derivation of the pseudo-Boltzmann states. We also provide
further justification for the assumption of normality in the
internal spin model correlations, extend the study of the
evolution of the probability distribution with the mixing angle,
and shed more light on the implications of these results.

The paper is structured as follows: first, in Section 2, we review
the main ingredients of the quantum approximate optimization
algorithm and introduce an intuitive picture of the QAOA as an
interferometer in energy space. In Section 3.1, we extend the
interferometric picture to the multilayer scenario and derive the
analytical amplitudes of the final wave function. In Section 3.2, we
specify the results of the previous section to the case where an Ising
model Hamiltonian defines the cost function. We detail the internal
correlations between the eigenstates of the Hamiltonian in
degenerate and non-degenerate scenarios, leading to a closed
expression for the probability amplitudes of the QAOA
wavefunction. We connect such probability amplitudes to the
sampling of Boltzmann or thermal-like distributions in Section 4
and also analyze the features that these results reveal about the
distribution behavior as we change the variational parameters of the
algorithm. We conclude with a perspective on the importance of the

pseudo-Boltzmann QAOA states and approximate thermal
sampling in Section 5.

2 Interferometric interpretation of
the QAOA

2.1 The quantum approximate
optimization algorithm

The QAOA aims to find good approximate solutions to
combinatorial optimization problems (Farhi et al., 2014) that are
defined by a classical objective function E(x) mapping N-binary
strings to real values:

E x( ): 0, 1{ }N → R. (1)
The algorithm’s goal is to find a binary string x* that minimizes the
function Emin ≡ minxE(x), or at least that achieves a good
approximation ratio r ∈ [0, 1].

maxxE x( ) − E x( )
maxxE x( ) −minxE x( )≥ r. (2)

This optimization problem is equivalent to finding the ground state
of a spin Hamiltonian Ê, where each binary variable xi describes the
state of one spin σzi as x → 1

2 (1 + σz):
Êmin ≡ minσz〈σz|Ê σz( )|σz〉 � minx〈x|Ê x( )|x〉. (3)

A well-known approach to solving these problems is the
quantum adiabatic algorithm (QAA), which ensures the
achievement of the global minimum given a sufficiently long run
time T (Farhi et al., 2000; Farhi et al., 2001). The adiabatic protocol is
guided by a time-dependent Hamiltonian, such as

ĤQAA t( ) � − 1 − f
t

T
( )( )Ĥx + f

t

T
( )Ê[ ], (4)

where Ĥx � ∑N
i σ

x
i with σ

x
i being the Pauli operator acting on the ith

qubit and f(x) is the schedule function with f(0) = 0 and f(1) = 1. The
adiabatic theorem guarantees that a sufficiently slow time evolution
will keep the system in its ground state. Thus, an evolution that starts
with the ground state of Ĥx,

|Ψ 0( )〉 � 1���
2N

√ ∑
x

|x〉 ≡ |+〉⊗N, (5)

will approximately bring the system to the ground state of Ê,

|Ψ T( )〉 � |xmin〉. (6)
To ensure success, the runtime T must scale as T � O(Δ−2

min), where
Δmin is the minimum spectral gap (Albash and Lidar, 2018). The
QAOA proposes a Trotterized approximation to adiabatic evolution
consisting of a quantum circuit built by the alternation of the
following two operators:

|ΨQAOA−p γ, θ( )〉 � U Ĥx, θp( )U Ê, γp( ) . . .U Ĥx, θ2( )U Ê, γ2( )
U Ĥx, θ1( )U Ê, γ1( )H⊗N|0〉⊗N,

(7)
with H denoting single-qubit Hadamard gates, and
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U Ê, γ( ) � e−iγÊ, (8)

U Ĥx, θ( ) � e−iθĤx � ∏N
j

e−iθσ
x
j ≡ Rx θ( )⊗N, (9)

where γ = (γ1, γ2, . . ., γp) and θ = (θ1, θ2, . . ., θp) are set of variational
angles that can be tuned to approximate the ground state of the cost
Hamiltonian Ê and p is the number of layers that determines the
depth of the quantum circuit and the accuracy of the algorithm. The
infinite depth limit p→∞ returns the adiabatic evolution, showing
that we can get a good enough approximation to theminimum of the
optimization problem for sufficiently large p.

2.2 The QAOA as an interferometer in
energy space

Let us highlight the QAOA’s potential in small-depth regimes by
introducing an interpretation of the QAOA’s circuit as an
interferometer operating globally in energy space. We will derive
analytical results for the interference amplitude in later sections,
focusing on the p = 1 single-layer ansatz (see Eq. 7):

|ΨQAOA−1 γ, θ( )〉 � Rx θ( )⊗Ne−iγÊH⊗N|0〉⊗N. (10)

As sketched in Figure 1, the Hadamard gate splits the quantum
state |0〉 into a superposition of all states in the computational basis,
acting like a multidimensional “mirror”:

|s1〉 � |+〉⊗N � 1���
2N

√ ∑
x

|x〉. (11)

Then, the evolution with the diagonal cost Hamiltonian
Ê|x〉 � Ex|x〉, given by the operator UE(Ê, γ), imparts phases on
all states, acting like the branches of the interferometer:

|s2〉 � e−iγÊ|s1〉 � 1���
2N

√ ∑
x

e−iγEx |x〉. (12)

Finally, the mixing operator Rx(θ)
⊗N recombines the energy states so

that the interference transforms the energy-dependent relative
phases in measurable probability amplitudes:

|ΨQAOA−1 γ, θ( )〉 � Rx θ( )⊗N|s2〉 � ∑
x

Fx Ex , γ, θ( )|x〉. (13)

This intuition is much clearer when looking at the algorithm
operating on a single qubit, with rotation Rx(θ):

Rx θ( ) � e−iθσ
x � I cos θ − iσx sin θ � cos θ −i sin θ

−i sin θ cos θ
( ). (14)

Consider the following two-state subspace:

|x0〉 � |0, x1, x2, . . . , xN〉, |x1〉 � |1, x1, x2, . . . , xN〉{ },

where xi = {0, 1} (so x0 and x1 differ by only 1 bit), with energies
Ex0 ≡ 〈x0|Ê|x0〉 and Ex1 ≡ 〈x1|Ê|x1〉. The probability amplitudes
before the local interference are

A2
x0
� |〈x0|s2〉|2, A2

x1
� |〈x1|s2〉|2, (15)

respectively. After applying the local gate in Eq. 14 on the qubit that
corresponds to the different bit, the interference shifts the
amplitudes to Nx0 and Nx1:

Nx0

Nx1
( ) � Rx θ( ) e−iγEx0Ax0

e−iγEx1Ax1
( )

� e−iγEx0
Ax0 cos θ − iAx1e

−iγFx1 ,x0 sin θ
−iAx0 sin θ + Ax1e

−iγFx1 ,x0 cos θ
( ), (16)

where Fx1 ,x0 ≡ Ex1 − Ex0. Thus, the probability amplitudes become

FIGURE 1
Interferometric interpretation of the quantum approximate optimization algorithm circuit.
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N2
0 � A2

x0
cos2 θ + A2

x1
sin2 θ − Ax0Ax1 sin 2θ( )sin γFx1 ,x0( )

N2
1 � A2

x0
sin2 θ + A2

x1
cos2 θ + Ax0Ax1 sin 2θ( )sin γFx1 ,x0( ). (17)

Note that the relative phase between the states γFx1 ,x0 � γ(Ex1 −
Ex0) controls the amplification. Therefore, assuming sin(2θ)< 0
and γ > 0 or vice versa and provided the angle γ is sufficiently
small, the interference term always increases the population of
the lowest energy state and reduces that of the other.
Furthermore, Eq. 17 also reflects how the relative sign between
sin(2θ) and γ controls the direction of optimization. The
probability amplitude of the lowest/highest energy state is
enhanced when the signs are opposite/equal.

This interferometric behavior expanded to the N-level scenario
imposes non-trivial, structure-dependent upper bounds on the |θ|
and |γ| angles to avoid symmetries and random scrambling of the
energy states. In particular, Eq. 17 shows that for the single-qubit
interference:

nπ ≤ θ < n + 1( )π and |γ|< π

Fxmax,xmin

~ O ‖Ê‖−1( ), (18)

with n ∈ Z. The N-qubit interference makes this picture richer and
more complicated, as derived in the next sections. Analytical and
numerical results for the single-layer QAOA on general Ising spin
models show that the optimal |γ| for an N-qubit system actually
scales as O(N(N|e|)−1/2) (Ozaeta et al., 2022; Díez-Valle et al.,
2023), where |e| is the number of edges or non-null elements in the
coupling matrix J (see Eq. 27). For instance, in the two-level system
Ê � 1

2Δσz, the probability of measuring the ground state |σz = −1〉
and the highest energy state |σz = +1〉 is

|〈σz � ± 1|Ψ γ, θ( )〉|2 � 1
2

1 + σz sin 2θ( )sin γΔ( )( ), (19)

which is maximal with optimal angles θ � ± π
4 and γ � π

2Δ
(see Figure 2).

3 Multi-level interferometer amplitude

3.1 General scenario

Let us extend the two-level picture to a general framework
dealing with the complete interference spectrum of a single-layer
QAOA circuit. We focus on how the QAOA transforms the
wavefunction amplitudes:

F x( ) ≡ 〈x|ΨQAOA−1 γ, θ( )〉, (20)
where x is any eigenstate in the energy spectrum that we will denote
as the reference state. As previously shown, a local Rx rotation acting
on the ith qubit mixes the amplitude between each state x with the
corresponding state x′ that differs only on the value of the ith bit (see
Eq. 17). Thus, the action of the whole mixing operator R⊗N

x is that of
a complete mixing between all states in the computational basis:

F x( ) � ∑
x′

e−iγEx′

2N/2
〈x|∏N

j

cos θ − iσxj sin θ( )|x′〉. (21)

The weight of each mixing process depends on the number of bits
that must be flipped to go from one state x to the other x′, that is, the
Hamming distance between both states, and also on the oscillating
terms induced by the angles θ and γ. The amplitude of the state
generated by the algorithm after the mixing operator U(Ĥx, θ) is
given by an interference formula,

F x( ) ≡ 〈x|~Ψ〉 � 1
2N/2

∑
x′

cos θ( )N−Hx,x′ −i sin θ( )[ ]Hx,x′e−iγEx′ (22)

whereHx,x′ is the Hamming distance between two bit configurations
x and x9 that represent the eigenstates of a spin model with energy Ex
and Ex′. We can unify the weight sum terms into a single exponential
by the following change of variables in which the rotation angle θ is
reparameterized in terms of an exponent r and a normalization R,

cos θ( ) � R
1
2 exp

r

2
[ ], sin θ( ) � R

1
2 exp −r

2
[ ], (23)

where, due to the symmetries of the interference, we consider
θ ∈ (0, π2) without loss of generality. The sign of γ allows us to
define if the interference increases the population of lower or higher
energy states so that we cover all the possibilities. By this
transformation, the interference amplitudes in Eq. 22 become a
sum of exponentials over the entire configuration space,

F x( ) � R exp r[ ]
2

( )N
2 ∑

x′
exp −Hxx′ i

π

2
+ r( ) − iγEx′[ ]. (24)

Because Eq. 24 encompasses all eigenstates of the system
encoded in its energy Ex′ and Hamming distance Hx,x′ with the
reference state x, it is convenient to introduce a probability
distribution relating distances in the computational base to the
energy spectrum,

p H, E; x( ) � 1
2N

∑
x′
δ H −Hxx′( )δ E − Ex′( ), (25)

This expression represents the relative number of eigenstates
that, given a reference state x, have a Hamming distance H to that
state and energy equal to E. In other words, this distribution captures

FIGURE 2
Quantum approximate optimization algorithm interferometry on
the two-level spin system defined by the Hamiltonian Ê � 1

2Δσz with
Δ = 1. We plot the probability amplitude of the ground state σz = −1
(dashed lines) and the highest energy state σz = +1 (solid lines) for
different values of the QAOA angles θ and γ. We highlight the points of
maximum amplification, θ = ±π/4 and γ = π/2, with dotted brown lines.
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the internal correlations inherent to the specific spin model. With
this definition at hand, we can express the previous sum in Eq. 24 as
the average over this probability distribution:

F x( )∝ exp r[ ]( )N2∫∫∞

−∞
exp −H i

π

2
+ r( ) − iγE[ ]p H, E; x( )dHdE.

(26)
Hence, the interference amplitude in Eq. 20 depends on the structure
of the energy levels of the spin system manifested in the probability
distribution p(H, E; x). In the following sections, we study such a
structure to derive a unified expression of the QAOA probability
amplitudes for universal Ising spin models.

3.2 Ising models

Next, we focus on a universal set of non-deterministic
polynomial time hard (NP-hard) Ising models (Barahona, 1982)
and derive this scenario’s interference probability
amplitude formula.

A broad spectrum of combinatorial optimization problems can
be represented as a spin model described by an Ising Hamiltonian
(Lucas, 2014),

EI s( ) � 1
2
∑N
i,j�1

siJijsj +∑N
i�1

hisi, (27)

where s = {−1,+1}N, N is the number of variables, J is an N-by-N
square coupling matrix, and the magnetic field h is a vector of N
coefficients. The quantum version of this Hamiltonian ÊI(σz) is
simply obtained by replacing the spin variables s with the
corresponding Pauli-Z matrices σz. The coupling matrix defines a
structure in the problem that can be represented by a weighted graph
with N vertices, connected by undirected edges i ↔ j that have
associated weights Jij, Jji. In this work, we study families of models in
which the Jij coefficients are randomly drawn from a normal
distribution N(μ = 0, σ2).

This structure, together with the magnetic field values, defines
families of optimization problems with different inner correlations
and degeneracies. In the following subsections, we derive the
interference amplitude for two scenarios that involve distinct
energy level structures due to intrinsic global symmetries in the
model. These differences necessitate a separate study of each case.
Nevertheless, as explained below, the slightly different behaviors of
these models converge to a common expression of the QAOA
probability amplitude distribution |F(x)|2 in Eq. 20. The two
scenarios are represented by two well-known combinatorial
optimization problems: quadratic unconstrained binary
optimization (QUBO) (Kochenberger and Glover, 2004;
Kochenberger and Hao, 2014), with a non-degenerate energy
spectrum, and the maximum cut (MaxCut) (Nannicini, 2019;
Sung et al., 2020; Harrigan et al., 2021), which exhibits a global
Z2 symmetry.

3.2.1 Non-degenerate Ising models
The family of QUBO problems is composed of NP-hard binary

combinatorial optimization problems with the following associated
cost function:

EQUBO x( ) � 2∑
i,j

xiQijxj, (28)

where x ∈ {0,1}N, andQ is anN-by-N square matrix. The mapping of
Eq. 28 to the Ising Hamiltonian in Eq. 27, x � 1

2 (1 + s), leads to

~EQUBO � 2∑
i,j

xiQijxj −∑
i,j

1
2
Qi,j � 1

2
∑N
i,j�1

siJijsj +∑N
i�1

hisi, (29)

where J = Q and hj = ∑i(Qij + Qji)/2. We consider Qmatrices where
the non-zero coefficients are randomly drawn from a standard
normal distribution N(μ = 0, σ2 = 1). Note that the optimization
of the function in Eq. 29 is then equivalent to that of Eq. 28.

The cost function in Eq. 29 exhibits no global symmetries. In
such non-degenerate situations, the eigenstates appear to be ordered
from low to excited states, developing a unique probability
distribution p(H, E; x) that is centered at the center of the
spectrum and shows a remarkable correlation between Hxx′ and
Ex′. Such behavior can be observed in Figure 3. Here, we plot the
distribution in the Hamming distance-energy plane of
25,000 samples drawn from a continuous approximation to p(H,
E; x) of a single instance of QUBO. Specifically, we first estimate the
continuous probability density function by a kernel density
estimation (KDE) on the actual discrete instance data (all Hxx′
and Ex′ pairs). Then, we sample from such density function to obtain
the plotted distributions. We also perform a fitting of the final
distribution to a Gaussian mixture of one or two Gaussians using
variational inference and plot the corresponding confidence
ellipsoid. This fit was obtained with the BayesianGaussianMixture
method of the Python package scikit-learn (Pedregosa et al., 2011).
We show the result for x being the ground state (a) and the highest
energy state (c). For the sake of clarity, let us consider the upper-left
plot, which illustrates the probability distribution p(H, E; x) for the
reference state x as the ground state. All alternative states x9 possess
higher energy values than Ex. The difference Ex′ − Ex shows a
potential correlation with the number of spin flips required to
transition from x to x9, that is, the Hamming distance Hxx′. This
positive correlation is evident through the presence of a Gaussian
function oriented along a diagonal. In contrast, opting for x as the
highest energy state (bottom-left plot) reveals an opposite trend: the
greater the number of spin flips, the lower the energy level. The
Gaussian orientation depends on the covariance between H and E,

σEH � 1
2N

∑
x′

Hxx′ − E H[ ]( ) Ex′ − E E[ ]( ), (30)

which is highly correlated with the energy of the reference state Ex, as
shown in Figure 4 of Díez-Valle et al. (2023). In Eq. 30, E[·] denotes
the expected value of the variable.

Our simulations confirm that, in the non-degenerate scenario,
the probability distribution p(H, E; x) resembles a bivariate Gaussian
with a correlation between the variables defined by x and its rank in
the energy spectrum:

p H, E; x( )ρ ≈ 1

2πσEσH
�����
1 − ρ2

√ exp − 1
2 1 − ρ2( ) E

σE
( )2([

+ H − μH
σH

( )2

− 2ρ
E H − μH( )

σEσH
)],
(31)
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where

μE � E E[ ] � 0 ; μH � E H[ ] � N

2
; σH �

��
N

√
2

; ρ � σEH x( )
σEσH

.

(32)
The spin model defines all the parameters of the bivariate Gaussian
except the correlation parameter ρ, which encapsulates the whole
dependence of the distribution on x.

To test the hypothesis that p(H, E; x) in Eq. 25 is well
approximated by the continuous bivariate Gaussian distribution
(Eq. 31), we perform a graphical multivariate normality test on the
(Hxx′, Ex′) data of 1,000 independent instances of QUBO. As shown
in Figure 3, we analyze both the low- and the high-energy regimes
with x as the ground state and the highest energy state, respectively.
We use a technique based on the squared Mahalanobis distances
between the sample points s � (Hxx′, Ex′) and their averages μ �
(μH, μE) � (E[H],E[E]) over all bit configurations x9:

DM s( ) �
���������������
s − μ( )Σ−1 s − μ( )T√

� 1�����
1 − ρ2

√ E

σE
( )2

+ H − μH
σH

( )2

− 2ρ
E H − μH( )

σEσH
( )

1
2

, (33)

where Σ � σE σEH
σEH σH

( ) is the covariance matrix and ρ � σEH
σEσH

. The

Mahalanobis distance is a multivariate measure to quantify the
distance between a point and a distribution (Mahalanobis, 1936).
Moreover, it is a useful tool to check when multidimensional data

were sampled from a normal distribution because the probability
density p of a set of normally distributed samples s in any dimension
is entirely determined by the Mahalanobis distance:

p s( ) � 1�������
2π( )k|Σ|

√ exp −1
2

s − μ( )Σ−1 s − μ( )T[ ]0p D2
M( )

� 1�������
2π( )k|Σ|

√ exp −D
2
M

2
[ ]. (34)

Therefore, showing that the Mahalanobis distance DM(s), with
s � (Hxx′, Ex′), follows the chi-squared distribution with two
degrees of freedom:

χ22 x( ) � 1
2
exp −x

2
[ ], (35)

would demonstrate that p(H, E) is compatible with a bivariate
Gaussian distribution sampling (see Eq. 31). Indeed, Figures 4A,
C show the perfect agreement for at least 99.8% of the spectrum, and
Figure 5 shows that the deviation from a bivariate Gaussian
distribution does not increase along the energy spectrum.

Hence, returning to the probability amplitude of a single-layerQAOA
on non-degenerate Ising models, Eq. 26 together with the probability
distribution in Eq. 31 leads to the following interference amplitude:

|F x( )|2 ∝ exp Y[ ], with Y � −γ2σ2E + r2 − π2

4
( )σ2H − 2rμH

− γπρσEσH. (36)

FIGURE 3
Continuous approximation to the probability distribution p(H, E; x) estimated by 25,000 samples drawn from a kernel density estimation (KDE) on a
single instance of a non-degenerate problem (A,C) and of a degenerate problem (B,D). We plot the extreme cases when the reference state x is the
ground state (A,B) and the highest energy state (C,D). We also fit the obtained distribution to a Gaussian mixture of one (A,C) or two (B,D) bivariate
Gaussians, showing the clustering of the samples and the confidence ellipsoid over the distributions.
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3.2.2 Degenerate Ising models
The MaxCut problems are a family of combinatorial

optimization problems consisting of minimizing the following
objective function:

EMaxCut x( ) � −2∑
i,j

xiQij 1 − xj( ), (37)

with x ∈ {0,1}N and Q is an N-by-N square matrix. Finding the
minimum or an approximate solution very close to the minimum is
known to be NP-hard (Håstad, 2001). Again, we can map the binary
cost function optimization in Eq. 37 to an equivalent spin
Hamiltonian optimization (Eq. 27):

~EMaxCut � −2∑
i,j

xiQij 1 − xj( ) +∑
i,j

1
2
Qi,j � 1

2
∑N
i,j�1

siJijsj, (38)

where J = Q, and the magnetic field h cancels out. As in the non-
degenerate case, the non-zero coefficients of Q are drawn from
N(μ = 0, σ2 = 1). This class of problems includes the
Sherrington–Kirkpatrick model (Sherrington and Kirkpatrick,
1975) when all vertices of the graph are connected; that is, when
the coupling matrix has no null coefficients.

In contrast to QUBO, the cost function in Eq. 38 exhibits a global
Z2 symmetry that keeps invariant the energy under a global spin flip
~EMaxCut(s) � ~EMaxCut(−s), or what is the same,

FIGURE 4
Multivariate normality test to show that the structure of the energy levels of the Isingmodels studied resembles probability distributions p(H, E; x) that
can be defined by one or two continuous bivariate Gaussians. We plot the results for 1,000 14-qubit random instances of QUBO (A,C) and MaxCut (B,D)
when the reference state x is the ground state (A,B) and the highest energy state (C,D). For each instance of the problem, we calculated the Mahalanobis
distances, DM, of all (Hxx′ , Ex′) samples and display the results of the obtained distributions. If such samples are compatible with a set of samples
drawn from a bivariate Gaussian, the obtained Mahalanobis distances must follow the χ22 distribution. In the MaxCut case (B,D), a prior fit to a Gaussian
mixture was performed so that the x9 states were clustered into two Gaussians with corresponding means and covariance matrices. The smaller plots
show the probability density function of D2

M as a histogram along with the theoretical χ22 distribution. The larger plots show quantile–quantile plots
displaying 500 quantiles of D2

M and the same theoretical quantiles of the χ22 distribution. Over the scatter plot, we plot the straight line that would follow
the points if D2

M and χ22 were described by the same distribution. We can see that approximately 99.8% of the D2
M distribution is well described by the

bivariate Gaussians, with the exception of ~ 0.2% of outliers in the tail.

FIGURE 5
Deviation of the structure of the energy levels of the Isingmodels
p(H, E; x) from the multivariate normal distribution along the energy
spectrum. The deviation from normality at each point is defined as
ϵx � 1

#quantiles
∑q−quantiles|q − quantile(D2

M) − q − quantile(χ22)|,
where #quantiles is the number of quantiles (500 in these results, as in
Figure 4). This metric is intended to provide the same information as
the quantile–quantile plots in Figure 4 in a quantitative form. In
particular, we divide the energy spectrum into 16 intervals and
calculate the deviation at the extremes of each interval. We plot the
average results for 1,000 random instances of QUBO and MaxCut,
with a 95% confidence interval in the average estimation. The energy
of every sample is rescaled between 0 (ground state energy) and 1
(maximum energy).
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~EMaxCut(x) � ~EMaxCut(1 − x). In the non-degenerate scenario (Eq.
29), the presence of the magnetic field h breaks the symmetry. The
existence of such global symmetries in the Hamiltonian results in the
division of the Hilbert space into two or more distinct hierarchies of
eigenstates. Note that if xa � (xa

1 , x
a
2 , . . .) represents a ground state,

then there is another ground state in the opposite sector xb = 1 − xa.
Consequently, a single excited state x9 can be seen now as arising
from flipping spins in either of the ground states xa or xb.
Accordingly, an identical spin configuration exhibits significantly
different Hamming distances to both ground states, while its energy
remains unchanged. Specifically, the Hamming distance reaches its
maximum when considering the separation between the two
degenerate ground states, where Hxaxb � N. Then, this symmetry
implies that given any two states x and x9, there is a unique
alternative state x@ such that Ex′ = Ex″ and Hxx′ � N −Hxx″.

This phenomenon results in the separation of the probability
distribution into a sum of two distributions, each measured with
respect to one of the eigenstate hierarchies,

p H, E; x( ) � p+ Hx,x′, Ex′; x( ) + p− Hx,x′, Ex′; x( ), (39)
where

p+ H,E; x( ) � 1
2N/2

∑
x′∈A

δ H −Hxx′( )δ E − Ex′( ), (40)

p− H,E; x( ) � 1
2N/2

∑
x′∈B

δ H −Hxx′( )δ E − Ex′( ), (41)

with A and B being two complementary subspaces in the bit
configurations space that represent the two eigenstate hierarchies.
Because each distribution p±(Hx,x′, Ex′; x) defines itself a non-
degenerate Hilbert subspace, it is natural to expect that they
individually behave similarly to the probability distribution of the
non-degenerate scenario explained in the previous section. Indeed,
as shown in Figure 3, these distributions resemble two shifted
bivariate Gaussian distributions:

p+ H,E; x( )ρ+ ≈
exp − 1

2 1−ρ2+( ) E
σE
( )2 + H−μH+h0

σH
( )2 − 2ρ+

E H−μH+h0( )
σEσH

( )[ ]
2πσEσH

�����
1 − ρ2+

√ ,

(42)
p− H,E; x( )ρ− � p+ −H + 2μH, E; x( )ρ+, (43)

≈
exp − 1

2 1−ρ2+( ) E
σE
( )2 + H−μH−h0

σH
( )2 + 2ρ+

E H−μH−h0( )
σEσH

( )[ ]
2πσEσH

�����
1 − ρ2+

√ , (44)

where μE, μH, and σH are the same as Eq. 32, h0 > 0 is a constant shift,
and we have two separate correlation factors ρ+(x) = −ρ−(x) ≡ ρ. As
in QUBO, we prove the Gaussian distribution of the eigenstates by a
multivariate normality test based on the Mahalanobis distance. In
this case, we first need to group the states into two clusters that
represent A and B hierarchies. As previously explained, we do this
by fitting the sample points s � (Hxx′, Ex′) to a mixture of two
Gaussians so that we identify which states should belong to p+ or p−.
Then, we calculate the Mahalanobis distance of all samples using
their corresponding mean and covariance estimated from the
Gaussian mixture fit. Again, we find a good correspondence
between the Mahalanobis distance and the χ22 distribution for the
vast majority of the energy spectrum and conclude that p±(H, E; x)
are well approximated by the Gaussian expressions in Eqs 42, 44.

As in the non-degenerate case, the correlation factors ρ±
encapsulate the entire dependency in x, but we now have two
functions that influence one another. Equation 22 along this p+,
p− interference leads to

|F x( )|2 ∝ exp Y′[ ] · cos h0π + 2rγρσEσH( ) + cosh 2h0r − γπρσEσH( )( ), with
(45)

Y′ ≡ − γ2σ2E + r2 − π2

4
( )σ2H − 2rμH. (46)

Therefore, we observe that the interference translates into a mixture
of two exponentials together with an oscillatory term

2 cosh 2h0r − γπρσEσH( ) � exp β′ ρ + 2h0r[ ] + exp −β′ρ − 2h0r[ ],
(47)

with β′ ≡ − γπσEσH. Nevertheless, except in the regime when r = −
log(tan θ) ≈ 0 (θ ≈ π/4), one exponential is clearly dominant over the
other due to the presence of the h0-shift:

exp β′ρ + 2h0r[ ] + exp −β′ρ − 2h0r[ ]
≈ exp sgn r( )β′ ρ+ + ρ−( ) + sgn r( )2h0r[ ], (48)

where sgn(·) is the sign function. Thus, the interference amplitude in
Eq. 45 becomes

|F x( )|2 ∝ exp Y′[ ] · exp sgn r( )β′ρ[ ] � exp Y[ ], with (49)

Y � −γ2σ2E + r2 − π2

4
( )σ2H − 2rμH − sgn r( )γπσEσHρ. (50)

Note that this formula is consistent with the non-degenerate
scenario in Eq. 36 except for small corrections caused by the
merging of eigenstate hierarchies (see Eq. 48) and the role of r
that defines two different regimes for θ ∈ (0, π4) and θ ∈ (π4, π2).

4 QAOA thermal-like distributions

The interferometric model, in combination with the
approximate Gaussian correlations between energy and
Hamming distance, is a powerful tool that allows us to
approximate the probability distribution generated by the QAOA
variational circuit. In the following discussion, we will indeed show
that, with minimal assumptions, the single-layer QAOA state
approximates a Boltzmann distribution with effective temperature
determined by the γ and θ angles, as shown by Díez-Valle
et al. (2023).

To achieve this goal, we analyze the single-layer QAOA
interference amplitudes (Eqs 36, 49) in energy space

P E( ) � ∑
x

δ E − Ex( )|F x( )|2. (51)

In order to examine this probability amplitude distribution of
energy states, we should only pay attention to the terms of |F(x)|2

that are influenced by the spin configuration x and its associated
energy Ex. In the previous section, we derived that the single-
layer QAOA probability amplitude of Ising Hamiltonian
eigenstates for both non-degenerate and degenerate spectra
can be expressed as
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|F x( )|2 ∝ exp −γ2σ2E + r2 − π2

4
( )σ2H − 2rμH − γπρσEσH[ ], (52)

where ρ = σEH/(σEσH) with σEH = sgn(r)σEH in the degenerate
scenario. As previously mentioned, the correlation factor captures
the whole variability of Eq. 52 in energy space. All the other terms
are set by the spin model and are, therefore, independent of the state
x. The only contributing part to the amplitude is

−γπρσEσH � −γπσEH x( ). (53)
Hence, in terms of the distribution in energy space, we can write the
quantum probability amplitude as the following exponential:

|F x( )|2 ∝ e−γπσEH x( ). (54)
Let us recall that σEH(x) represents the covariance between the

Hamming distance from excited x9 to the reference state x and its
energy Ex′ (Eq. 30). The place of x in the energy spectrum is highly
correlated with σEH(x). In non-degenerate spaces, when x is the
ground/highest energy state, it is more likely to find low/high energy
states ((Ex′ − E[E])< 0/(Ex′ − E[E])> 0) close to the reference
state ((Hxx′ − E[H])< 0) and high/low energy states far from the
reference state ((Hxx′ − E[H])> 0), leading to a high positive/
negative covariance. In the degenerate scenario, we have the
same behavior for subspace p+ and the exact opposite for the
complementary subspace p− (Hxx′ → −Hxx′ + 2μH). This

intuition translates into an evident σEH − Ex correlation that can
be numerically observed in Figure 4 of Díez-Valle et al. (2023). This
dependence can be expressed as the sum of a linear function and a
stochastic value ω with zero mean:

σEH x( ) � −c · Ex ± ω, (55)
where c ∈ R> 0. Despite the presence of the random term ω, the
trend in Eq. 55 is noticeable. Therefore, introducing Eq. 55 into Eq.
54 leads to a thermal-like probability amplitude distribution for the
Ising models:

|F x( )|2 ∝ e−βEx±βω/c, (56)
where β = cπγ for non-degenerate problems and β = sgn(r)cπγ
for degenerate ones play the role of the inverse temperature.
Then, the probability distribution in energy space can be
expressed as

P E( ) ~ d E( )e−βE, (57)
where d(E) is the density of states that in Ising models resembles a
normal distribution centered in intermediate energies.

The Boltzmann distribution in Eq. 56, together with the random
fluctuations ω, manifests in regimes of optimized parameters, but
the distribution may be modified by manipulating the angles θ ∈ (0,
π/2) and γ (see Figures 6, 7). By analyzing Eq. 56 and previous

FIGURE 6
Evolution of the single-layer QAOA probability amplitude distribution as wemodify the angle γwith optimal θ. We plot the probabilities |F(x)|2 versus
their energies Ex for a single random instance of a 14-qubit (A) QUBO (γopt = −0.09 and θopt ≈ π/6) and (B) a MaxCut (γopt = −0.14 and θopt ≈ π/8)
Hamiltonian. The optimal angles (γopt, θopt) are those that minimize the mean energy 〈E〉 = ∑x|F(x)|

2Ex. Note how a Boltzmann distribution with
perturbations is apparent for γ ≤ γopt. We also display the total variation distance δ between the single-layer QAOA probability distribution and the
Boltzmann distribution fit δ � 1

2∑x‖F(x)|2 − e−βfitEx /Z|, with Z � ∑xe
βfitEx being the partition function.
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expressions, additional conclusions can be drawn about the shape of
the distribution.

• The angle γ controls the direction of the optimization. For
specific γ regimes, the single-layer QAOA probability
amplitude distribution on Ising models resembles a thermal
distribution at temperature T � β−1 � 1

cπ|γ| such that the
ground state of the system aligns with the peak amplitude.
Switching the sign of this angle is the same as changing the
sign of the energy and, therefore, of the temperature T � −1

cπ|γ|.
These negative temperature states increase the probability of
the highest excited state.

• The degenerate Ising models exhibit antisymmetric behavior
at the angle θ becauseT � sgn

cπ|γ|, with r = − log(tan θ). Therefore,
for θ < π/4 and θ > π/4, the pure QAOA state resembles a
thermal-like distribution with positive/negative temperature.
Equation 45 shows that when θ ≈ π/4, the thermal type
distribution disappears, and we find a mixture of two
Boltzmann exponentials with opposite temperatures. This
behavior can be observed in Figure 7B.

• The Boltzmann distribution is apparent for a finite interval of
angles γ ∈ (0, γc]. The lowest temperature T is reached near γ ≈
γopt, where γopt is the angle that minimizes the mean energy in
the variational principle. The random noise βω/c = πγω in Eq.
56 grows with γ so that the smaller the γ, the lower the noise

and the more noticeable the Boltzmann distribution. When
|γ| > γc, the fluctuations are such that the Boltzmann term
becomes marginal.

• For γ < γc, we observe that β grows linearly with the angle γ,
consistent with the numerical results of Díez-Valle
et al. (2023).

5 Outlook

Sampling from complex probability distributions is a valuable
computational task, both for its difficulty and its broad applicability.
Quantum states projected on the computational basis are, in essence,
classical probability distributions, and measuring them is the same
as sampling from such distributions. Therefore, a quantum
computer can be roughly seen as a machine capable of creating
exotic or suitable probability distributions thanks to quantum
phenomena. Indeed, the first claim of quantum supremacy
(Preskill, 2018) was performed on a sampling problem (Arute
et al., 2019), and this task has also been envisioned as one of the
candidates to show a practical quantum advantage in the near term
(Wu et al., 2021; Zhong et al., 2021; Layden et al., 2023).

In this context, the Boltzmann distributions of Ising models
could be good candidates to show such quantum advantage for two
reasons. First, these distributions are classically intractable at low-

FIGURE 7
Single-layer QAOA probability amplitude distribution with optimal γ in different regimes of the angle θ. We plot the probabilities |F(x)|2 versus their
energies Ex for a single random instance of a 14-qubit (A)QUBO (γopt= −0.09 and θopt ≈ π/6) and (B)MaxCut (γopt= −0.14 and θopt ≈ π/8) Hamiltonian. The
optimal angles (γopt, θopt) are those thatminimize themean energy 〈E〉=∑x|F(x)|

2Ex. We also display the total variation distance δ between the single-layer
QAOA probability distribution and the Boltzmann distribution fit δ � 1

2∑x‖F(x)|2 − e−βfitEx /Z|, with Z � ∑xe
βfitEx being the partition function.
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temperature regimes. The most popular strategy to simulate thermal
distributions is the use of Markov chain Monte Carlo (MCMC)
algorithms that guarantee convergence to the Boltzmann
distribution at a given temperature T. While these methods work
very well for relatively high temperatures, the number of iterations
needed to converge scales exponentially when the temperature is too
low. Much effort has been expended to determine the range of
temperatures that ensure rapid mixing and, therefore, the
polynomial convergence of MCMCs. To the best of our
knowledge, the state-of-the-art theoretical bound indicates that
an MCMC always converges in polynomial time to the thermal
distribution of an Ising model at a temperature higher than ‖J‖
(Eldan et al., 2021), although practical realizations and state-of-the-
art methods (e.g., parallel tempering and population annealing)
might overcome this threshold. Díez-Valle et al. (2023) showed that
the single-layer QAOA already approximates Boltzmann
distributions at temperatures beyond this theoretical MCMC bound.

Second, a wide range of fields would be impacted by an
improvement in Boltzmann distribution sampling. In statistical
mechanics, sampling from this distribution is crucial for
simulating physical systems at thermal equilibrium and for
computing observables such as magnetization in Ising models.
Furthermore, machine learning uses this distribution in
unsupervised learning techniques known as Boltzmann machines
(Ackley et al., 1985). Combinatorial optimization is another field of
interest because some algorithms employ Boltzmann distribution
sampling at decreasing temperatures as a subroutine to find the
minimum of a cost function (Kirkpatrick et al., 1983).

The thermal-like distributions of the single-layer QAOA reveal a
nice connection between quantum algorithmics and statistical
physics that can help gain a better understanding of the behavior
of these ansatzes. However, from a broader perspective, the QAOA
sampling from approximate Boltzmann distributions, also known as
Gibbs sampling, may be extended to the multilayer scenario with an
improvement in the achievable temperature (Lotshaw et al., 2022) or
to QAOA mixed-state ansatzes to train unsupervised learning
models as implemented in Verdon et al. (2019). Furthermore,
because the QAOA resembles a Trotterized approximation to an
adiabatic quantum evolution, this picture might be expanded to the
infinite depth scenario p→∞ and the engineering of general time-
dependent adiabatic passages.

Additionally, the approximate Boltzmann distributions of
single-layer QAOA states present collateral implications in
quantum information theory. For example, this behavior makes
them suitable as warm initial states for more complex ansatzes, as
demonstrated in Leontica and Amaro (2023). Another recent work
(Sud et al., 2022) shows how a tight dependence between the energy
distribution of the spin model and the final probability amplitude of
the QAOA states allows a more efficient classical heuristic
optimization of the QAOA parameters. The Boltzmann
distribution unambiguously connects the energy of the

eigenstates with their amplitudes, thus providing further
arguments and explanations on these heuristics.

We are confident that this study and earlier work byDíez-Valle et al.
(2023) are two initial works in a new field in which variational and other
types of circuits are analyzed from a physical perspective, understanding
not only their computational power but also offering potentially
significant physical insights into the quantum computer’s dynamics.
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