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Quantum biology is a modern field of research that aims to understand how
quantum effects can affect the chemistry underlying various biological processes.
This paper reviews several examples of biological processes where quantum
effects might play a notable role. Initially, the photon capture mechanism present
in vision is discussed, where the energy of the photon is used to cause
conformational changes to chromophoric proteins. The second example
elaborates the highly efficient energy transfer process present in
photosynthesis and discusses, in particular, how the random quantum walk
process may enhance the performance drastically. Subsequently, the
vertebrate magnetoreception, and the possible associated role of the radical
pair mechanism in the process is considered. The review concludes with the
discussion of some speculative ideas of putative quantum effects arising in neural
processes.
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1 Introduction

One of the first mentions of the idea of quantum biology can be traced back to the book
“What is life?” (Schrödinger, 1944). Quantum biology studies the applications of quantum
mechanics and theoretical chemistry to biological systems. The field of quantum biology
aims to fundamentally understand how biological processes that rely on quantum effects
work. With the development of computational chemistry techniques, the growth of
quantum thermodynamics and approaches to study open quantum systems, it is
possible to form a more fundamental understanding of the complex systems present in
biology. In particular, this review is an introduction for anyone interested in understanding
some of the possible ways how quantum mechanics may be relevant in several selected
biological processes. Furthermore, a discussion of four biological processes – three well-
established and a more speculative one –where quantummechanisms possibly play a role is
performed and guides the reader to a more detailed investigation on each subject. Although
this review explores mainly quantum mechanical mechanisms, there are just as many
proposals for classical or semiclassical descriptions of the processes discussed here (Cadiou
and McNaughton, 2010; Runeson et al., 2022). We do not intend to discuss the existing
controversies in detail and leave this discussion to more specialized reviews (McFadden and
Al-Khalili, 2018; Marais et al., 2018; Cao et al., 2020) on the topics. Indeed we would like to
briefly mention that quantum processes may need to be carefully addressed in the context of
multiple biology processes.
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Section 2 discusses the quantum effects in vision, by overviewing
the photo-absorption process in related molecules. The semi-
classical mechanism of light detection is discussed, explaining
how vision functions. This mechanism involves a retinal
molecule which, when excited by a photon, can undergo different
energy decay paths depending on the photon’s energy and its
molecular environment. Most organisms use similar mechanisms
for photo-detection (Schulten and Hayashi, 2014). Vision requires a
quantum or at least semi-classical description in which all or part of
the system is described via the quantization of its states. However,
the mechanism in vision does not require any degree of coherence or
entanglement due to the superposition of the energetic states. On the
other hand, there are examples of biological processes that might
require a degree of coherence for efficient operation - as is the case
with photosynthesis and vertebrate magnetoreception.

Section 3 illustrates how the efficiency of energy transfer in
photosynthesis in bacteria may reach up to 99% (Mohseni et al.,
2008), which can, in principle, be rationalized through the concept
of quantum randomwalks. An explanation of the difference between
a classical and a quantum walk is given, where it is demonstrated
how it can become more efficient in transferring energy inside a
protein, compared to the classical random walk analogue. The
section then discusses more recent works that explore how the
quantum walk is affected by coherence (Dudhe et al., 2022).

Section 4 explores vertebrate magnetoreception, and discribes
experimental evidence which suggests that migratory songbirds
require light of specific wavelengths to utilize their magnetic
compass (Mouritsen and Hore, 2012; Mouritsen, 2018; Wiltschko
et al., 2010; Engels et al., 2012). Such behaviour could not be
rationalized for a compass sense based on magnetic materials
(Solov’yov and Greiner, 2009; Solov’yov and Greiner, 2008;
Wiltschko and Wiltschko, 2012). The section discusses a possible
molecular mechanism for the Earth’s magnetic field detection, where
correlated energy states in a receptor molecule play an essential role.
This mechanism, called the radical pair mechanism, aims to explain
howmigratory songbirds can perceive the direction of the geomagnetic
field without the use of magnetic minerals (Hore andMouritsen, 2016).
The radical pair mechanism is rooted upon the blue light-sensitive
proteins present in the eyes of some bird species (Cashmore et al., 1999;
Liedvogel et al., 2007; Mouritsen et al., 2004).

As a last part of the review, a subject that has been gaining
relevance in recent years is presented – the potential role of quantum
mechanics in brain function, particularly concerning consciousness
(Li et al., 2018; Smith et al., 2021; Cukras and Sadlej, 2021). This
section of the review provides a discussion of key theories, including
the possible implications of quantum entanglement, coherence, and
superposition in neural processes (Hagan et al., 2002; Tegmark,
2000; Froehlich, 1968; Kalra et al., 2023a; Liu et al., 2024; Babcock
et al., 2024). The challenges and controversies surrounding the
raised hypothesis are addressed, along with future directions for
research, highlighting recent advancements.

2 Vision

Vision is a common ability in complex living beings, defined as
the ability to detect light and use it to interpret the environment
(Starr et al., 2006; Moazed, 2023). A similar mechanism is used by

bacteria to guide their locomotion towards or away from a light
source; the basic mechanism is similar to photodetection in higher
organisms, but does not function as a visual sensor. The basic
molecular mechanism of vision relies on the protein rhodopsin
(Rh) (Khorana, 1992; Pedram et al., 2022), in the case of animals, or
its variant bacteriorhrodopsin (bRh) (Spudich and Jung, 2005), in
the case of bacteria. Central to rhodopsin’s structure is the
chromophore retinal (Figure 1), which governs the quantum
processes involved in photo-detection. A chromophore is a
molecule embedded in the protein which has the function of
absorbing light of a particular wavelength to start a cascade of
chemical reactions (Rüdiger, 1986).Upon capturing a photon, retinal
enters an electronically excited state and subsequently undergoes a
twist in one of its chemical bonds causing the molecule to change
into a new conformation (Figure 1B), the change in conformation is
called cis to trans transformation (Joly, 1921; Loulakis et al., 2017;
Sen et al., 2022). This conformational change initiates a cascade of
chemical reactions related to the visual cycle (Wald, 1968; Mohseni
and Plenio, 2014), which signals the photo-detection.

The quantum aspect of vision is related to the changes of the
energetic states of the molecule, and the mechanism of how those
states define the function of the molecule. Only photons of specific
wavelengths can be absorbed by the retinal, and those wavelengths
are determined by the molecular quantized energy states at the
moment of interaction between the retinal and the photon. In an
idealized case, the retinal would only be able to absorb energy of one
specific wavelength. Still, many different factors affect retinal’s
energy spectrum, making it sensitive to a specific range of
wavelengths, a phenomena called line broadening in spectroscopy
(Haken and Wolf, 1996). Upon photo-absorption the molecule
enters an electronically excited state, but eventually decays back
to a ground state. One possibility for decaying into a less energetic
state, is to use the energy received from the photon to cause
conformational changes within the molecule, e.g., to exploit the
transition from 11-cis-retinal to all-trans-retinal (Wald, 1968). But
there are other multiple possible ways the energy of the absorbed
photon can be dissipated (Figure 2), impacting the efficiency of the
photodetection mechanism.

The retinal molecule could revert to the original ground state by
emitting a photon with a similar energy as the original one via
spontaneous emission (Valeur and Berberan-Santos, 2011); the
process of dissipating energy through photon emission is called
fluorescence. Alternatively the retinal molecule may undergo an
adiabatic transition, when the molecule changes its state without
radiating photons; the molecule transitions between different states
while being on the same adiabatic energy surface (Truhlar, 2003). As
the molecule transitions between states, it can dissipate the excess
energy to the environment in the form of vibrational modes
(Mohseni and Plenio, 2014), transferring the energy to the
chemical bonds and, eventually, dissipating the photon’s energy
as vibrations throughout the protein. If the energy from the captured
photon was not dissipated, and indeed caused a conformational
change, then a series of chemical reaction follows (Wald, 1968).

Despite decades of research, questions remain related to the
critical understanding of the environmental influence around the
retinal. The excitation properties of retinal depend on its molecular
environment. Changing the environment also changes the
sensitivity of retinal to specific wavelengths, e.g., a chromophore
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may become affected by red, green or blue light if put in different
environments. It is not trivial to describe the effect of the
environment onto the absorption spectra of molecules. The
surrounding environment, in the case of vision, is complex (see
Figure 1) and affects how the energy of the captured photon can be
dissipated (Figure 2B). In theoretical calculations, one can include
the environmental influence into the retinal by using i.e., polarizable

embedding models, where a small region of the system is treated
with quantum mechanical methods, and the environment is
represented by multipoles and polarizabilities (Steinmann et al.,
2019; Frederiksen et al., 2024b; Kretschmer et al., 2024; Di Prima
et al., 2024). Solvatochromism (Marini et al., 2010; Mennucci et al.,
1998) (Figure 3) is one notable example of how the environment
affects a molecule’s spectra. In this case the properties of the solvent

FIGURE 1
(A) Structure of sensory rhodopsin from Natronomonas pharaonis, the retinal chromophore in all-trans form is highlighted in red inside of the
protein (Royant et al., 2001). (B) Upon photo-absorption retinal undergoes a conformational change from 11-cis-Retinal to all-trans-Retinal (National
Center for Biotechnology Information, 2024b; National Center for Biotechnology Information, 2024a)). The hydrogen atoms in the molecule are not
shown for visualization clarity, grey and red spheres indicate carbon and oxygen atoms, respectively.

FIGURE 2
(A) Energy diagram illustrating the possible paths of energy transfer, following photoabsorption by the retinal. (B) Artistic illustration of the possible
ways that the energy of the absorbed photon can be dissipated. Vibrational modes in the protein, cause the molecular bonds to vibrate and dissipate the
extra energy throughout thewhole protein. If no changes have occurred, all the energy of the photon can be spontaneously emitted as another photon of
similar energy. The energy of the absorbed photon can also cause a conformational change in the molecule.
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affect the dye’s quantum excitations, which changes which photon
wavelengths the dye absorbs. While photoabsorption is one of the
most prominent examples for the requirement of a quantum
mechanical description, there are a plethora of other processes
which include quantum effects. For example, the energy
transport of the absorbed light in rhodopsin in avian species was
investigated previously, where it was illustrated that quantum effects
are required for an efficient energy transportation (Zueva et al.,
2019). The concept of quantum effect guided energy transportation

is also a current research topic within the photosynthetic system of
many species (Mohseni et al., 2008; Zhu et al., 2010; Dudhe et al.,
2022) as will be described in the next section.

3 Photosynthesis

Photosynthesis is a well studied biological process (Zhu et al.,
2010) that permits plants and some bacteria to store energy

FIGURE 3
Reichardt’s dye (Osterby and McKelvey, 1996) dissolved in different solutions (labeled). Dielectric constant, hydrogen bonding capacity and other
properties of the solution affects the quantum excitations of the dye, changing its absorption and emission spectra.

FIGURE 4
(A) Fenna–Matthews–Olson protein fromChlorobaculum Tepidum (Tronrud et al., 2009) with Bacteriochlorophyll a (BChl a) molecules highlighted
inside. Each color represents a chromophoremolecule with localized site energy. The sphere in the center of eachmolecule denotes amagnesium atom.
(B) Bacteriochlorophyll numbered following Fenna andMatthews original numbering convention (Fenna andMatthews, 1975). Site 1, 2 and 6 are closer to
the antenna (donor), and site 3 is closer to the reaction center (acceptor) (Mohseni et al., 2008). The arrows show some possible pathways for the
exciton to diffuse and reach site 3, getting closer to the reaction center.
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harvested from photo-absorption. The complete process of
photosynthesis is rather complex, so the focus here is set to the
photosynthetic apparatus present in purple bacteria (Chlorobaculum
Tepidum) which transports the energy from the antenna, a
molecular structure dedicated to capturing light, to the reaction
center, where the energy is used to synthesize glucose. The captured
photon excites an electron in the antenna, making the electron leave
its current energy site. The excitation of the electron forms a region
with an absent negative charge, defined as a hole and can be assumed
as a virtual particle with a positive charge. The electron-hole pair
acts as a quasiparticle called exciton. The energy is transported as an
exciton (Fox, 2010; Mohseni et al., 2008; Ghasemi and Shafiee, 2020;
Dudhe et al., 2022) through the Fenma-Mattheus-Olson (FMO)
protein complex (Figure 4) (Fenna and Matthews, 1975; Dudhe
et al., 2022; Tronrud et al., 2009) found in purple photosynthetic
bacteria (Ritz et al., 2001; Ritz et al., 1998; Spudich and Jung, 2005).
The FMO has embedded multiple Bactoriochlorophyll (BChl)
molecules, the BChl serve as sites, where the exciton can diffuse
from site to site from the antenna, near sites 1, 2, and 6, to the
reaction center near site 3.

The energy transport has a high degree of efficiency in bacteria.
About 99% of the energy from absorbed photons reach the reaction
center (Mohseni et al., 2008). One suggestion for the high efficiency
is the possibility that the exciton moves through the complex via
quantum walk (Mohseni et al., 2008; Dudhe et al., 2022; Karafyllidis,
2017). To better understand how the quantum walk might improve
the efficiency one may explore the differences between classical and
quantum stochastic walks.

Random walk is a widely known approach from statistical
physics. For the sake of illustration consider a particle that
experiences one dimensional (1D) random walk. The particle
could, for example, symbolize an exciton that exists in the FMO,
although the exciton’s real motion would be much more complex.
Assume the particle to be initially placed at the origin. In the 1D
random walk it experiences jumps in two possible directions
(positive and negative). In the simplest scenario the particle may
be displaced by one unit per jump. In the case of a classical random

walk, after a finite number of jumps, the probability distribution of
the particle’s positions approaches the normal distribution, as
illustrated in Figure 5. The width of this distribution grows with
the increase of the number of jumps. After a sufficiently large
number of jumps, in the classical scenario, the probability of
finding the particle at any point becomes similar. On contrary, if
the number of jumps is finite, the classical particle has a tendency to
localize around its starting position.

Quantum walk is a variation of the random walk where the
movement of the particle is governed by quantum mechanics (Tang
et al., 2024). Instead of considering the specific particle, in quantum
random walk one considers the particle’s wave-function. To
represent the particle starting at the origin, its initial wave-
function starts as a spike at the origin with the probability to be
observed elsewhere being zero. With each jump the wave-function
propagates freely, i.e., analogous to the classical “jump” introduced
above. The quantum jump is usually represented by the propagation
operator. As the number of jumps increases, the wave-function
starts to interfere with itself, causing the probability of the particle
being in previous positions to decrease. After a certain number of
jumps an interference pattern emerges. The particle has a higher
probability of being on the extremities of the 1D space, as opposed to
the classical random walk where the particle has higher probability
of being around the origin (Nsofini, 2012). The higher probability of
the particle being at the periphery of the diffusion limit is the reason
why quantum walk is theorized as the source of the FMO’s high
efficiency in energy transport (Olaya-Castro et al., 2008; Mohseni
et al., 2008; Hoyer et al., 2010). If the exciton diffuses through a
quantum walk, it tends to spread around the molecule, instead of
remaining around the point of origin. Although the quantum walk
illustrated here is a simplified example, studies which explore the
quantum walk in photosynthesis use a more refined version of this
model, where more transport possibilities are considered, and with
the presence of different potentials which affect the wave-function’s
dynamics (Mohseni et al., 2008; Hoyer et al., 2010).

Figure 4 introduces a possible excitation pathway in the FMO.
Following the numbering scheme in Figure 4, the energy is
transferred from sites 1, 2 or 6, which are closer to the antenna,
to site 3, which in turn is closer to the reaction center. The existence
of quantum walk in the energy transfer is still under discussion
(Runeson et al., 2022). The main argument in favor of quantumwalk
is that it might cause an enhancement in the energy transfer rate,
since the particle localization probability experiencing a quantum
walk tends to spread out more then in the classical random walk.
Some works also suggest environment assisted mechanisms for the
quantum walk, where environmental noise could aid transport
transfer pathways (Caruso et al., 2009; Plenio and Huelga, 2008;
Mohseni et al., 2008). However, other studies point out that the
energy transfer rate increase within the quantum randomwalk is not
guaranteed (Dudhe et al., 2022; Hoyer et al., 2010). These studies
suggest that the energy transfer is optimized for efficiency instead of
speed. Other quantum effects, such as entanglement (Sarovar et al.,
2010; Fassioli and Olaya-Castro, 2010; Whaley et al., 2011; Ishizaki
and Fleming, 2010) or Grover’s quantum search (Engel et al., 2007),
are theorized to be the source of the high efficiency (Karafyllidis,
2017). An argument against quantum effects is the short
decoherence time at room temperature, which would greatly
limit the lifetime of emerging quantum states. Runeson et al.

FIGURE 5
Normalized probability distribution computed for a particle
experiencing a 1D classical random walk (orange line) and a quantum
random walk (blue line) after 100 steps.
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(2022) presents a counter example to the quantum walk hypothesis,
where the authors use trajectory-based simulations to show that a
description in terms of quantum electrons and classical nuclei is
sufficient to describe the efficiency of the FMO’s energy transfer.

4 Vertebrate magnetoreception

The phenomenon of magnetoreception is observed in various
organisms, including bacteria, insects, amphibians, birds, sharks,
fish and rays, which use it to orient themselves to the Earth’s
magnetic field (Wiltschko, 2012; Grüning et al., 2022; Solov’yov
et al., 2014; Maeda et al., 2012; Maeda et al., 2008; Rodgers and Hore,
2009; Hore and Mouritsen, 2016; Xu et al., 2021; Laurien et al., 2024;
Frederiksen et al., 2024a). Behavioral experiments with European
migratory songbirds suggest the presence of a mechanism that
would allow the animals to use the geomagnetic field for
navigation or orientation (Engels et al., 2012; Hore and
Mouritsen, 2016). The experiments are conducted during the
migratory season when the birds are most active and have an
impulse to migrate (Wiltschko, 2012; Engels et al., 2012;
Mouritsen, 2018). In the experiments, the birds are placed inside
an Emlen funnel (Emlen and Emlen, 1966). The funnel has scratch
paper inside; as the birds jump and peck, they mark the direction in
which they intend to go; it has been observed that the distribution of
the scratch marks on the paper changes depending on the controlled
illumination of the environment. When the experiment was
performed under less energetic colors of light, like red, the
direction of the scratches was random, but with more energetic
colors, like blue, the scratches were more localized in a specific
direction (Wiltschko and Wiltschko, 1972). Since the birds had no
other form of orientation or navigation available during the
experiment, the conclusion was that they might be using some
mechanism to detect the geomagnetic field. This mechanism should
be light-dependent, accounting for the different behaviour during
light conditions. Similar experiments have shown that birds have an
inclination compass (Wiltschko, 2012; Wiltschko and Wiltschko,
1972). Inclination compasses work in a slightly different way than
the ordinary compasses. Standard compasses are polarity
compasses, they point to one of the poles of the magnetic field.
Inclination compasses do not point to the poles; they give
information on the inclination of the field lines of a given
magnetic field. If the polarity of the field is flipped, but the
inclination is the same, then the inclination compass will not
change its direction (Mouritsen, 2015).

Following the experimental evidence that the birds use an
inclination compass, the animal would not be able to detect
magnetic fields solely by employing magnetic materials, since the
related mechanisms would naturally imply a polarity compass
(Solov’yov and Greiner, 2008). Another magnetoreception
mechanism proposed by Schulten et al. (1978) is the so-called
radical pair mechanism. Here, a radical pair is formed by a light-
activated chemical reaction and works as an inclination compass,
providing information about the inclination of the magnetic field
and a molecular structure in which the radical pair is embedded. It is
theorized to exist inside a protein called cryptochrome in the bird’s
retina (Mora et al., 2004; Hanić et al., 2022; Dodson et al., 2013;
Engels et al., 2012). Cryptochrome has a chromophore called flavin

adenine dinucleotide (FAD), which is sensitive to blue light (Bouly
et al., 2007; Hore and Mouritsen, 2016; Liedvogel et al., 2007;
Cashmore et al., 1999). Cryptochrome also contains several
conserved tryptophan (Trp) residues that bridge the FAD
cofactor with the protein surface. Figure 6 shows the structure of
a cryptochrome from an european robin (erithacus Rubecula)
(Hanić et al., 2022; Timmer et al., 2023) with the embedded FAD
and the key Trps. The proposed radical pair mechanism utilizes
these molecules to detect the geomagnetic field as illustrated
in Figure 7.

The reaction cascade starts with the FAD absorbing a photon of
an appropriate energy. The photon excites an electron in the FAD to
a higher energy state and allows the excited FAD to receive another
electron from the Trp residue nearby (Timmer et al., 2023;
Schuhmann et al., 2023; Solov’yov et al., 2024; Matysik et al.,
2023; Xu et al., 2021). After the electron transfer, the FAD and
Trp have unpaired electrons, i.e., form a radical pair. The transferred
electron was originally paired with another electron with a similar
energy, therefore, both electrons in the radical pair initially form a
singlet spin state, where the spins of the electrons appear anti-
parallel, and the spins of the electrons are correlated. Each unpaired
electron of the radical pair is located at a different site; therefore, the
electrons experience different magnetic environments, which
include the interactions between the electron spins and the
nuclear spins, called hyperfine interactions, and the interaction
between the electron spins and the external magnetic field, called
the Zeeman interaction (Grüning et al., 2022; Grüning et al., 2024;
Kattnig et al., 2016a). The radical pair is sensitive to weak magnetic
fields, such as the geomagnetic field of about 50 μT, as magnetic
interactions may affect the electron’s precession rate. The different
precession rates cause the radical pair to change its spin state
between singlet (anti-parallel spins) and triplet (parallel spins)
states, a process called interconversion (see Figure 7), and occurs
with a certain rate. Figure 8 illustrates that the frequency of singlet to
triplet transition may be modulated by the relative angle between the
spins and the external magnetic field. Therefore, a correlation
between the inclination of the magnetic field and the amount of
time the electrons remain in either singlet or triplet state can be
established. The radical pair state is unstable, and after a few
microseconds the molecules are expected to recombine into
chemical products (P0 and P1 in Figure 7), but which product
they recombine into depends on the spin state of the electrons (Hore
andMouritsen, 2016; Matysik et al., 2023; Carrillo et al., 2015). Some
reactions are spin-selective and are only possible if the electrons are
in the singlet state, i.e., the recombination of the radical pair. Since
the inclination of the field modulated the interconversion rates
between the radical pairs states, it also affects the probability of
the reactions producing a certain product. The ratio of products in a
radical pair reaction could thus be sensitive to the inclination of the
magnetic field, and therefore the radical pair mechanism could be
used to explain the inclination compass of migratory birds.

A relevant discussion on the radical pair mechanism is whether
it requires a quantum description. There are multiple descriptions
for the dynamics of the radical pair mechanism (Fay et al., 2020;
Jones and Hore, 2010; Wong et al., 2021), both purely quantum and
semi-classical. The primary quantum aspect of radical pairs is the
correlation of spin states. Spin is a quantized property only able to
assume specific discrete values, and cannot be described by a purely
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classical approach. The quantized nature of spin defines the
description of the radical pair as either semi-classical or purely
quantum. While the radical pair mechanism is a promising
hypothesis for the underlying phenomenon of magnetoreception,
the concept of coherence challenges the theory. Due to the thermal

motion of the molecular structure of proteins in which the radical
pair is embedded, constant perturbations through adjacent magnetic
momenta of the nuclear spins are leading to rapid decoherence of
the radical pair emerging in spin relaxation (Gerhards et al., 2023;
Grüning et al., 2024; Kattnig et al., 2016b; Worster et al., 2016). It
was demonstrated in several studies that these decoherence
processes drastically decrease the efficiency of the magnetic
radical pair compass (Grüning et al., 2024; Kattnig et al., 2016a;
Worster et al., 2016). Emerging new theories address the spin
relaxation problem. For example, Smith et al. showed that
complex time-dependencies of inter-radical pair magnetic
interactions might drastically increase magnetic sensitivity (Smith
et al., 2022). Non-Markovian approaches were also suggested to
explore the impact of thermal motion in spin relaxation (Grüning
et al., 2024; Li and Shen, 2024; Breuer et al., 2009; Vacchini and
Breuer, 2010; Xin et al., 2022; Breuer et al., 2016; Shen et al., 2018).
Another theory is the involvement of a third scavenger radical
participating in the radical pair mechanism proposed by Kattnig
and co-workers (Babcock and Kattnig, 2021; Deviers et al., 2024).
This new hypothesis still requires the consideration of the quantum
mechanical nature of spin, which sets the topic of magnetoreception
as one of the major research areas of quantum biology.

5 Quantum effects in neural processes

The hypothesis that quantummechanics may play a role in brain
function, especially in the context of consciousness, has recently
sparked considerable interest and debate (Jedlicka, 2017; Hameroff,
2022; Hagan et al., 2002). Quantum mechanics, which governs the
behaviour of physical systems at the smallest scales, may offer
insights into the complex phenomena observed in the brain. This
section briefly overviews the current research on quantum effects in

FIGURE 6
Structure of the cryptochrome protein with indication of the location of the flavin adenine dinucleotide (FAD) cofactor and the surrounding
tryptophan residues. After photo-absorption of blue light by FAD, an electron is transferred from TrpHa. The initial transfer initiates a chain of electron
transfers from TrpHb to TrpHa, then from TrpHc to TrpHb and finally from TrpHd to TrpHc. With each transfer, the state of the correlated electrons is
moved to the next residue, where the FAD has a probability of being in the radical pair state with TrpHd or TrpHc (Wong et al., 2021).

FIGURE 7
Proposed reaction path for a FAD-Trp radical pair. The FAD first
absorbs a photon and gets into an excited state. The excitation allows
an electron from the tryptophan (Trp) to be transferred to the nearby
FAD; putting both molecules into the radical pair state. In this
state the electrons are sensitive to weak external magnetic fields and
flip between the singlet(S) and the triplet(T) spin states with a rate
modulated by the external field. After some time the molecules decay
into products P0 or P1, with decay rates k0 and k2 respectively,
depending on their spin state. The ratio between the P0 and P1

products could then be modulated by the inclination of the external
magnetic field �B
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the brain, focusing on some of the key findings and theories and
presents the major challenges and controversies involved.

One of the most prominent theories on quantum effects in the
brain is the “quantum consciousness” hypothesis proposed by
Hameroff and Penrose (Hameroff and Penrose, 2014). Although
the unfortunate naming might attract unexpected ideas, the
quantum consciousness theory posits that quantum processes
such as entanglement, coherence, and superposition might have a
role in brain function. Consciousness here does not relate to any
metaphysical ideal, but to the brain’s ability to process and to react to
external or internal stimuli and how anesthetics affect it, e.g., a rat
following the smell of food, or a reaction to pain. While quantum
consciousness is highly controversial, it is physically possible that
quantum phenomena might be involved in critical points in neural
processes. For instance, anesthetic gases can selectively block
consciousness while sparing non-conscious brain activities,
i.e., make someone unconscious (Li et al., 2018; Miller, 1961;
Clar and Patel, 2023). Notably, it has been shown that, in mice,
xenon isotopes with nuclear spin 1/2 are significantly less potent as
anesthetics compared to isotopes with spin 0, suggesting a potential
link between nuclear spin and consciousness (Fisher, 2015; Li et al.,
2018; Cukras and Sadlej, 2021; Smith et al., 2021). The lesser effect of
spin 1/2 isotopes supports the idea that consciousness might involve
quantum processes, possibly through mechanisms like nuclear spin
interactions and electron spin dipole oscillations in proteins present
in neurons (Li et al., 2018).

Quantum effects might be particularly relevant in addressing the
“binding problem” in cognitive neuroscience—the question of how
the brain integrates disparate sensory information into a unified
conscious experience (Feldman, 2012; Singer, 1999; Varela et al.,
2001). In visual processing, for example, information about the
shape, color, motion, and meaning of an object is processed in
different areas of the visual cortex at different times (Bullier, 2001).
These disparate elements are then correlated to bring forward a

coherent perceptual experience. Quantum entanglement, where
particles remain connected over distance and time, could provide
a mechanism for this integration (Hameroff, 2018).

In another direction, microtubules, cytoskeletal components
within neurons, have been speculated as potential sites for
quantum computing in the brain. Microtubules are theorized to
exhibit quantum resonance oscillations and might host quantum
processes that regulate neuronal activity and behavior (Hameroff,
2022). Anesthetic gases are believed to dampen these oscillations,
correlating with their ability to induce unconsciousness (Craddock
et al., 2017).

While the many ideas of quantum effects playing possible roles
in brain functioning may be interesting, there are essential
problematics drastically damping the hypotheses. For quantum
effects be involved in any neural process, the decoherence time
for quantum states in a biological environment is critical.
Decoherence times (τd) in thermal equilibrium can be estimated
as Equation 1

τd ≈
Z

kBT
, (1)

where Z is the Planck’s constant, kB is the Boltzmann constant, and
T is the environment temperature (Landau and Lifshitz, 1981). At
body temperature (T ≈ 310 K), τd is of the order of 10−13 seconds,
which is too rapid for any quantum effect to have any significant
impact (Tegmark, 2000). Under certain conditions, such as the
hydrophobic environments within proteins, coherence times
might be prolonged, making quantum effects more feasible
(Fisher, 2015; Hagan et al., 2002), however, experimental
evidence for such scenarios remains elusive and challenging.
Furthermore, the energy required to maintain coherent quantum
states (Eq) can be compared to thermal energy (ET), as Equation 2

Eq ≈ Zω and ET ≈ kBT, (2)

FIGURE 8
Dynamics of the singlet (blue) and triplet (orange) populations of a hypothetic radical pair (see Figure 7) during the radical pair reaction consisting of
2 electrons and one proton with anisotropic hyperfine interaction coupled to one of the electrons, and recombination rates of k0 � k2 � 1MHz. Each plot
shows dynamics for a given value of θ, the relative angle between the external magnetic field and the quantization axis. Notice how the dynamics can
change given a certain inclination angle value. This change in dynamics results in different ratios of reaction products, giving information of the
inclination of external magnetic fields in relation to the radical pair.
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where ω is the frequency of quantum oscillations (Landau and
Lifshitz, 1981). For quantum effects to be significant, Eq must be
comparable to or greater than ET. In microtubules, oscillation
frequencies in the teraHertz range have been observed, suggesting
that Eq may be significant relative to ET (Sahu et al., 2014; Froehlich,
1968). However, the measurements of teraHertz frequencies were
not measured in vivo, but in “cell-like” environments.

In a recent article (Deviers et al., 2022), explore the surprising light-
harvesting properties of microtubules. Their experimental investigation
demonstrates that microtubules can facilitate long-range electronic
energy migration. Using tryptophan autofluorescence lifetimes, the
study shows that energy can diffuse over distances of 6.6 nm within
microtubules, a length significantly longer than predicted by
conventional Förster theory, Forster (1946). The study also highlights
that this energy migration is sensitive to the polymerization state of
tubulin and can be dampened by anesthetics like etomidate and
isoflurane. These findings suggest that microtubules may have unique
biophysical properties that could be relevant in both biological processes
and the development of biohybrid devices, opening new avenues for
exploring the non-classical roles of microtubules beyond their well-
known functions in cellular architecture and transport, and possibly
influencing future research in quantum biology and neurobiology.

To advance our understanding of potential quantum effects in
the brain, interdisciplinary research combining neuroscience,
quantum physics, and computational biology is essential. Future
studies should focus on identifying specific quantum processes in
neurons and developing experimental techniques to observe these
processes in vivo. Additionally, exploring how quantum mechanics
might contribute to other cognitive functions could provide valuable
insights into the nature of consciousness (Schlosshauer, 2007; Varela
et al., 2001; Hameroff, 1998).

Following this line, a recent study demonstrates the possibility of
generating entangled biphotons in the myelin sheath using cavity
quantum electrodynamics (cQED) (Liu et al., 2024). This study
demonstrates that the vibrational modes of C-H bonds within lipid
molecules’ tails can generate a significant number of entangled
photon pairs.

The abundance of C-H bond vibration units in neurons can,
therefore, serve as a source of quantum entanglement resources for
the nervous system, thereby elucidating a potential source for the
synchronized activity of neurons (Liu et al., 2024; Froehlich, 1968;
Schroedinger, 1944). By demonstrating the feasibility of entangled
biphoton generation in the brain’s myelin sheath, Liu et al. opens up
new avenues for exploring how quantum entanglement could
contribute to higher-order cognitive functions, such as decision-
making, problem-solving, and consciousness (Fisher, 2015).

Despite the intriguing hypotheses mentioned before, the idea of
quantum processes in the brain remains largely speculative and
controversial. One major challenge is the issue of decoherence.
Quantum states are susceptible to environmental disturbances,
and the “warm, wet, and noisy” environment of the brain is
expected to cause rapid decoherence, disrupting the possible
quantum effects (Tegmark, 2000). However, certain conditions,
such as the hydrophobic environments within proteins, might be
more conducive to maintaining quantum coherence (Hagan et al.,
2002). Moreover, some researchers argue that the brain’s complexity
and functionality can be explained without invoking quantum
mechanics. They point out that many proposed quantum brain

processes remain speculative and lack direct experimental evidence
(Eger et al., 2008; Koch, 2016; Reimers et al., 2009; McKemmish
et al., 2009). Tegmark (2000) argued that the warm temperature of
the brain would cause quantum coherence to break down too rapid
to have any functional role. Despite this, proponents of quantum
consciousness theories suggest that certain brain structures, such as
microtubules, could protect against decoherence through as-yet-
unknown mechanisms (Hameroff and Penrose, 2014; Fisher, 2015).

Additionally, the feasibility of quantum computing within
neurons is questioned. Critics highlight the lack of empirical data
supporting the quantum brain hypothesis and emphasize the success
of classical computational models in explaining brain functions
(Koch, 2016; Freeman, 2003). The authors also argue that many
cognitive phenomena can be adequately explained without invoking
quantum processes, pointing to advances in neuroscience and
computational modeling that provide a detailed understanding of
brain mechanisms using classical physics (Reimers et al., 2009;
Tegmark, 2000). Nevertheless, recent experimental and
theoretical developments continue to keep the debate alive, such
as the peculiar effects of anesthetics on consciousness (Li et al., 2018;
Hameroff, 2018), suggest that quantum effects could play a role in
brain function, even if the exact mechanisms remain elusive.

6 Conclusion

Quantum biology is an emerging interdisciplinary field that
elucidates how quantum effects can influence biological processes.
This review discusses some examples that demonstrate the potential
impact of quantum mechanics on biological systems, ranging from
vision and photosynthesis to magnetoreception and neural
processes. Starting the discussion with more well known
processes and moving towards more elusive and speculative ones.

In vision, the quantum photo-absorption mechanism in retinal
underscores the necessity of quantum descriptions for
understanding light detection and subsequent chemical reactions.
The discussed energy dynamics in the retinal after photo-absorption
also illustrates how many effects, both classical and quantum, have
to be taken into account when describing a biological process.

Section 3 illustrates the role of the quasi-particle exciton in a
molecular mechanism, and how energy can be transported during a
biological process. The efficiency of photosynthetic energy transfer
through the Fenna-Matthews-Olson complex highlights the
potential role of quantum random walks in biological systems.
But there is still much to be studied on the precise description of
the photosynthesic energy transfer mechanism, and what impact
quantum random walk could have on it.

Magnetoreception in migratory songbirds, possibly mediated by
the radical pair mechanism in the cryptochrome protein, illustrates
how quantum effects can influence animal behavior and navigation.
Avian magnetoreception is one of the more elusive examples in this
review. Although there is extensive research on the subject (Hore
and Mouritsen, 2016; Mouritsen, 2015; Fay et al., 2020; Wiltschko,
2012), it still needs rigorous experimental and theoretical
investigation for the complete mechanism to be well understood.

The final section, discusses possible quantum effects present in
neuronal activities. Specifically the activities connected with an
animal’s active behaviour, or consciousness. As mentioned in the
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section, “consciousness” here refers to the term when used in
anesthetic research. The ability for the animal to process and
react to sensory data, or an awareness of internal and external
stimuli. This review presents experimental results that show how
isotopes with different spin can cause different effects on neuronal
activities in mice (Li et al., 2018), and discussed the impact of low
decoherence times on the presence of quantum effects in neurons.

Overall, this review emphasizes the importance of continued
interdisciplinary research in quantum biology. As experimental
techniques advance and theoretical models become more refined,
the understanding of quantum effects in biological systems will
likely deepen, offering novel insights into the fundamental
mechanisms of life.
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