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The connection between the intrinsic angular momentum (spin) of particles and
quantum statistics is established by considering the response of identical particles
to a common background radiation field. For this purpose, the Hamiltonian
analysis previously performed in stochastic electrodynamics to derive the
quantum description of a one-particle system is extended to a system of two
identical bound particles subject to the same field. Depending on the relative
phase of the response of the particles to a common field mode, two types of
particles are distinguished by their symmetry or antisymmetry with respect to
particle exchange. While any number of identical particles responding in phase
can occupy the same energy state, there can only be two particles responding in
antiphase. The calculation of bipartite correlations between the response
functions reveals maximum entanglement as a consequence of the parallel
response of the particles to the common field. The introduction of an internal
rotation parameter leads to a direct link between spin and statistics and to a
physical rationale for the Pauli exclusion principle.
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1 Introduction

The statistics of identical particles is one of the most fundamental quantum features: all
quantum particles are known to obey either Fermi–Dirac or Bose–Einstein statistics. It is
also well known that the intrinsic angular momentum (spin) of a particle determines its
statistics and vice versa, with integral-spin particles being bosons and half-integral-spin
particles being fermions. The symmetrization postulate and the spin statistics theorem are
central to a number of key quantum applications, including all of atomic, molecular, and
nuclear physics and quantum statistical physics. Nevertheless, a century after their
establishment (Pauli, 1925; Heisenberg, 1926; Dirac, 1926), they continue to be taken as
mathematically-justified empirical facts. All known experimental data are consistent with
Pauli’s exclusion principle, and experiments continue to be carried out to find possible
violations of it (Kaplan, 2020). Pauli himself, who gave the first formal proof of the spin-
statistics theorem in 1925, expressed his dissatisfaction with this state of affairs two decades
later (Pauli, 1946; Pauli, 1950), but explanations continue to rely mainly on formal
arguments based on topological properties, group-theoretical considerations, and the like.

All this leads to the conclusion that the physical underpinning of quantum statistics
remains to be elucidated. What makes the state vectors of identical multipartite systems
either symmetric or antisymmetric? What is the mechanism that “binds” identical particles
in such a way that they obey either Fermi or Bose statistics?
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The aim of this paper is to provide an answer to these questions
based on general principles and previous results from stochastic
electrodynamics (SED). Recent work has shown that consideration of
the interaction of particles with the electromagnetic radiation field is
key to understanding their quantum behavior (de la Peña et al.,
2015). The ground state of the radiation field—the zero point field
(ZPF)—has been identified as the source of quantum fluctuations and
a key factor in driving a bound system to a stationary state. In
addition, the quantum operator formalism has been obtained as the
algebra describing the response of the particle’s dynamical variables
to the background field modes responsible for the transitions
between stationary states (Cetto and de la Peña, 2024).
Furthermore, bipartite entanglement was derived as a
consequence of the interaction of two identical particles with the
same field modes (de la Peña et al., 2015). Against this background,
the theory provides us with a physically grounded explanation of the
origin of the symmetry properties of identical quantum particle
systems and the resulting statistics.

The paper is structured as follows. Section 2 summarizes the SED

Hamiltonian derivation of the quantum operator formalism, which
gives sense to this formalism as an algebraic description of the linear
(dipolar) resonant response of the particle to a well-defined set of
modes of the background radiation field. In Section 3, the expression
of the dynamical variables of the particle in terms of linear response
coefficients is applied to the analysis of a system of two identical
particles in a stationary state. Section 4 identifies two types of
particles according to the relative phase of their coupling to a
common field mode in the bipartite case, and the multipartite
case is briefly discussed. Section 5 shows that the analysis of two-
particle correlations leads to entangled symmetric or antisymmetric
state vectors. In Section 6, the intrinsic rotation is introduced in
order to establish the connection between the spin and the quantum
statistics as reflected in the symmetry of the state vector, leading to
the Pauli exclusion principle for particles with half-integer spin.

2 Quantum operators as linear
response functions

As shown in SED (de la Peña et al., 2015), the dynamics of an
otherwise classical charged particle immersed in the zero-point
radiation field of energy Zω/2 per mode (ZPF) and subject to a
binding force and its own radiation reaction evolves irreversibly into
the quantum regime, characterized by the stationary states reached
as a result of the average energy balance between radiation reaction
and the action of the background field. Cetto and de la Peña (2024)
showed by means of a Hamiltonian analysis of the particle–field
system that the nature of the particle dynamical variables—the
kinematics—changes in the transition to the quantum regime. In
this regime, x(t), p(t) no longer refer to trajectories but to the linear,
resonant response of the particle to the driving force of the
background field, which effects the transitions between stationary
states. The radiative transitions between two states (n, k) involve
precisely those field modes to which the particle responds
resonantly. Thus, from the initially infinite, continuous set of
canonical field variables (q, p), only those (qnk, pnk) so defined
are relevant for the description in the quantum regime. Since the
memory of the initial particle variables x(0), p(0) is lost and the

dynamics are now controlled by the field, the Poisson bracket of the
particle canonical variables, which initially is taken with respect to
the complete set of (particle + field) variables, reduces to the Poisson
bracket with respect to the (relevant) field variables. Therefore, for
the particle in a stationary state n (note that Roman letters are used
for the canonical field variables),

xn t( ), pn t( ){ }qp � 1, (1)
where

xn t( ), pn t( ){ }qp � ∑
k≠n

∂xn

∂qnk

∂pn

∂pnk
− ∂pn

∂qnk

∂xn

∂pnk
( ).

Instead of the canonical field variables (the quadratures)
(qnk, pnk), it is convenient to use the (dimensionless) normal
variables ank � exp(iϕnk), where ϕnk is a random phase, which
are related to the former by

qnk �
�����
Z

2 ωkn| |

√
ank + ank*( ), pnk � −i

�����
Z ωkn| |
2

√
ank − ank*( ). (2)

This transformation, which takes into account the energy of the
field mode of frequency ωkn being equal to Zωkn, is the entry point of
Planck’s constant in the equations that follow.

With the transformation (2), the Poisson bracket with respect to
the normal variables becomes

x t( ), p t( ){ }nn ≡ ∑
k≠n

∂xn

∂ank

∂pn

∂ank*
− ∂pn

∂ank

∂xn

∂ank*
( )

� iZ∑
k≠n

∂xn

∂qnk

∂pn

∂pnk
− ∂pn

∂qnk

∂xn

∂pnk
( ), (3)

and, therefore, according to Equation 1, the transformed Poisson
bracket must satisfy

x t( ), p t( ){ }nn � iZ. (4)

From this and Equation 3, it is clear that xn(t), pn(t) must
indeed be linear functions of the normal variables ank{ }, k ≠ n. Thus,
xn(t) becomes expressed in the form (in one dimension, for
simplicity)

xn t( ) � xnn +∑
k≠n

xnkanke
−iωknt + c.c., (5)

where the index k denotes any other state that can be reached by
means of a transition from n (hence k ≠ n), and ωkn is the
corresponding transition frequency. The coefficient xnk is the
response amplitude of the particle to the field mode of frequency
ωkn. More generally, since the field variables connecting different
states n, n′ are independent random variables, (∂ank/∂an′k) � δnn′
(for equal times, one may omit the time dependence in the
expression) and

x, p{ }nn′ � iZδnn′. (6)

Using Equation 5 for xn(t) and
pn t( ) � m _xn t( ) � −im∑

k≠n

ωknxnkanke
−iωknt + c.c. (7)

to calculate the derivatives involved in Equation 3, we obtain
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x t( ), p t( ){ }nn � 2im∑
k≠n

ωkn xnk| |2 � iZ. (8)

For x and p real, xnk* (ωnk) � xkn(ωkn), pnk* (ωnk) � pkn(ωkn),
ank* (ωnk) � akn(ωkn). This allows us to write Equation 6 in the
explicit form

∑
k≠n

xnkpkn′ − pn′kxkn( ) � iZδnn′, (9)

and to identify the response coefficients xnk, pn′k as the elements of
matrices x̂, p̂ such that

x̂, p̂[ ] � iZ. (10)

This central result of SED reveals the quantum commutator as the
matrix expression of the Poisson bracket of the particle variables
(xn, pn) in any state n with respect to the (relevant) normal field
variables corresponding to the modes nk{ } to which the particle
responds resonantly from that state. Furthermore, Equation 8 is
identified with the Thomas–Reiche–Kuhn sum rule,

2im∑
k≠n

ωkn xnk| |2 � iZ. (11)

In summary, this is the physical essence of the quantum
operators: they describe the linear, resonant response of the
(bound) particle to a well-defined set of field modes. The
response coefficients xnk and the transition frequencies ωkn

contained in Equation 5 are characteristic of the mechanical
system; the corresponding random normal variables ank in turn
contain information about the (stationary, random) background
field. By taking the derivatives of xn and pn given by Equations 5, 7
with respect to ank, ank* to calculate the Poisson bracket, the latter are
removed from the description; the problem seems to be reduced to
be purely mechanical, although it is in essence electrodynamic. Once
the operator formalism is adopted, the factor Z, coming from the
transformation expressed in Equation 2, remains the only
conspicuous imprint left by the field.

We further note that the structure of the commutator is a direct
consequence of the symplectic structure of the problem; this is a
feature of the Hamiltonian dynamics that remains intact in the
evolution from the initial classical to the quantum regime. The
correspondence between classical Poisson brackets and quantum
commutators, insightfully established by Dirac on formal grounds,
thus finds a physical explanation.

To connect with quantum formalism in the Heisenberg
representation, we consider an appropriate Hilbert space on
which the operators act. In the present case, the natural choice is
the Hilbert space spanned by the set of orthonormal vectors |n〉{ }
representing the stationary states with energy En. With the
components of x̂(t) given by xnke−iωknt (see Equation 5), we have

x̂ t( ) � ∑
n,k

xnke
−iωknt n| 〉〈k|. (12)

The matrix elements of x̂(t) are
xnk t( ) � 〈n|x̂ t( ) k| 〉 (13)

in the Heisenberg picture, or

xnk t( ) � 〈n t( )|x̂ k t( )| 〉 (14)

in the Schrödinger picture, where the time dependence has been
transferred to the state vector,

n t( )| 〉 � e−iEnt/Z n| 〉. (15)
Finally, with the evolution of x, p into operators, the initial

Hamiltonian equations evolve in the quantum regime into the
Heisenberg equations

1
iZ

x̂, Ĥ[ ] � _̂x,
1
iZ

p̂, Ĥ[ ] � _̂p, (16)

with Ĥ � p̂2

2m + V̂, _̂x � p̂/m and _̂p � − ̂(dV/dx). By taking the matrix
element (nk) of the first of these equations, we confirm that
ωkn � (En − Ek)/Z—that is, that the energy Zωkn transferred to
(or from) the field to the particle in a transition is equal to the
energy difference between the two stationary states.

3 Response of a bipartite system to the
background field

Now consider a system consisting of two identical particles.
When the particles are isolated from each other, they are subject to
different realizations of the background field, in which case their
behavior can be studied separately for each particle using the
procedure above. However, if they are part of one and the same
system, they are subject to the same realization of the field and, being
identical, they respond to the same set of relevant field modes,
whether or not they interact with each other. In the following, we
assume that the particles do not interact directly with each other.

Our purpose is to describe the response of the composite system
to the background field when in a stationary state characterized by
the total energy E(nm) � En + Em with En≠ Em, the subindices n and
m referring to single-particle states. If particle 1 is in state n, it
responds to the set of modes nk{ }, and similarly particle 2 in statem
responds to the set ml{ },

x1n t( ) � ∑
k

eiθ
1
nkx1nkanke

−iωknt + c.c., x2m t( )

� ∑
l

eiθ
2
mlx2mlamle

−iωlmt + c.c. (17)

where we have added the factor exp(iθ) to each term to allow for the
(random) phase of the response of the particle to the field modes.

When n ≠ m, the sums in Equation 17 involve the different,
mutually independent normal variables ank and aml, except when
k � m and l � n, since anm � amn* . Therefore, the Poisson bracket of
x1(t) and x2(t), calculated in the state of the composite system
(nm), reduces to a single term:

x1, x2[ ] nm( ) � ∂x1n

∂anm

∂x2m

∂anm*
− ∂x2m

∂anm

∂x1n

∂anm*
( ) � 2i xnm| |2 sin θ12nm. (18)

Since the particles are identical, the interchange of labels 1 and
2 should not alter the value of the Poisson bracket, and therefore this
equationmust be equal to 0. This sets an important restriction on the
possible values of the phase difference. With

θ1nm − θ2nm
∣∣∣∣ ∣∣∣∣ � θ12nm

∣∣∣∣ ∣∣∣∣ ≡ πζ12nm, (19)

we see that ζ12nm must be an integer so that
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x1, x2[ ] nm( ) � 0 n ≠ m( ). (20)

Furthermore, with p2(t) obtained from the second Equation 17,

p2m t( ) � −im∑
l

eiθ
2
mlωlmx2mlamle

−iωlmt + c.c.,

the Poisson bracket of x1(t) and p2(t) calculated for the same state
(nm) gives

x1, p2[ ] nm( ) �
∂x1n

∂anm

∂p2m

∂anm*
− ∂p2m

∂anm

∂x1n

∂anm*
( ) � 2imωmn xnm| |2 cos θ12nm.

(21)
In terms of the parameter ζ12nm defined in Equation 19, we have

cos θ12nm � −1( )ζ12nm , ζ12nm � 0, 1, 2, . . . . (22)
and therefore, from Equation 21,

x1, p2[ ] nm( ) � −1( )ζ12nm2imωmn xnm| |2. (23)

This result shows that a correlation is established between the
response variables of the two particles to the shared field mode
(nm) for n ≠ m; in other words, the field mode serves as a bridge
between the particles and correlates their responses. It is
important to note that Equation 23 involves only the field
mode connecting the two states with En≠ Em, and it is
different from O only when these states are connected by a
dipolar transition element, xnm ≠ 0.

We now consider two equal particles in the same energy state:
n � m. In this case, the particles share all field modes, so that the
Poisson brackets become, by virtue of Equation 22,

x1, x2[ ] nn( ) � ∑
k

∂x1n

∂ank

∂x2n

∂ank*
− ∂x2n

∂ank

∂x1n

∂ank*
( ) � 2i∑

k

sin θ12nk xnk| |2 � 0,

(24)
x1, p2[ ] nn( ) � ∑

k

∂x1n

∂ank

∂p2n

∂ank*
− ∂p2n

∂ank

∂x1n

∂ank*
( )

� 2im∑
k

ωkn cosθ
12
nk xnk| |2 � 2im∑

k

−1( )ζ12nkωkn xnk| |2. (25)

4 Two families of particles

Equation 23 indicates that there are two distinct types of
identical particles, depending on whether the phase parameter
ζ12nm given by Equation 19 is an even or odd number. Since this
condition applies to all modes that are shared by the two particles,
we can write, using Equation 19:

ζ12nm � ζ12 � ζ1 − ζ2
∣∣∣∣ ∣∣∣∣, (26)

so that the two types of particles are characterized by

Type B: ζ12B � 0, 2, 4, . . . , (27a)
Type F: ζ12F � 1, 3, 5, . . . . (27b)

In Appendix A, it is shown that for all ζ12B to be even, the
individual ζ iB must be integers, and that for all ζ12F to be odd, the
individual ζ iF must be half-integers:

Type B: ζ iB
∣∣∣∣ ∣∣∣∣ � 0, 1, 2, . . .ϒB, (28a)

Type F: ζ iF
∣∣∣∣ ∣∣∣∣ � 1

2
,
3
2
,
5
2
, . . .ϒF, (28b)

where ϒB and ϒF are the maximum values of the individual ζ iB, ζ
i
F.

This means that B and F actually stand for two distinct families of
particles, the members of which are characterized by the respective
value of ϒ. Identical particles of family B can have any value of ζ iB
integer such that |ζ iB|≤ϒB, but when combined they must satisfy
Equation 27a; similarly, those of family Fmust satisfy Equation 27b.
In other words, according to Equations 27a, b, only pairwise
combinations of ζ iB that are even and only pairwise combinations
of ζ iF that are odd are allowed. Since, in both cases, ζ i can be positive
or negative, this gives a total of g � 2ϒ + 1 possible different states of
the bipartite system.

With these results, Equation 17 take the form (except for a
remaining common phase factor eiθ that can be neglected)

x1n t( ) � eiπζ
1 ∑

k

x1nkanke
−iωknt + c.c.,

x2m t( ) � eiπζ
2 ∑

l

x2mlamle
−iωlmt + c.c., (29)

and Equation 25 is reduced to

x1, p2[ ] nn( ) � −1( )ζ12 iZ. (30)

Therefore, in comparison with the one-particle commutator
[x1, p1](nn) � iZ, we note that in the B case—when Equation 27a
holds—particle 2 responds in the same way as particle 1. Indeed,
according to Equation 19, the response of the two particles to the
shared field modes is in phase, and a correlation is established
between the particles. By contrast, according to Equation 27b, ζ12F is
an odd number; hence, the response of the two identical type F
particles to the shared field modes is in antiphase.

4.1 Extension to three or more particles

In light of the above results, we now briefly analyze the possible
correlations for a system composed of three or more
identical particles.

In the first case of three type-B particles, when total energy
E(nml) � En + Em + El with En≠ Em≠ El, Equation 27a applies, and
the three particles are pairwise correlated. According to Equation 30,
correlation also exists when En≠ Em� El or En� Em� El because the
responses of the three particles to common field modes are always in
phase. Therefore, all three particles may in principle occupy the
same state n and respond coherently. The argument can of course be
extended to four or more particles; consequently, there may in
principle be an arbitrary number N of type-B particles in the same
state and responding coherently to the field modes, like a well-
disciplined troop.

In the type-F case, we have already concluded that particles
1 and 2 respond in antiphase to a common mode, and the same
applies of course to any pair of identical particles. When total energy
E(nml) � En + Em + El with En≠ Em≠ El, the three particles are
pairwise correlated according to Equation 27b. However, when at
least two energy levels coincide, two particles respond in antiphase
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to the shared modes, thus preventing a third one from responding in
antiphase to the same modes and therefore from being correlated to
the other two. Therefore, contrary to the type-B case, there can be no
coherent response of more than two type-F particles in this case.

5 Field-induced covariance and
entanglement

To calculate the effect of the background field on the correlation
of the responses, we consider two generic dynamical variables
associated with particles 1 and 2. These can be the variables x(t)
and p(t) considered so far, a linear combination of them, or any
other variable of the form given by Equation 29, where n,m are, as
before, two stationary states of the system, with energies En, Em,

f1n t( ) � f1nn + eiπζ
1 ∑
k≠n

f1nkanke
−iωknt + c.c., (31)

g2m t( ) � g2mm + eiπζ
2 ∑
l≠m

g2mlamle
−iωlmt + c.c., (32)

The time-independent terms in these equations represent in
each case the average value of the function, taken over the
distribution of the normal variables ank � exp(iϕnk) where ϕnk is
a random phase, as mentioned in Section 2,

f1n t( ) � f1nn, g2m t( ) � g2mm. (33)
To calculate the correlation, we take the average of the product of
f1(t) and g2(t). When particles 1 and 2 do not form part of the
same system, they respond to independent realizations of the field
modes, and therefore the covariance is given by

Γ f1ng2m( ) � f1n t( ) − f1nn( ) g2m t( ) − g2mm( ) � 0, (34)

which simply confirms that the variables are not correlated.
However, when the particles form a bipartite system, they

respond to the same realization of the field modes. To calculate
the covariance in this case, we must take into account the double
degeneracy of the combined state, E � E1n + E2m � E1m + E2n. In
order to distinguish between the two configurations, we define

EC � E1n + E2m, ED � E1m + E2n. (35)
Let us consider the first case, EC � E1n + E2m, and use Equations 31,
32 to calculate the average product of f1(t) and g2(t), which we call
fg

C
(the left factor always refers to particle 1 and the right to particle

2, so that we omit the indices 1 and 2 in the following). Taking into
account that, for random independent normal variables, aijajk �
aijakj* � δik and hence

ankaml � δnkδml + δnlδkm, (36)
we obtain

fg
C � fnngmm + −1( )ζfnmgmn. (37)

Similarly, for the D configuration, we obtain

fg
D � fmmgnn + −1( )ζfmngnm. (38)

Since the two configurations have the same weight, the averages
of f1(t) and g2(t) are

�f � 1
2

fnn + fmm( ), �g � 1
2

gnn + gmm( ),
and the average of the product of f1(t) and g2(t) is given by

fg � 1
2

fg
C + fg

D( )
� 1
2

fnngmm + −1( )ζfnmgmn + fmmgnn + −1( )ζfmngnm[ ]. (39)

The covariance is therefore given by

Γ fg( ) � fg − �f�g

−1
4

fnn − fmm( ) gnn − gmm( ) + 1
2
−1( )ζ fnmgmn + fmngnm[ ]. (40)

In this equation, the two contributions to the covariance are of a
very different nature: the first is a classical covariance of f1 and g2

due to the different average values of these functions in states n,m
under the condition of degeneracy, E1n + E2m � E1m + E2n. The
second term, though, has no classical counterpart: it is entirely
due to the joint response of particles 1 and 2 to the shared mode
(nm) and is therefore a signature of the matter–field interaction.
Evidently, both particles must respond to the mode (nm) for this
term not to be zero; if any of the two matrices f̂, ĝ is diagonal, there
is no quantum contribution to Γ(fg).

5.1 Emergence of entanglement

In quantum formalism, entanglement is reflected in the non-
factorizability of the bipartite state vector. Therefore, in order to
show the emergence of entanglement in the present context, we will
translate Equation 40 into the language of the product Hilbert space
H1 ⊗ H2, where H1,H2 are respectively spanned by the sets of
orthonormal state vectors |n〉{ } of particles 1 and 2 (see Section 2
for the one-particle case). In the shorthand notation introduced
above, configurations C,D are represented by the product
state vectors

C| 〉 � n| 〉1 m| 〉2, D| 〉 � m| 〉1 n| 〉2. (41)

In this notation, Equation 40 reads

Γ fg( ) � −1
4

fnn + fmm( ) gnn + gmm( )
+1
2
〈C + −1( )ζD∣∣∣∣f̂ĝ C + −1( )ζD∣∣∣∣ 〉. (42)

In writing the second term, we have used the fact that (−1)ζ �
± 1 according to Equations 27a and b. Note that the average of fg is
now taken over the (normalized) state vector

Ψ| 〉 ≡
1�
2

√ C + −1( )ζD∣∣∣∣ 〉, (43)

or in terms of the individual state vectors,

Ψ| 〉 � 1�
2

√ n| 〉1 m| 〉2 + −1( )ζ m| 〉1 n| 〉2[ ]. (44)

As a result, we obtain

Γ fg( ) � 〈Ψ |f̂ĝ Ψ| 〉 − 〈Ψ |f̂ Ψ| 〉〈Ψ |ĝ Ψ| 〉, (45)
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which is exactly the quantum covariance of f̂ĝ calculated in the
entangled state given by Equation 44. The covariance coincides with
the correlation of f and g since the state vector |Ψ〉 is normalized
to unity.

We stress that the above calculation is restricted to the case n ≠ m;
when n � m, there is no field mode correlating the responses of the two
particles, so there is no entanglement. On the other hand, if there is
degeneracy—that is, EC � ED—the two-particle system is necessarily in
an entangled state if fnm, gmn are different from zero—that is, if the
response variables f,g connect the single-particle states n,m. The
origin of the entanglement is thus traced back to the action of the
common relevant field mode (nm), and the responses of the two
particles to this mode are maximally correlated (anticorrelated)
according to Equation 40 with (−1)ζ � +1 (−1). More generally,
entanglement occurs whenever there is degeneracy, be it in energy
or any other variable that defines the state of the bipartite system, as
discussed in the next section.

Equations 43–45 were previously obtained in the context of SED
by a somewhat laborious procedure using the Hilbert-space
formalism. In contrast to such an abstract procedure, the
present derivation has the advantage of keeping track at every
moment of the physical quantities involved: the field mode
variables, the particles’ response variables, and the phase
difference of the responses.

It is clear from Equation 44 that the two families of identical
particles identified in Section 4 are distinguished by their
entangled state vectors. The symmetry or antisymmetry of the
state vector is uniquely linked to the phase difference of the
responses of the two particles to the shared field mode. When the
coupling is in phase (type B particles), the state vector is
symmetric with respect to the exchange of particles; when the
relative coupling is out of phase (type F particles), the state vector
is antisymmetric.

It should be stressed that no direct interaction between the
components of the system is involved in the derivation leading to
entangled states; entanglement arises as a result of their indirect
interaction via the shared field modes and, therefore, does not
entail a non-local action.

6 The Pauli exclusion principle

6.1 Introduction of spin

Among the various proposals that have been made to justify the
spin-statistics theorem, some that are relevant to this work involve
the inclusion of the internal (spin) coordinates among the
parameters affected by the exchange operation (e.g. Hunter et al.,
2005 and Jabs, 2010, and additional references cited the latter). In
particular, in Jabs (2010), the spin–statistics connection is derived
under the postulates that the original and the exchange wave
functions are simply added and the azimuthal phase angle, which
defines the orientation of the spin part of each single-particle spin
component in the plane normal to the spin-quantization axis, is
exchanged along with the other parameters.

In dipolar transitions, atomic electrons interact with field modes of
circular polarization, as expressed in the selection rule△l � ± 1, and is
increasingly exploited for practical applications in spin-resolved

spectroscopy and magneto-optics (e.g. Okuda et al., 2011; De et al.,
2021). Furthermore, the interaction of the particle with circular
polarized modes of the ZPF, which are known to have an intrinsic
angular momentum equal to Z/2 (Sobelman, 1979; Mandel and Wolf,
1995), was indeed shown in Cetto et al. (2014) to be responsible for the
origin of the electron spin itself. It is reasonable to assume that a similar
mechanism is responsible for the neutron spin, since the neutron has a
magnetic moment that couples to the radiation field.

Therefore, following Jabs (2010) and Cetto and de la Peña
(2015), in order to include the spin in the present analysis, we
add an (internal) rotation angle ϕ to the expression for the dynamic
variables. Strictly speaking, the problem becomes a three-
dimensional one. However, for simplicity, we can still use our
one-dimensional expressions for the dynamic variables if we
decompose the radiation field into (statistically independent)
modes of circular polarization. So instead of (31) and (32), we write

f1n t, ϕ( ) � eiπζ
1 ∑

k

f1nkanke
iγnkϕ−iωknt + c.c., (46)

g2m t( ) � eiπζ
2 ∑

l

g2mlamle
iγmlϕ−iωlmt + c.c., (47)

where γnkϕ is the difference of two rotation angles,

γnkϕ � γn − γk( )ϕ, (48)
and γn, γk stand for counterclockwise (clockwise) rotation. If n,m
are two stationary states of a system of identical particles, as before,
we obtain for the partial covariances in configurations C and D (see
Equations 37 and 38)

fg
C � fnngmm + −1( )ζfnme

iγnmϕgmne
iγmnϕ, (49)

fg
D � fmmgnn + −1( )ζfmne

iγmnϕgnme
iγnmϕ, (50)

and, therefore,

fg � 1
2

fg
C + fg

D( ) � 1
2

fnngmm + fmmgnn[ ]
+1
2
−1( )ζ fnme

iγnmϕgmne
iγmnϕ + fmne

iγmnϕgnme
iγnmϕ[ ]. (51)

By translating this result into the language of the product Hilbert
space and using Equation 48, we obtain after some algebra

Γ fg( ) � 〈Ψ |f̂ĝ Ψ| 〉 − 〈Ψ |f̂ Ψ| 〉〈Ψ |ĝ Ψ| 〉, (52)
where |Ψ〉 now stands for the complete bipartite state vector,
including the internal rotation components,

Ψ| 〉 ≡
1�
2

√ e−iγnϕe−iγmϕC + −1( )ζe−iγmϕe−iγnϕD∣∣∣∣ 〉

� 1�
2

√ e−iγnϕ n| 〉1e−iγmϕ m| 〉2 + −1( )ζe−iγmϕ m| 〉−iγnϕ1 n| 〉2
∣∣∣∣∣ 〉. (53)

In Equation 53, the first angular factor is always associated with
particle 1 and the second with particle 2. This suggests writing each
individual state vector in the form e−iγϕ|n〉. In quantum language,
this implies the introduction of two orthonormal vectors |γ〉 � | +
〉, | − 〉 spanning the two-dimensional Hilbert space, |n〉|γ〉 ≡ |nγ〉;
Equation 53 thus takes the form

Ψ| 〉 � 1�
2

√ nγn
∣∣∣∣ 〉1 mγm

∣∣∣∣ 〉2 + −1( )ζ mγm
∣∣∣∣ 〉1 nγn

∣∣∣∣ 〉2[ ]. (54)
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Since the parameter γ is associated with the internal rotation, we
identify it with the spin of the electron, which means that

γn,m � ±
1
2
. (55)

6.2 The connection between spin
and symmetry

We now examine the symmetry properties of the complete
entangled state function (53) under particle exchange. When
particles 1 and 2 are exchanged, in addition to switching their
positions in three-dimensional space, their internal angles change:
particle 1 rotates to the azimuthal position of particle 2 and vice
versa, with both rotations occurring in the same direction (clockwise
or counterclockwise). Consider a clockwise rotation. As shown in
Jabs (2010) and Cetto and de la Peña (2015), when ϕ2 > ϕ1 ϕ1
transforms into ϕ2 and ϕ2 transforms into ϕ1 + 2π,

ϕ2 − ϕ1 → ϕ1 − ϕ2 + 2π, (56)
and |Ψ〉 given by Equation 53 transform into

Ψ| 〉1←→2 � 1�
2

√ e−iγm ϕ+2π( ) m| 〉1e−iγnϕ n| 〉2 + −1( )ζe−iγn ϕ+2π( ) n| 〉1e−iγmϕ m| 〉2
∣∣∣∣∣ 〉.

Since γn, γm are half-integers, the overall effect of the particle
exchange is to multiply the original state vector by a factor of

Ψ| 〉1←→2 � −1( )ζ −1( )2γn Ψ| 〉. (57)
If instead ϕ2 < ϕ1, ϕ2 transforms into ϕ1 and ϕ1 transforms into

ϕ2 + 2π, so that

ϕ2 − ϕ1 → ϕ1 − ϕ2 − 2π, (58)
and the transformation of the state vector is again given by Equation
57. Of course, the same result is obtained if the rotation is
anticlockwise. Since particles 1 and 2 are identical, their exchange
should have no effect on the state vector, which implies that

−1( )ζ −1( )2γn � 1. (59)

Therefore, taking into account Equation 55, we conclude that
(−1)ζ � −1. Thus, symmetry of the total state vector under particle
exchange, obtained from Equation 54 with (−1)ζ � −1,

Ψ| 〉 � 1�
2

√ nγn
∣∣∣∣ 〉1 mγm

∣∣∣∣ 〉2 − mγm
∣∣∣∣ 〉1 nγn

∣∣∣∣ 〉2[ ]. (60)

implies antisymmetry of the (energy) state vector (44),

Ψ| 〉 � 1�
2

√ n| 〉1 m| 〉2 − m| 〉1 n| 〉2[ ]. (61)

6.3 The Pauli principle

The above procedure is of course applicable to particles with
higher spin; thus, for any half-integer value of γ, (−1)2γ � −1 and
according to Equation 59, the bipartite (energy) state vector will be
antisymmetric with respect to particle exchange, as in Equation 61.

We recall that Equation 61 is valid for |n〉 ≠ |m〉. If |n〉 � |m〉
and the spin is not taken into account, the state vector is simply the
product of the individual energy eigenvectors, |Ψ〉 � |n〉1|n〉2;
according to Equation 40 the particle variables are not
correlated and the bipartite system is obviously not entangled.
However, with the introduction of spin, the complete state
function is different from zero for |n〉 � |m〉, under the
condition that |γn〉 ≠ |γm〉. If this is the case, Equation 60 is
reduced to

Ψ| 〉 � n| 〉1 n| 〉2�
2

√ γ1
∣∣∣∣ 〉 γ2

∣∣∣∣ 〉 − γ2
∣∣∣∣ 〉 γ1

∣∣∣∣ 〉[ ]. (62)

In other words, entanglement can arise from energy degeneracy,
if E � En+Em with En≠ Em, or from spin degeneracy, if γ � γ1 + γ2
with γ1≠ γ2. Since for the electron (and other spin-1/2 particles)
γi � ± 1

2, Equation 62 takes the form (except for an irrelevant
overall sign)

Ψ| 〉 � n| 〉1 n| 〉2�
2

√ 1
2

∣∣∣∣∣∣∣ 〉 −1
2

∣∣∣∣∣∣∣ 〉 − −1
2

∣∣∣∣∣∣∣ 〉 1
2

∣∣∣∣∣∣∣ 〉[ ]. (63)

In Section 5, it was shown that the correlation between particle
variables results from the antiphase response to the single common
field mode of frequency ωmn with En≠ Em. On the other hand, when
|n〉 � |m〉, we note from Equation 25 that the two particles respond
in antiphase to all (common) field modes; in this case, correlation
is established as a result of the response of both particles to a
common field mode of circular polarization. In other words, the
entanglement results not from the response to a single mode
connecting two states separated by their energies, △Enm �
|En−Em| but from a mode connecting two states separated by
their spins, △γ12 � |γ1 − γ2|. Just as in the first case △E � Zωmn

is the energy exchanged with the field in a transition, in the second
case Z△γ12 � Z is the angular momentum exchanged with the field
in a transition.

Equation 63 leaves no room for a third electron in the same
energy state |n〉 because its spin parameter would be either equal
to γ1 or γ2. The conclusion holds for any pair of identical half-
integer spins because the condition △γij � |γi − γj| � 1 cannot be
satisfied simultaneously for i.j � 1, 2, 3: if two half-integer values
of γ satisfy △γij � 1, the third value of γ differs from the first two
by an even number. To illustrate, consider ΓF � 3

2. Possible pairs
(γ1, γ2) are (32, 12), (32, −32 ), and (−3

2,−1
2); there is no γ3 that

simultaneously satisfies △γ31 � |γ3 − γ1| � 1 and △γ32 � |γ3 −
γ2| � 1.

This is a clear example of Pauli’s exclusion principle. The present
discussion reveals the physical basis of the phenomenon: two
particles in the same energy state respond in antiphase to a
single (circularly polarized) mode of the field and a third particle
cannot respond in antiphase to the first two.

7 Discussion

In this work, the symmetrization postulate and the spin-
statistics theorem were shown to follow from the in-phase or
antiphase response of identical particles to specific modes of the
common background radiation field. The inclusion of spin in the
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analysis allowed the identification of the type B and F families
introduced in Section 4 as bosons and fermions and led to the Pauli
exclusion principle in the case of fermions.

Key quantum phenomena that were introduced as postulates
in the foundational phase of quantum mechanics and that have
been repeatedly confirmed both formally and experimentally thus
find a physical justification. The picture provided by the present
approach is very suggestive. In particular, it shows that the
collective behavior of identical particles, which leads to the
respective quantum statistics, is a consequence of the
mediation of specific field modes that “connect” the particles
and correlate their dynamics, producing entanglement. A
mysterious, apparently non-local connection between particles,
as described by quantum formalism, is thus shown to be an
entirely causal and local effect of the bridging role of the common
background field. Given the increasing attention paid to
entanglement phenomena and their applications, particularly
in the fields of quantum information, computing, and
communication, the insight gained from this perspective
should prove highly fruitful. In particular, since entanglement
and other quantum phenomena discussed here are shown to
depend critically on the correlations established between
identical particles by their coherent binding to certain
common field modes, the cancellation or significant
modification of these modes by Casimir cavity techniques (e.g.
Kleppner, 1986; Walther et al., 2006) could be an interesting way
to analyze the effect on such correlations.

The results reported here suggest further investigation. In
particular, extending the one-dimensional analysis carried out
here to three dimensions would allow an adequate treatment of
more general problems involving additional dynamical variables,
including orbital angular momentum.
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Appendix A

Equations 24, 25 must be satisfied for any pair of identical
particles—that is, ζ ij is either even or odd for identical particles
i, j � 1, 2, . . .. This means that ζ12 expresses a distinctive property
of the particles themselves, which manifests when the particles form
part of the same system and couple either in phase or antiphase to
the shared modes. This property is identified in Equation 26 and the
following with the parameters ζ iB, ζ iF, i � 1, 2, which must satisfy
either Equation 27a or 27b, respectively.

If we take the smallest possible value of ζ1 in the F
case, which is |ζ1m| � 1/2, any integer value of another type-F
particle would violate both Equations 27a, b; hence, type-F
particles can only have half-integer values of the parameter
ζ i. Similarly, taking the smallest possible value of ζ1 in
the B case, which is |ζ1m| � 0, any half-integer value for
another type-B particle would violate both Equations 27a, b,
so type-B particles can only have integer values of the parameter
ζ i.

This confirms the correctness of Equations 28a, b.
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