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We study the propagation of a quantum field composed of a few photons
interacting with a three-level Λ-atom driven by a coherent classical field. The
quantum field acquires a phase shift, which can be interpreted as a dispersion
effect on the photon wave packet and described by the refractive index for
quantum fields down to the single-photon level. In this paper, we demonstrate
that the phases acquired by quantum fields depend on the number of photons in
the quantum states. Notably, the phases differ between single- and two-photon
states, enabling the separation of multiphoton states. This finding highlights new
applications related to the dispersion of three-level atoms, which are important in
advancing quantum information processing and enhancing quantum
communication technologies. The results are crucial for long-distance
quantum communication and hold potential for developing quantum field-
based linear devices such as beam splitters, lenses, and quantum prisms
capable of separating different components of quantum fields. The findings
can have interesting applications for manipulating and assembling of
multiphoton entanglement states.
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1 Introduction

Electromagnetic radiation consists of photons that propagate in an empty space
with the speed of light. The speed of propagation can be different when the radiation
beam propagates through a medium. The index of refraction has been introduced to
take into account the interaction between the radiation and the medium, and the
behavior of the radiation beam is determined by the index of refraction of
the medium.

Optical devices like lenses and prisms enable the manipulation of classical and quantum
optical beams [see, for example, work by Leonhardt (1997)]. If the optical beam contains
only a few photons, the quantum state of the radiation becomes crucial. It raises the
question of whether the index of refraction remains a useful concept for single-photon
physics or whether it can be applied as successfully as it has been for classical optical beams
[see, for example, work by Rostovtsev et al. (2023)].

In our paper, we have used the quantum photon states using the Gaussian envelopes
because they are widely used in optics and combine mathematical elegance with physical
practicality, providing stable, smooth, and efficient solutions for pulse generation,
propagation, and manipulation. In addition, many laser systems naturally produce
pulses with Gaussian envelopes, as they arise from the fundamental mode of many
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optical cavities (e.g., TEM00 mode). Gaussian pulses are also
naturally emitted in processes involving spontaneous or
stimulated emission, where the gain medium supports such
distributions. In particular, the Gaussian envelope was used in a
model of single-photon generation based on cavity quantum
electrodynamics [see, for example, work by Walther et al.
(2006b) and Walther et al. (2006a)] under adiabatic and
nonadiabatic conditions [see work by Utsugi et al. (2022)].

For simplicity, we consider only a one-dimension model that
could be applied if we deal with a focused Gaussian beam or the
radiation in a waveguide. For example, in the work by Zheng et al.
(2013), a novel scheme for quantum computation is proposed using
propagating photons in a one-dimensional waveguide interacting
with matter qubits. Our approach is similar in that we consider one
three-level Λ−atom interacting with propagating quantum fields.

The three-level atoms driven by coherent fields, as has been
shown by Fleischhauer et al. (2005) and Fleischhauer and Lukin
(2000), have demonstrated various coherence effects such as the
electromagnetically induced transparency (Harris, 1997) that was
even demonstrated for a single atom in free space in work by
Slodička et al. (2010). The important feature is the control field
that can strongly modify the atomic response, as well as trap and
manipulate photon states in the atomic ensembles, as shown by
Lukin (2003). The process of absorption and emission is related to
the phase change of the quantum fields [see, for example, work by
Pollnau (2018). The strong coupling between single atoms and
photons leads to the nonlinear π phase shift that was shown for
single fiber-guided photons interacting with a single resonator-
enhanced atom by Junge et al. (2013) and Volz et al. (2014).
These results open areas for efficient manipulation of quantum
states of radiation.

As is also well known, multiple qubits can be encoded per
photon, and the information-carrying capacity of a single photon
can be vastly expanded by exploiting its multiple degrees of freedom:
spatial, temporal, and polarization [as shown by Kok and Lovett
(2014) and Seitz and Theuwissen (2011)]. For example, the two-
qubit single-photon quantum operations have been realized in work
by Schumacher (1995), and an experimental demonstration of
three-qubit single-photon, linear, deterministic quantum gates
that exploit photon polarization and the two-dimensional spatial-
parity-symmetry of the transverse single-photon field shown by
Nielsen and Chuang (2010). Long-distance quantum
communications have been demonstrated by Aspelmeyer et al.
(2003). It brings us to the conclusion that the propagation of
single photons in different quantum states is important, for
example, when studying the stability of quantum states carrying
the quantum information for quantum communications. But even
more, it is interesting to see whether it is possible, for example, to
develop various devices to manipulate a beam of a few photons in
particular quantum states to filter quantum states and/or control
their propagation. One example is a plane of single atoms that can
“work” as a thin lens to manipulate and control the propagation of a
single photon; that is, focusing a single photon by an array of atoms
allows one to localize a single photon closer to the detector to
enhance detection rate. If we can control atomic states, the focusing
can be controlled, too.

Our investigations involved the simulation of a quantum field
consisting of a wave packet of one multimode photon or two

photons interacting with a three-level Lambda-type atomic
system (see Figure 1). The incident photons (in state
|Ψin〉 � |Ψ(t → − ∞)〉, probe) interact with the atom and,
after interaction, the state is |Ψout〉 � |Ψ(t → + ∞)〉. The
dispersion depends on the relative detuning between the
resonant atomic transition and frequency of the photon but
can be further controlled using a classical coherent laser field
(drive). We used a state vector approach in our simulation. The
single photon was modeled as a linear superposition of plane-
wave modes, which sum to create a Gaussian envelope. In this
scheme, the phase of each mode is modified due to their
relative detuning. This nonlinear process causes dispersion of
the wave packet, an example of which can be seen in Figures 2, 3.
In an experimental setup, the atom can be placed in one arm of a
Mach–Zehnder (MZ) interferometer [see the book by Scully and
Zubairy (1997)]. The photon wave packet enters through one
of the input ports, is split, and then recombined before
being detected at one of the output ports. The dispersion and,
therefore, the interference can be controlled through
interactions with the atom. In a balanced MZ setup
(without an atom), the photon can exit through one of the
output ports with total probability 1, as seen in Figures 8, 9.
After introducing the atom and controlling the detuning, one
can see a shift in the peak detection probability in one port of the
MZ interferometer. Using a drive field provides
additional control.

In the paper, we demonstrate the phase shift produced by a
single atom for a single photon that can be detected by using the
Mach–Zehnder interferometer. This approach allows us to show
that it is possible to introduce the index of refraction for a single
photon that can “work” for a broad range of applications of
quantum fields: quantum information, quantum computation,
imaging, and improving microscopy and long-distance quantum
communication.

FIGURE 1
Energy levels of an atom are shown. A single incident photon
(|Ψout〉, probe) with frequency ωp is tuned to the atomic transition
|b〉→|a〉. Upon interacting with the atom, the photon state is changed
to |Ψout〉. A classical coherent laser field (drive) with frequency ωd

is tuned to the transition |c〉→|a〉. The differences between the
frequencies of the incident fields and the atomic transition
frequencies δp and δd are referred to as the detunings.
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2 Methods

To take into account the propagation effects, let us consider a
simple model consisting of a Lambda-type three-level atom interacting
with a pulse of electromagnetic field. A clear picture of the propagation
of a few photons can be obtained by employing amode function [see the
book by Kok and Lovett (2014)]. We use a wave packet for a Gaussian
envelope consisting of a few photons as follows:

v z, t( ) � 1
πσz

( )
1
4

e
i kpz−ωpt− z−ct( )2

2σ2z
( ) � ∑

l

~v kl( )eiklz−iωl t, (1)

where σz is the width of the envelope, and kp and ωp are the central
wavenumber and the central frequency of the envelope, respectively,
consisting of the frequencies ωl � ωp + δl. Fourier modes for the
Gaussian envelope are given by Equation 2.

~v kl( ) � σ2z
π

( )
1
4

e−
1
2 kp−kl( )2σ2z , (2)

where kl and kp are the wavenumbers, l is the index of the spatial
modes with wavenumbers kl, ωl, ωp are the frequencies, L is the
length of the pulse, and c is the speed of light in vacuum (ωl � klc
and ωp � kpc).

Then, the field operator can be written as Equation 3:

Ê � ∑
l

El vl z, t( )b̂l( + vl′ z, t( )b̂+l( ) � Ê
+( ) + Ê

−( )
, (3)

where summation over all l (the index of the spatial modes with
wavenumbers kl), El �

��������
2πcZkl/V

√
≃ E0 is the electric field per

photon, V is the quantization volume, vl(z, t) � ~v(kl)eiklz−iωlt, the
creation and annihilation operators obey the commutation relation
[see the book by Kok and Lovett (2014)] [b̂l, b̂+l ] � 1, and it is
convenient to introduce operators Ê

(+) � E0∑kvl(z, t)b̂l, Ê
(−) �

E0∑lvl′(z, t)b̂
+
l .

The state vector describing the three-level Λ atom interacting
with quantum fields consisting of one- and two-photon states is
given by

FIGURE 2
The real, imaginary parts of the probability amplitudes Bl(t → +∞) as a function of their plane-wavemode frequency (δωl � (δp+δl )σz

c ) after interacting
with the three-level atom. The detuning between the central Gaussianmode frequency and the atomic transition is (δωp � δpσz

c ). (a) The Rabi frequency for
the drive field (~ΩD � ΩDσz

c ) is 0, and the detuning for the drive field (δd) is also 0. (b) The argument of the Bl(t → +∞) is shown as a function of their mode
frequency. (c) The real, imaginary parts of the probability amplitudes Bl(t → +∞) and (d) the argument of the Bl(t → +∞) are shown for the Rabi
frequency for the drive field ~ΩD � ΩDσz

c � 0, and δωp = 1.
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|Ψ〉 � A0|a, 0〉 +∑N
l

Bl|b, 1l〉 + C0|c, 0〉

+∑N
l

Al|a, 1l〉 +∑N
lq

Blq|b, 1l, 1q〉 +∑N
l

B2l|b, 2l〉 +∑N
l

Cl|c, 1l〉

(4)
The Hamiltonian of the atom interacting with the quantum field

Ê and the classical field ÊD is given by Equation 5:

V̂I � −℘̂ · Ê + ÊD( ) (5)

where �̂℘ � �℘ab|a〉〈b| + �℘ab* |b〉〈a| + �℘ac|a〉〈c| + �℘ac* |c〉〈a| is the
operator of the atomic dipole moment, |a〉, |b〉, and |c〉
are the states of the three-level atom, �℘ab � qe〈a| �r|b〉,
�℘ac � qe〈a| �r|c〉, qe is the electron charge, and ωab � (Ea − Eb)/Z
and ωac � (Ea − Ec)/Z are the frequencies of the corresponding
atomic transitions.

The interaction Hamiltonians with the quantum field and the
classical fields ED are given by Equations 6 and 7.

V̂IP � ZΩP ∑N
l

ei klz+ δl+δP( )t( )|a〉〈b|b̂l + e−i klz+ δl+δP( )t( )b̂
+
l |b〉〈a|( ), (6)

V̂ID � ZΩD eiδdt|a〉〈c| + e−iδdt|c〉〈a|( ), (7)

where ΩP � ℘E0/Z and ΩD � ℘ED/Z are the Rabi frequencies
describing the coupling of the quantum fields Ê and classical
field ED with the atom, ωp and ωd are the frequencies of the
quantum and classical fields, and δp � ωab − ωp and δd � ωac −
ωd are the detunings of the quantum and driving fields (see
Figure 1). The state vector of the system |Ψ〉 satisfies Equation 8,
the Schrodinger equation.

iZ
∂

∂t
|Ψ〉 � V̂I|Ψ〉 � V̂IP + V̂ID( )|Ψ〉. (8)

Then, all A, B, and C coefficients in Equation 4 satisfy the
coupled equations.

_A0 � −iΩP ∑N
l

ei klz+ δl+δp( )t( )Bl( ) − iΩDe
iδdtC0, (9)

FIGURE 3
The real, imaginary parts of the probability amplitudes Bl(t → +∞) as a function of their plane-wavemode frequency (δωl � (δp+δl )σz

c ) after interacting
with the three-level atom. The detuning between the central Gaussianmode frequency and the atomic transition is (δωp � δpσz

c ). (a) The Rabi frequency for
the drive field (~ΩD � ΩDσz

c ) is 1, and the detuning for the drive field (δd) is 0. (b) The argument of the Bl(t → +∞) is shown as a function of their mode
frequency. (c) The real, imaginary parts of the probability amplitudes Bl(t → +∞) and (d) the argument of the Bl(t → +∞) are shown for the Rabi
frequency for the drive field ~ΩD � ΩDσz

c � 1, and δωp = 10.
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_Bl � −iΩPe
−i klz+ δl+δp( )t( )A0, (10)

_C0 � −iΩDe
−iδdtA0, (11)

_Al � −iΩP ∑N
q

ei kqz+ δq+δp( )t( )Blq( ) − i
�
2

√
ΩPe

i klz+ δl+δp( )t( )B2l

− iΩDe
iδdtCl, (12)

_Blq � −iΩPe
−i kqz+ δq+δp( )t( )Al − iΩPe

−i klz+ δl+δp( )t( )Aq, (13)
_B2l � −i �

2
√

ΩPe
−i klz+ δl+δp( )t( )Al, (14)

_Cl � −iΩD e−iδdtAl. (15)
The simulations of the set of the above equations (Equations

9–15) are presented in Figures 2–5 and reveal a variety of regimes.
These include scenarios in the absence of a driving field and under

the influence of the driving field. The results clearly demonstrate that
introducing a driving field provides an efficient mechanism for
controlling the interaction with quantum fields consisting of one-
and two-photon states.

Specifically, the driving field enables precise tuning of the
system’s dynamics, allowing for enhanced manipulation of
quantum states and greater flexibility in achieving desired
outcomes. This level of control is critical for applications in
quantum information processing and quantum optics, where the
ability to manage photon interactions plays a key role in developing
advanced technologies such as quantum sensors and single-photon
sources. The simulations underscore the importance of driving fields
in optimizing system performance and exploring new regimes of
light–matter interaction.

FIGURE 4
(a) The real, imaginary, and absolute value parts of the probability amplitudes B2l(t → +∞) as a function of δωl after interacting with the three-level
atom. ~ΩD � 0, δωp � 0. (b) The argument of the B2l(t → +∞) and Bl(t → +∞) are shown as a function of their mode frequency δωl .

FIGURE 5
(a) The real, imaginary, and absolute value parts of the probability amplitudes Blm(t → +∞) as a function of δωl for ~ΩD � 0, δωp = 0. (b) The argument
of the B2l(t → +∞) and the double argument of the Bl(t → +∞) are shown as a function of their mode frequency δωl.
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2.1 Resonant interaction

At resonance, δp � 0, we see strong effects of acquiring the
phase, as can be seen in Figure 2, for δωp � δpσz/c � 0,
~ΩD ≡ ΩDσz/c � 0. A similar resonant behavior can be seen for
different detunings of the probe photon and presence of drive;
for example, we see the shift of the resonance for δlσz/c � 1 and
~ΩD � 0 shown in Figure 2. After turning on the drive field, we see the
Autler–Townes splitting of the transition and the strong phase
acquiring for both transitions, as we can see for δpσz/c � 0 and ~ΩD �
1 in Figure 3. For all these examples, we observe this strong phase
acquiring that does not depend on the coupling with a single photon;
the number of modes involved with acquiring the phase depends on
the coupling. Meanwhile, we can see that if the detuning is large, for
example, for δωp � 10, the phase acquired for all photon modes is
the same, as shown in Figure 3. Similarly, we can see the effects for
two-photon mode coefficients in Figures 4, 5. We see very different
behavior of photon modes. These effects require a good explanation.

Equations 9–15 describe the interaction of the system with a
quantum field and also describe the relaxation of the system
prepared in the excited state. These absorption and excitation
processes are closely related [see work by Pollnau (2018)].

Let us first consider the relaxation that occurs when the initial
condition is A0 � 1. Then,

_A0 � −iΩP ∑N
l

ei klz+δl t( )Bl( ) (16)

_Bl � −iΩPe
−i klz+δl t( )A0 (17)

Consider z � 0, then integrating Equation 17, we obtain
Equation 18,

Bl � −iΩP∫t

−∞
dt′A0e

−iδl t′ (18)

and plugging back in Equation 16, we obtain Equation 19, the
following well-known procedure [see, for example, work by Scully
and Zubairy (1997)]:

_A0 � −|ΩP|2 ∑N
l

∫t

−∞
dt′A0e

−iδl t′−t( ) � −Γ0A0 (19)

whereDδ is the density of states, and Γ0 � πDδ|ΩP|2 is the relaxation
of the excited atomic state.

Now let us consider the atom in the ground state, A0 � 0, and
the photon modes are excited Bl ≠ 0, then.

_A0 � −iΩP ∑N
l

ei klz+δl t( )Bl( ) − Γ0A0 (20)

_Bl � −iΩPe
i klz+δl t( )A0 (21)

Then, for the amplitude of the atom in the excited state, we can
write Equation 22:

A0 � −iΩP ∑
l

e−Γ0t∫t

−∞
dt′Ble

Γ0+iδl( )t′ (22)

Substituting Equation 22 into Equation 21 yields Equations
23 and 24:

_Bl � −|ΩP|2e− Γ0+iδl( )t ∑
l′
∫t

−∞
dt′Ble

Γ0+iδl′( )t′ (23)

Bl t → +∞( ) � Bl t → −∞( ) 1 − 2Γ0
Γ0 + iδl

( ), (24)

where Bl(t → −∞) and B0
l � Bl(t → +∞) are the initial and final

values for the photon field before and after interaction with the
atom, respectively. Our analysis can be confirmed by comparison of
our simulations with the analytical calculations presented above, as
shown in Figure 6. The real and imaginary parts of Bl are plotted.
Solid lines show the simulations of the equations, and dashed lines
show the analytical solution given by Equation 24. The plots
practically coincide. They show a very good matching of the
analytical solution and our simulations, and this is an
explanation for all resonant behavior on the plots shown in
Figures 2, 3.

2.2 Mode function

For large detuning, when δp is much larger than the spectral
width of the envelope, δp ≫ c/σz, where σz/c is the “duration” of the
photon “pulse.” For this case, we can see that |δp|≫ δl ≃ 0, and all
modes acquire the same phase shift. Indeed, we can show this by
considering for simplicity the case for ~ΩD � 0, integrating
Equation 16:

A0 � −ΩP

δp
∑N
l

ei klz+δpt( )Bl( ) (25)

and substituting it into Equation 17:

∂

∂t
B1 � i

Ω2
P

δp
∑N
ll′
b0l b

0*
l′ ei kl′−kl( )z+ δl′−δl( )t( )︸�����������︷︷�����������︸

|V z,t( )|2

B1 � i
Ω2

P

δp
|V z, t( )|2B1 (26)

B1 t, z( ) � exp i∫t

−∞
dt

Ω2
P

δp
|V z, t( )|2( )B1 t → −∞, z( ) (27)

We can see indeed that all one-photon modes acquired the same
phase given by Equation 27, as was also confirmed by our
simulations and shown in Figure 3. The linear combination of
the vacuum modes can be viewed as a photon with creation/
annihilation operators defined as Equation 28:

B̂ � ∑N
l

b0l b̂l and B̂
+ � ∑N

l

b0′l b̂
+
l (28)

where b0l satisfy condition ∑N
l |b0l |2 � 1, and the commutation

relation for operators B̂ is the same as for b̂l, namely,
B̂B̂

+ − B̂
+
B̂ � 1. Then, the single- and two-photon states can be

created by Equations 29 and 30:

|1〉 � B̂
+|0〉 and 〈1|1〉 � ∑

l

|b0l |2 � 1 (29)

|2〉 � B+( )2�
2

√ |0〉 � ∑
l≠q

�
2

√
b0l b

0
q|1l1q〉 +∑

l

b0l( )2|2l〉 and 〈2|2〉
� ∑

l

|b0l |2 ∑
q

|b0q|2 � 1 (30)
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Then, using the assumption that all modes acquire the same
phase, Bl � b0l B1, we can introduce the mode function using
Equation 31:

∑N
l

ei klz+ δl+δp( )t( )Bl( ) � eiδpt ∑N
l

b0l e
i klz+δl t( )

︸�����︷︷�����︸
V z,t( )

B1 � eiδptV z, t( )B1 (31)

and Al � b0l A1, Blq �
�
2

√
b0l b

0
qB2, B2l � (b0l )2B2, and Cl � b0l C1

−iΩP ∑N
q

ei kqz+ δq+δp( )t( )Blq( ) − i
�
2

√
ΩPe

i klz+ δl+δp( )t( )B2l � (32)

−iΩP

�
2

√
eiδpt

∑N
q≠l

ei kqz+δqt( )b0l b0q( ) + ei klz+δl t( ) b0l( )2( )
︸���������������︷︷���������������︸

V z, t( )b0l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦B2 (33)

We can write for the case of a quantum field consisting of one
and two photons, the state vector of the system can be written as
Equation 34:

|Ψ〉 � A|a, 0〉 + B1|b, 1〉 + C|c, 0〉 + B2|b, 2〉 + C1|c, 1〉 (34)
where the A0,1, B1,2, and C0,1 satisfy the set of equations.

_A0 � −iΩPe
ikpz+iδptVB1 − iΩDe

iδdtC0, (35)
_B1 � −iΩPe

−ikpz−iδptV*A0, (36)
_C0 � −iΩDe

−iδdtA0 (37)
_A1 � −i �

2
√

ΩPe
ikpz+iδptVB2 − iΩDe

iδdtC1, (38)
_B2 � −i �

2
√

ΩPe
−ikpz−iδptV*A1, (39)

_C1 � −iΩDe
−iδdtA1 (40)

where δp � ωab − ωp, and δd � ωac − ωd. We obtain a system of
equations that is similar to a classical three-level atomwith the probe

and the drive fields and can be described by the effective interaction
Hamiltonian written as

V̂eff � ZΩP V z, t( )ei kpz+δpt( )|a〉〈b|B̂ + V z, t( )*e−i kpz+δpt( )B̂+|b〉〈a|( )
+ZΩD eiδdt|a〉〈c| + e−iδdt|c〉〈a|( ).

(41)
Under the conditions (when the probe is far detuned), the entire

envelope of the photon acquires the same phase; that is, the mode
function approximation works very well, as one can see in Figures 6,
4B. The important results here are also that the phase acquired by
the two-photon state given by Equation 42

B2 t, z( ) � exp 2i∫t

−∞
dt

Ω2
P

δp
|V z, t( )|2( )B2 t → −∞, z( ) (42)

is exactly twice larger than the phase acquired for the one-
photon state (this can be seen in Figure 4B, where the phase of
the B2l(t → + ∞) and the double phase of the Bl(t → + ∞) are
shown as a function of their mode frequency δωl. It is clearly
seen that they coincide when the detuning δωl becomes large
enough). This is an important result that plays an important role
in the quantum state passing the Mach–Zehnder interferometer;
namely, if the MZ interferometer is balanced for one far-
detuned photon, it is also balanced for far-detuned two-
photon modes.

2.3 Mach–Zehnder interferometer

A natural way to experimentally observe the dispersion of a
single photon produced by a single atom is to use theMach–Zehnder
(MZ) interferometer shown in Figure 7. A photon has two paths for
propagation; if the path is identical, the photon goes in one direction

FIGURE 6
The real and imaginary parts of Bl(t → +∞) are plotted. Solid lines are shown for simulations of Equations 9–15, and dashed lines are shown for
analytical solutions given by Equation 24. The plots practically coincide.

Frontiers in Quantum Science and Technology frontiersin.org07

Emerick et al. 10.3389/frqst.2025.1546480

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1546480


with probability 1 and probability 0 at the second port of the
interferometer. Meanwhile, if one path contains a single atom, it
changes phases of modes and breaks the symmetry of the balanced
interferometer. This results in changes in the probabilities that the
photon appears at different ports of the MZ interferometer.
Detecting these probabilities allows one to obtain the dispersion
of the single photon during propagation through the corresponding
arm of the interferometer.

The fields â1 and â2 at the input are transformed into b̂1 and b̂2
at the output of a beam splitter. We can represent in terms of state
transformation S as Equation 43:

b̂1
b̂2

( ) � cos ζ −i sin ζ
−i sin ζ cos ζ

( ) â1
â2

( ) � S
â1
â2

( )S+ (43)

where

S � exp iζ â+1 â2 + â1â
+
2( )[ ],

and ζ is the parameter of the beam splitter. Then, the output
state is related to the input state as |out〉 � S|in〉.

Let us consider an input photon state to be a one-photon state
|1, 0〉, then

|out〉 � S|1, 0〉 � Sâ+1 |0, 0〉 � cos ζ |1, 0〉 − i sin ζ |0, 1〉 (44)

Now, we can consider the MZ interferometer, which contains
two beam splitters and two arms. For each beam splitter, we must
calculate the output fields using Equation 44,

b̂1
b̂2

( ) � S1
â1
â2

( )S+1 . (45)

Then, the second beam splitter is taken into account by
Equation 46:

ĉ1
ĉ2

( ) � S2
b̂1
b̂2

( )S+2 (46)

For the output state, we finally obtain Equation 47:

|out〉 � MZ|1, 0〉 � S2US1|1, 0〉 � ∑
l

Bl − B0
l

2
|1l, 0〉 + Bl + B0

l

2
|0, 1l〉

(47)

where Bl and B0
l are the amplitudes before and after interaction with

the atom. The underlying physics behind this phenomenon involves
the interference of the photon’s acquired phases due to dispersion;
thus, Bl � eiϕl B0

l . The interference can result in a complete
cancellation of the photon’s amplitude.

In a balanced Mach–Zehnder interferometer with no
obstruction in either arm, the photon wave packet can exit one
of the ports with nearly 100% certainty. However, introducing an
atom into one arm of the interferometer drastically alters the phase
of the wave packet near the resonant transition frequency, as
illustrated in Figure 2. When the central-photon frequency is
detuned far from resonance, the interaction results in only a
slight modification to the probability amplitude of the wave
packet. This effect corresponds to an approximately uniform
phase shift across all plane-wave modes within the packet,
consistent with the mode function representation.

We can examine how the presence of the atom in the
interferometer would affect the probability by which port (C1 or
C2) the wave packet exits from the MZ interferometer. In the
simulation, the balanced interferometer is constructed so that
with no atom present, the photon will exist through the C1 port
with probability 1. In Figure 8, we introduce the atom without a
driving field, and, as a result, the probability that the wave packet
leaves through the C1 port decreases. The phase of the photon wave
packet is strongly modified because of the resonant interaction. As
the photon is detuned from the atomic transition frequency, the
phase shift is reduced. The probability that the photon will exit
through the C1 port tends to 1, just as in the case where there is no
atom present.

Now, we introduce a drive to the atom to see its effects on the
probability of the photon. Figure 8A shows a drive (~ΩD � 1)
consistent with the probability amplitude of the photon seen in
Figure 9. The introduction of the driving field splits the π-phase
about the central resonant frequency. When the envelope is broad
with respect to this splitting about the resonant atomic transition,
there is a corresponding broadening of the probabilities of the
photon seen in Figure 8B when compared to interaction without
the drive. The drive is further increased in Figure 8C to ~ΩD � 3. The
broadening of the probability manifests itself as two prominent
peaks corresponding to the splitting of the π-phase shifts. By driving
the atom, it is possible to control the probability that the photon
passes through the port c1 or c2.

We note here that comparing the obtained results for a single
atom with a few photons with the classical index of refraction given
by the Maxwell equations can provide valuable insights into their
behavior and interactions.

From the effective Hamiltonian given by Equation 41, assuming
for a weak field that the population stays in the ground state, the
atomic operator σ̂bb − σ̂aa ≃ 1, and then we have Equations 48, 49:

∂B̂

∂t
� − i

Z
V̂eff , B̂[ ] � −iΩpV*e

−iδptσ̂ba (48)
∂σ̂ba
∂t

� − i

Z
V̂eff , σ̂ba[ ] � −iΩpVe

iδpt σ̂bb − σ̂aa( )B̂ ≃ − iΩpVe
iδptB̂.

(49)
Then, using the adiabatic approximation valid for the large

detuning δp, we can obtain

FIGURE 7
The Mach–Zehnder interferometer. The input a1 and a2 fields at
the beam splitter BS 1, two paths: Path 1 and Path 2, for b1 and b2 fields
combining at the beam splitter BS 2, and the output c1 and c2 fields. A
three-level atom is located in Path 1.
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∂B̂

∂t
� −iΩ

2
P

δp
|V|2B̂ (50)

where we can see that the phase factor, which appears above,
coincides with the index of refraction that can be obtained from
Maxwell equations for the classical field [see, for example, the book
by Scully and Zubairy (1997)]. Indeed, according to Equation 50, the
phase shift is given by

Φ � Ω2
P

δp
τ (51)

where τis the “pulse” duration of the photon envelope. Thus,
Equation 51 can be rewritten as Equation 52:

Φ � kabLτ n − 1( ) � ωab

c
cτ

4π℘2
ab

Zδp

N

V
(52)

and

n − 1 � 4π℘2
ab

Zδp

N

V
(53)

which is exactly the index of refraction for the weak classical field
[see, for example, the book Scully and Zubairy (1997)]. For our
consideration, N � 1 (we consider only one atom), but for
considering the N atoms, we can consider a “collective” ground
state |b〉 and the excited state |a〉, and we can notice that the ground
states is given by |bc〉 � |b1b2 . . . bN〉, meanwhile the excited state is
given by Equation 54:

|ac〉 � ∑N
i�1

|b1b2 . . . ai . . . bN〉��
N

√ (54)

Then, the “collective” dipole moment is given by ℘c � ℘ab

��
N

√
,

which gives the density of atoms in Equation 53. More details about
the appearance of the “collective” factors

��
N

√
can be found in the

works of Dicke (1954), Fleischhauer and Lukin (2000), and Lukin
(2003). Thus, we can see that comparing the obtained results for a
single atom and a few photons with the classical index of refraction
provides valuable insights. We can see that even if the field has the
phase shift exactly related to the “index of refraction” for classical
fields guided by Maxwell equations, the quantum states can obtain
the phase shift that can be used for applications such as higher

FIGURE 8
(a) Probability that the photon will exit a given port as a function of detuning from atomic transition (δωp). There is no classical driving laser field
present, ~ΩD � 0. (b) ~ΩD = 1. (c) ~ΩD = 3.
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spatial resolution and designing devices that can separate different
quantum states.

Possible applications of the obtained results can be related to
controlling the output of the MZ interferometer. In particular,
with a three-level atom present in one arm of the interferometer,
one can use the driving field in conjunction with a path delay
phase shift to achieve a variety of desirable effects. In a simple
case, the driving field can be used to toggle the MZ interferometer

between a balanced configuration and a desired output so long as
the photon wave packet’s central frequency is close to the
resonant transition frequency. If the initial photon states are
unknown, one could, in principle, drive the atom to act as a filter
for particular photon states. Given a known initial photon state,
one could use the atom as a veritable splitter to control which
port the photon would leave with adjustable probability. Given
that the incident photon was in some entangled state, the atom

FIGURE 9
Balanced MZ interferometer with no atom present. The probability amplitude of Bl(t → +∞) at the two output ports: (a)C1 and (b)C2. Balanced MZ
interferometer with one atom present, no drive (~ΩD � 0), and high detuning (δωl � 10). The probability amplitude of Bl(t → +∞) at the two output ports:
(c) C1 and (d) C2. For driving field (~ΩD � 1), and no detuning (δωl � 0). The probability amplitude of Bl(t → +∞) at the two output ports: (e) C1 and (f) C2.
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could be used as a scheme to perform some interaction-free
measurements.

Thus, we can see that our study is focused on the dynamics of a
single photon interacting with a three-level atom. We investigated
various aspects related to the propagation of this photon and
highlighted the significance of phase and group velocities in the
context of long-distance quantum communications.

Understanding the behavior of a single photon is of great
importance in quantum communication systems, where
information is encoded and transmitted using quantum states. By
examining the interaction between a single photon and a two-level
atom, we gained insights into how the photon’s properties are
influenced and modified during its propagation.

By studying the dispersion of the single-photon propagation, we
have deepened our understanding of the fundamental properties
that govern quantum communications. These findings contribute to
the development of more efficient and reliable quantum
communication systems, which are crucial to the advancement of
technologies such as quantum cryptography, quantum teleportation,
and quantum computing.

3 Conclusion

In conclusion, we have demonstrated that the mode function
can be effectively utilized in scenarios involving large detunings,
highlighting its versatility and relevance in quantum systems
with non-resonant interactions. Through our analysis, several
useful approximations of the density matrix solution have been
derived, offering valuable insights into the dynamics of
such systems.

Furthermore, we have shown that the one- and two-photon
resonance modes undergo significant phase shifts, which are crucial
for understanding and manipulating quantum coherence and
interference effects. These findings pave the way for more precise
control in applications such as quantum information processing,
nonlinear optics, and spectroscopy. The ability to predict and
manage these phase shifts could enable the design of novel
quantum devices and experiments, pushing the boundaries of
what is achievable in the field of quantum optics and quantum
mechanics. In particular, we describe the system of generating
correlated photons.

We provide a detailed description of the system designed for
generating correlated photons, emphasizing its underlying
principles, mechanisms, and potential applications. The system
leverages quantum coherence and nonlinearity to create photon
pairs with strong temporal and spectral correlations, which are
essential for various applications in quantum technologies.

By carefully controlling the interaction of optical fields with the
medium, we demonstrate how the system can produce photons that
are entangled or exhibit strong quantum correlations. These
correlated photons play a pivotal role in advancing quantum
communication protocols, such as quantum key distribution, and
are fundamental resources for quantum computing and
quantum sensing.

Additionally, the approach offers a platform to explore the
fundamental properties of quantum light, such as photon

statistics, coherence, and interference, thus contributing to a
broader understanding of quantum mechanics. This system
not only highlights the feasibility of generating correlated
photons but also provides a foundation for the development
of scalable and efficient quantum light sources for practical
implementations.
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