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The study of many-body quantum systems out of equilibrium remains a
significant challenge, with complexity barriers arising in both state- and
operator-based representations. Here, we review the recent approaches
based on finding better contraction strategies for the full spatiotemporal
tensor networks that encode the path integral of the dynamics, as well as the
conceptual integration of influence functionals, process tensors, and transfer
matrices within the tensor network formalism. We discuss recent algorithmic
developments, highlight the complexity of influence functionals in various
dynamical regimes, and present consistent results of different communities,
showing how ergodic dynamics render these functionals exponentially difficult
to compress. Finally, we provide an outlook on strategies to encode
complementary influence functional overlaps, paving the way for accurate
descriptions of open and closed quantum systems with tensor networks.
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1 Introduction

Many-body systems out of equilibrium still defy our understanding, and our intuition of the
origin of their complexity continues to evolve. In the case of closed quantum systems, where the
many-body system is ideally isolated from the rest of the world constituting its environment, the
dynamics is governed by the unitary evolution dictated by the Schrödinger equation. Such a
unitary evolution can be applied to the state of the system or to its operators. This simple fact
leads to different pictures about the difficulty of solving the dynamics. If the evolution is applied
on states, in the Schrödinger picture, they become increasingly complex, and simple tensor
networks ansätze struggle to describe themwith polynomial resources, something that is known
as the entanglement barrier (Calabrese and Cardy, 2005; Läuchli and Kollath, 2008;
Dubail, 2017).

Contrarily, if the evolution is applied to operators, there are specific forms of evolution that
can be solved in theHeisenberg picture. For example, for spin–1/2 systems, Clifford circuitsmap
Pauli strings into themselves, and thus, the dynamics can be efficiently described (Gottesman,
1998). Additionally, the dynamics governed by integrable Hamiltonians are conjectured to
generate only a small amount of local operator entanglement, and thus, describing the evolution
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of local operators in such systems has the same complexity as describing
a local quench of states, allowing for an efficient description (Prosen and
Žnidarič, 2007; Prosen and Pižorn, 2007; Bertini et al., 2020a; Bertini
et al., 2020b; Giudice et al., 2022; Thoenniss et al., 2023). However,
generic interacting systems generate again a barrier of operator
entanglement and thus suffer from the same shortcomings as the
simulation of the evolution of the states. Given the complexity
barriers in both state and operator representations, a growing trend
is to adopt an open-system perspective. Instead of attempting to
describe the full system dynamics, this approach focuses on the
evolution of few-body correlation functions (Bañuls et al., 2009;
Müller-Hermes et al., 2012; Surace et al., 2019; White et al., 2018;
Frías-Pérez and Bañuls, 2022; Paeckel et al., 2019). This perspective
naturally connects the dynamics of closed quantum systems to those of
open systems. From the open-system viewpoint, the few bodies
involved in the correlation functions define the system, while the
remainder of the many-body system acts as the environment.

Traditionally, significant progress in understanding open-system
dynamics has been made by studying a small subsystem, such as an
atom in a cavity or an impurity in ametal, and describing it withmaster
equations. While the full system and environment evolve unitarily, the
subsystem undergoes dissipative evolution driven by a trace-preserving
quantum channel. This framework provides a significant simplification
compared to the full system’s description as the subsystem often has a
finite-dimensional Hilbert space, allowing the quantum channel tomap
between finite-dimensional density matrices. However, obtaining such
master equations has historically relied on analytical approximations,
such as weak coupling or memory-less environments, defining
Markovian systems where the current state suffices to predict future
states. Even in this context, the precise definition of Markovianity
remains a subject of debate as seen by comparing, for example, the
definition in Rivas et al. (2010) with the one in Dowling et al. (2024).

This work reviews recent advances in designing tensor network
algorithms to study out-of-equilibrium dynamics. These algorithms
unify the descriptions of closed and open dynamics with minimal
approximations, particularly for one-dimensional many-body systems.
The starting points of these approaches are the spatiotemporal tensor
networks that encode the path integral of the dynamics. Following the
original Feynman–Vernon idea (Feynman and Vernon, 1963), we
define influence functionals once we identify a region as the system,
while the rest constitutes the environment. Partial integration of the
path integral over the spatiotemporal degrees of freedom of the
environment gives rise to the influence functionals. Furthermore, in
this framework, it is easy to show how these influence functionals
naturally emerge as partial traces of process tensors, which were initially
introduced in the quantum information community (Chiribella et al.,
2008) to generalize quantum channels and study the role of specific
gates in quantum circuits. We also show how these distinct concepts
naturally integrate within the spatiotemporal tensor network
framework. Additionally, finding the correct influence functional
corresponds to solving an open-system dynamics problem, where
spatial transfer matrices act as quantum channels driving the
dissipative evolution of influence functionals. Specifically, the
transfer matrices evolve the influence functionals in space; that is,
they generate the influence functional of a smaller system (larger
environment) from that of a larger region or that of a smaller
environment by incorporating new sites into the environment. This
paper briefly outlines the algorithms developed to achieve this task.

After introducing all these objects and the algorithms that we
practically use to compress them in simple tensor networks, we also
review the known results about the complexity of the influence
functionals for different classes of dynamics. We will thus unveil
how, for generic ergodic dynamics, influence functionals are
exponentially difficult to compress. We conclude with an outlook
on the potential to accurately describe the dynamics of open and
closed quantum systems using tensor networks. This involves
attempting to directly encode the overlaps of complementary
influence functionals (e.g., left and right) rather than the
individual influence functionals separately.

2 Tensor network approach to the
influence functional

In this section, we will see how the concept of influence
functionals (IFs), introduced to describe how the environment
affects a system within the path integral formulation of quantum
mechanics (Feynman and Vernon, 1963), can be represented using
tensor networks (TNs). The connection is made possible by the ideas
of transverse contraction of the TN associated with the time
evolution of a quantum system (Bañuls et al., 2009; Hastings and
Mahajan, 2015; Frías-Pérez and Bañuls, 2022; Carignano et al., 2024)
and of temporal matrix-product states (tMPSs) that can be used to
describe these functionals.

To see this in more detail, let us take as a starting point the
typical scenario of a quantum quench where one begins with a given
initial state, usually a product state or the ground state of some
Hamiltonian H0, and evolves it under a Hamiltonian H ≠ H0. For
the sake of simplicity, we will restrict ourselves to one-dimensional
chains so that states can be typically expressed through a matrix-
product state (MPS) ansatz, although our results can be generalized
to any number of spatial dimensions D. Furthermore, we will
assume systems whose constituents are described by Hilbert
spaces of dimension d and that interact only with nearest
neighbors, namely, H � ∑ihi,i+1, where the operators hi,i+1 act
only on the constituents i and i + 1.

When describing the dynamics of a one-dimensional closed
system through tensor networks, one can integrate the Schrödinger
equation by constructing the time-evolution operator U(T) �
exp(−iHT) and apply it to states or operators (see, e.g., Paeckel
et al. (2019) for a review on time-evolution methods using MPS).

Because U(T) is a highly non-local operator, some previous
steps are needed to express it as a tensor network. One of the
standard approaches (Vidal, 2004) is to first split the evolution into
small time steps of size δt � T/nT so that U(T) � [U(δt)]nT . Next,
by using the Suzuki–Trotter decomposition, the operator U(δt) is
approximated as a product of the 2-body gates
Ui,i+1 ≡ exp(−ihi,i+1δt), at the cost of committing some error
that depends on δt as well as the non-commutativity of the {hi,i+1}.
For a system with nearest-neighbor interactions, this decomposition
is typically done by dividing the Hamiltonian into operators acting
on odd and even bonds, that is, H � Hodd +Heven where
Hodd(even) � ∑i∈odd(even)hi,i+1, so that each term of Heven (or Hodd)
commutes with each other as they act on different constituents.

We can then build the first-order Suzuki–Trotter
decomposition,
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e−iHδt � e−iHoddδte−iHevenδt +O δt2( ), (1)
or higher-order approximations, with a Trotter error of order
O(δtn+1) for an n-th order decomposition (Paeckel et al., 2019).

By decomposing each U(δt), we can express the entire
evolution as a brick-wall circuit, as shown in the first column
of Figure 1. Alternatively, one can go one step further by
factorizing the two-body gates and suitably grouping the
resulting tensors, building the matrix-product operator (MPO)
associated with U(δt) (see Figure 1, center column). The
decompositions required to build the MPO can be performed
using, for example, a singular value decomposition1 (SVD),
Ui,i+1 � UL Σ VR, as depicted in Figure 2 (For later

discussion, we will assume that UL and VR are square
matrices, ensuring that they are proper unitaries).

As a result of the discretization of the time evolution, any
dynamical quantity we are interested in will be expressed in terms
of numerous tensors, giving rise to a two-dimensional network
that must be contracted. To give an example, the TN representing
the time-dependent expectation value of a local operator acting
on a few sites of the system, 〈O(T)〉, is depicted in Figure 1c and
written from top to bottom as follows: starting from an initial
state |ψ0〉, we apply U(T), then the operator O, followed by the
Hermitian conjugate of the time-evolved state, 〈ψ0|U†(T). The
latter can be seen as a part of “backward” time evolution, so that
in the Keldysh formalism |ψ(T)〉 � U(T)|ψ0〉 represents the
“forward” contour, while 〈ψ(T)| represents the “return”
contour (Hastings and Mahajan, 2015; Tirrito et al., 2018),
with the operator O at the middle. Another quantity of
interest is the return amplitude of a time-evolved state to its
initial configuration, which can be referred to as a Loschmidt
echo (Figure 1d):

FIGURE 1
Time runs from top to bottom. All quantities are represented as a brick-wall circuit (left column), with matrix-product operators (center column) and
in an abstract representation (right column), where the black boundaries denote open indices. (a) A graphical representation of the first-order
Suzuki–Trotter decomposition of the time-evolution operator U(δt) for a small time step δt and for nearest-neighbor interactions. (b)
|ψ(T)〉 � ∏nT

i�1U(δt)|ψ0〉, the Trotterized time evolution of an initial product state |ψ0〉 (depicted in gray) up to time T � nT · δt. (c) 〈Oi(T)〉: the time-
dependent expectation value of a single body observable 〈Oi(T)〉 � 〈[U†(δt)]nT Oi[U(δt)]nT 〉ψ0 (darker shaded tensors refer to U†). We have highlighted
the transfer matrix E(T) in green and the operator transfer matrix EO(T) in orange. (d) The Loschmidt echo L(T) � 〈[U(δt)]nT 〉ψ0.

1 Alternatively, one can decompose theUi,i+1 in a basis of one-site operators,

leading to a similar structure.
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L T( ) � 〈ψ0|ψ T( )〉 � 〈ψ0|U T( )|ψ0〉. (2)

The task of contracting two-dimensional TNs is, in general,
exponentially hard (Schuch et al., 2007). The traditional
prescriptions of quantum mechanics typically involve a contraction
row by row along the temporal axis. In this case, the complexity of the
contraction is dictated by the entanglement entropy of the time-evolved
|ψ(T)〉 if the contraction starts from the initial state (Verstraete and
Cirac, 2006), or by the operator entanglement if the contraction involves
the Heisenberg evolution of an operator (Prosen and Pižorn, 2007;
Prosen and Žnidarič, 2007; Pižorn and Prosen, 2009). Due to the
entanglement barrier, these entropies typically increase linearly with
time, corresponding to an exponential growth of the bond dimensions
involved, so generally, these contractions cannot be carried out
efficiently. Yet, it is clear that another contraction direction is
possible: one can, namely, start from the left and right edges of the
system and perform contractions along the space direction (Bañuls
et al., 2009; Hastings and Mahajan, 2015; Carignano et al., 2024). The
basic building blocks involved in this “transverse” contraction are now
the columns of the 2D network, which can be seen as states and
operators defined at different moments of time for a fixed spatial site.
We will refer to them as “temporal” MPSs and MPOs (tMPSs and
tMPOs), respectively. The contraction procedure then goes as follows:
starting from the edges of a system ofN constituents we identify a “left”
tMPS 〈L[1]| and a “right” one |R[N]〉, as well as the j-th column tMPO
E[j](T), cf. Figure 1c. At each step, we build the tMPSs,

〈L k[ ]|→〈L k+1[ ]| � 〈L k[ ]|E k+1[ ] T( ), (3)
|R l[ ]〉→|R l−1[ ]〉 � E l−1[ ] T( )|R l[ ]〉, (4)

by applying to them the columns associated with the neighboring
site. In this way, the 2D TN equals the overlap between the two
tMPSs representing the transverse contraction until adjacent
columns. Thus, quantities like the Loschmidt echo are given by

L(T) � 〈L[i]L |R[i+1]
L 〉, while, for instance, the expectation value of a

local observable O acting on the i-th site reads
〈Oi(T)〉 � 〈L[i−1]|E[i]

O |R[i+1]〉, with E[i]
O being the tMPO column

with the insertion of the operator (see Figure 1c). Analogously to
what happens for MPS defined in space, we are interested in finding
the relevant quantity dictating whether an efficient representation of
these transverse states is possible, for example, a “temporal”
entanglement (Bañuls et al., 2009; Hastings and Mahajan,
2015; Carignano et al., 2024; Lerose et al., 2023), which can be
seen as a measure of correlations of a subsystem with itself at
different times. Note that while the transfer matrix evolving in
time U(δt) corresponds to a unitary operator, for the transverse
contraction, the spatial evolution is governed by the non-unitary
matrices {E[k]}, as can be seen by the decomposition in Figures 2c,
d. In this sense, the contrasting nature of the transverse evolution
with respect to the usual one can give rise to different behaviors of
the complexity of contracting the whole 2D TN with time, as
reviewed in Section 5. More specifically, from Figure 2, we can see
one step of space translation as a unitary evolution T U plus an
additional insertion of real diagonal matrices T D containing
singular values. After proper normalization, these operations
can be related to weak measurements (Ippoliti and
Khemani, 2021).

Depending on the network structure associated with the desired
dynamical quantity, further operations can be performed to carry
out the transverse contraction in a more efficient way. In particular,
if we are interested in computing the time evolution of the
expectation values of a local operator or few-body correlators, it
should be noticed that working out a transverse contraction may
induce correlations between the forward and return contours if there
is information partially traced out (see Figure 3a for a sketch). These
correlations are long-ranged by default as a consequence of the
setup, which makes the tMPS representation impractical. To

FIGURE 2
(a) By performing a singular value decomposition of elementary unitary gates derived from the Trotter expansion of the real-time dynamics induced
by the two-qudit time-evolution operator Ui,i+1 � UL · Σ · VR . (b) shows the normalization conditions of the relevant tensors. We can define the two-
dimensional tensor network (c, d) describing the dynamics and interpret the evolution in space as a sequence of unitary evolutions driven by T U plus weak
measurements driven by T D.
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overcome this problem, “folding” the network so that both contours
are merged via a vectorization operation has been proposed (Bañuls
et al., 2009): 〈ψ(T)|O|ψ(T)〉 � 〈φ|(I ⊗ O)| ψ(T)〉 ⊗ |�ψ(T)〉,
where |�ψ(T)〉 is the complex conjugate of |ψ(T)〉, and the vector
|φ〉 � ⊗N

k�1(∑d
ik�1|ik〉 ⊗ |ik〉) is introduced to reproduce the

contraction between the forward and return contours. In this
manner, the transverse contraction of the folded network can
lead to tMPSs with a drastically reduced temporal entanglement,
allowing for an advantage compared to standard methods
(see Figure 3b).

Aside from providing a novel way to possibly circumvent the
entanglement barrier, the idea of a transverse contraction can
provide a natural bridge towards the formalism of open quantum
systems and, more specifically, to the idea of an influence functional.
To see this, let us recall that within the path integral formulation of
quantum mechanics, open quantum systems can be studied by
constructing the path integral of the system plus environment
and, subsequently, integrating out the degrees of freedom of the
latter. The result of this integration is what is called an influence
functional (IF), corresponding to a function of the time-trajectories
of the system.

The IF encodes the effects of the environment on the system and
allows evolving the latter’s reduced density matrix. Being a function of
time-dependent coordinates, the IF can be treated as a vector of the
multi-time Hilbert space of the system (Petrat and Tumulka, 2014) and
represented using a temporal MPS (Lerose et al., 2021a). In the context
of our TN representation, the equivalence between the two becomes
clear if we now observe that in the transverse contraction, we effectively
trace out the degrees of freedom of a part of the many-body system
(i.e., the environment), precisely encoding their influence on the rest
(the system of interest) at different times through the resulting tMPSs.

The folding operation provides another step in this direction, as its
overlapping forward and backward time-evolution paths reproduce
precisely the Schwinger–Keldysh contour, which is typically encoded in
the IF construction.

Having established such a connection, one can leverage the
powerful machinery of tensor networks to provide an efficient
representation of these functionals encoding the dynamical
properties of the system (Lerose et al., 2021a; Giudice et al.,
2022; Lerose et al., 2023). We will elaborate further on this
encoding in the following sections after introducing the relation
of these objects with the process tensors.

3 The connection between process
tensors and influence functionals

Process tensors, which we will define properly in the following,
were originally introduced as a generalization of channels for
operators. They were “introduced as a tool to optimize quantum
circuit over a set of unknown gates for a given task” (Chiribella et al.,
2008; Chiribella et al., 2009). They can also be connected with the
idea of multiple-time states (Aharonov et al., 2007; Leifer, 2006;
Leifer and Spekkens, 2013) discussed in the context of quantum
foundations. In this section, we will introduce the concept of the
process tensor, following the presentations of Dowling et al. (2024),
Pollock et al. (2018), and Pollock (2018), and relate it to the tensorial
objects encountered in Section 2. In the study of the evolution of
open quantum systems, a significant challenge is that of generalizing
the notion of Markovianity of classical stochastic processes (Pollock
et al., 2018). A classical stochastic process is defined by the joint
probability distribution of a stochastic variable X that describes the

FIGURE 3
For a setup including both forwards and backwards time evolution (cfr. Figure 1c), we show in (a)Graphical representation of how the correlations between
contours are formed for a local entangled pair that propagates freely in opposite directions. The excitation marked in red remains in the contracted subsystem
throughout the entire evolution so that it is traced in the transverse contraction. On the other hand, the excitationmarked in blue leaves the subsystemand enters
into the complement. Due to the spatial entanglement between the red and blue excitations, the transverse contraction leads to correlations between
contours. (b) The associated long-range correlations are converted into short-range correlations through the folding operation.
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state of the system at several instants of time,
Pc(Xn, tn;Xn−1, tn−1;/ ;X1, t1). Markovianity implies that the
state of the system at a given time only depends on its state at
the immediately previous time,

Pc Xn, tn;/ ;X1, t1( ) � Pc Xn, tn;Xn−1, tn−1( ). (5)
The generalization of these ideas to the quantum realm is not

straightforward because the measurements needed to determine the
control parameters X will disturb the process that we want to
characterize. The multi-time process tensor formalism overcomes
this problem by establishing a clear separation between the process
and the control operations performed by the observer, leading to a
definition of Markovianity that reduces to Equation 5 for
classical processes.

The control operations are completely positive trace non-
increasing actions on the system, representing, for example, a
unitary transformation (trace preserving) or a possible result
from a measurement (trace decreasing). These operations are
often called instruments. We might be interested in a set of
available instruments at an instant in time, each of them to be
chosen with a given probability. We represent the set of available
instruments as Kraus operators A � {Aj} defining a quantum
channel. The resulting quantum channel must also be trace non-
increasing:

∑
j

A†
jAj ≤ I. (6)

We consider that the control operations intervene at n different
instants of time t1, . . . tn. The process tensor P is a linear and
completely positive map from the set of control operations A �
{A[t1], . . . , A[tn]} acting on an open system to output states of the
system plus its environment. The output states can be sub-
normalized according to the success probabilities of the chosen
instruments. The process tensor thus encodes the system and
environment dynamics, as well as the information on their initial
state. In order to simplify notation and anticipate the discussion
below, we assume that the same set of instruments is available at
each instant of time, that is, A[t1] � / � A[tn] � A. We denote a
particular choice of instruments by Aτ1 ...τn � {Aτ1, . . .Aτn}. The
process tensor would then map

P: Aτ1 ...τn → |PAτ1...τn〉∈ HS⊗E (7)
with

|PAτ1 ...τn〉 � U T, tn( )Aτn/ U t2, t1( )Aτ1U t1, 0( )|ψ0
SE〉, (8)

where |ψ0
SE〉 is the initial state of the system plus the environment,

and U(ti, ti−1) implements their joint unitary evolution between
times ti−1 and ti. Figure 4 displays a graphical representation
of Equation 8.

Let us proceed to show how the process tensor language
naturally emerges in the study of the closed dynamics of a
quantum spin chain. Imagine that we start with the simplest
scenario obtained by considering the evolution of two
constituents. In order to make a connection with Figure 4, we
can assume that one plays the role of the system and the other
of the environment. We also limit ourselves to the case of a two-

times process tensor where an initial product state evolves under the
unitary U for one time step, then might undergo a control operation
and finally evolves again for an extra step, as shown in Figure 5a. For
this setup, the process tensor has four open legs: two (one “input”
and one “output”) after one step of evolution, which, on the
introduction of an instrument, are mapped to the temporal legs
defined above, and two output legs after the second step, which are
spatial legs corresponding to the two constituents. If we contract the
former two legs together (corresponding to a trivial choice of
instrument, A � I), the latter will represent the final state of such
constituents.

Among the possible choices of instrument sets, one is relevant
for the connection we want to make here: it consists of using as
instruments the rows (columns) of the left (right) unitary emerging
from the decomposition of the evolution operator shown in
Figure 2a, U � ULΣVR. Namely, we can choose a set A � {Aτ}
such that

Aτ[ ]αβ � 1��
d

√ UL[ ]αβ;τ, (9)

with τ � 1, .. , d2. The normalization 1/
��
d

√
renders the quantum

channel defined by A trace preserving (see Figure 2b)

∑d
τ�1

A†
τAτ[ ]αγ � 1

d
∑
τ,β

UL*[ ]βα;τ UL[ ]βγ;τ � δαγ. (10)

The set A so defined assigns equal probability to each
instrument. Although a valid choice, this, however, does not
represent the probabilities with which the Aτ are selected as the
system evolves. That information is encoded in the singular values
στ , contained in the diagonal matrix Σ. BecauseU is unitary, we have∑ σ2τ � d2, and hence, each singular value satisfies στ/d≤ 1. We can
use this fact to rescale the instruments as

Aτ →
��
στ
d

√
Aτ , (11)

Such that now A will describe, in general, a trace decreasing
quantum channel. We denote as Aτ′ the alternative set of
instruments associated with the right unitary VR. In this way, the
decomposition of the two-body gates can be rewritten as

U � d2 ∑
τ

Aτ Aτ′. (12)

This specific choice of instruments leads us to the first
connection between the multi-time process tensor and the
influence functionals. To see this, let us now consider a system of
four qudits evolving under a brick-wall circuit based on the same
two-body gates as before. Splitting the system in half, we consider
that the left and right qudits undergo two evolution steps as before,
but now the central left and right qudits are connected by one further
step. We can interpret such step as the insertion of the instruments
Aτ and Aτ′ introduced above on the left and right process tensors,
defined as in Figure 5a. This is shown in Figure 5d, where a sum over
instruments is understood. We make a step further and associate the
labels of the instruments with elements of a “temporal” Hilbert
space: τ →|τ〉∈ HT. This allows us to define spatiotemporal states in
the enlarged Hilbert spaces Cd ⊗ Cd ⊗ HT and Cd ⊗ Cd ⊗ HT*
as follows:
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|PA〉R � ∑
τ

|PAτ′〉|τ〉, |PA〉L � ∑
τ

|PAτ〉〈τ|. (13)

Recall that both the left and right process tensors and the
instrument sets A and A′ are constructed out of the same object,
the two-body evolution gate U. Hence, the same information is
contained in the process tensors and the spatiotemporal states
(Equation 13), particularly when it comes to the computational
complexity of encoding these objects, and in this sense, we can use
them interchangeably.

Suppose we are interested in the Loschmidt echo, Equation 2, of
the four spins, which, according to the results of Section 2, can be
computed as the overlap of left and right temporal vectors 〈LL|RL〉.
Following the discussion above, the left temporal vector is obtained
by projecting the space-like degrees of freedom of |PA〉L onto their
initial state,

〈LL| � d〈ψ0L|PA〉L. (14)

We are assuming that the initial state of the four spins is a product
state, such that we can assign a well-defined initial state to the left two
spins, |ψ0L〉. This equivalence is represented in Figure 5c. Following an
analogous reasoning, we can identify a right process tensor and the
corresponding temporal vector as |RL〉 � d〈ψ0R|PA〉R.

We turn now to the network associated with another typical
dynamical quantity of interest, namely, the expectation value of an
operator. Focusing on the left half of our four-spin system, this
network will contain both |PA〉L and its conjugate 〈PA|L, which
can be associated with the description of backward time evolution.
The trivial case of an identity operator in the system + environment
legs immediately leads to a partial trace obtained by multiplying the
two process tensors over their open spatial indices, as illustrated in
Figure 5e. Of course, the result can be generalized with the inclusion
of different operators inserted in the spatial legs of the process
tensors, leading to the same structure. The resulting object,
describing time evolution on a time contour involving both
forward and backward evolution, is precisely the influence
functional of the left half of the system, as introduced in Section
2. In the language of process tensors, this left influence functional
can thus be seen as the reduced density matrix of |PA〉L traced over
its spatial degrees of freedom:

ρLT � d2trspaceL PA| 〉〈PA|L. (15)

If we vectorize ρLT by “folding” the network and joining the
temporal legs associated with the forward and backward
evolution, we can interpret it as a state 〈〈L|, as shown
in Figure 5e.

=

FIGURE 4
The process tensor is represented as the gray shadowed area, containing the information on the initial state of the system (S) and its environment (E),
together with their joint evolution under the unitaries U(ti , ti−1). The evolution of the system is monitored by control operations Aτ1 ...τn � {Aτ1 , . . . ,Aτn}
performed at times t1 , . . . , tn . The process tensor maps the chosen control operations to the output state of the system plus the environment, |PAτ1 ...,τn〉.

FIGURE 5
Tensor network representation of (a) the process tensor P for two spins and two time steps and (b) the process tensor with an instrument Aτ applied.
(c) Evolution of a four-spin systemwhere, according to Equation 12, the central cyan gate is interpreted in terms of instruments applied to the associated
left and right process tensors. (d) The left temporal vector in the context of a Loschmidt echo represented as the overlap of the spatiotemporal state |PA〉L
Equation 13 on the initial state of the spins. The open leg corresponds to the promotion of the instrument labels to elements of a temporal Hilbert
space HT . (e) The partial trace of |PA〉L over its spatial degrees of freedom gives rise to the influence functional of the two left spins.
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At this point, it is straightforward to extend these quantities
to the many-body setting considered in Section 2. We start by
considering the tensor network that describes the evolution of the
system under N Trotter steps. We focus on the partial
contraction of such a network on a spatiotemporal patch, such
as the left half of the system. The resulting tensor has spatial and
temporal open legs represented by horizontal and vertical black
solid lines in Figure 6a. We divide its spatial legs into the system
and environment, such that the system comprises only the
rightmost spin of the left patch. In analogy with (13), we can
interpret this spatiotemporal tensor in the language of process
tensors by defining

|PA〉L � ∑
τ1...τn

|PAτ1 ...τn〉〈τ1 . . . τn|, (16)

where P is a generalization of Figure 5a, and the instruments are
derived again from the singular value decomposition of the 2-
qubit evolution gate. If we now project the spatial legs of |PA〉L
onto the initial state of the chosen spatial patch, we obtain the
left environment defined in the context of Loschmidt echoes as
described in Equation 14 and illustrated in Figure 6b.

In the same way, the left influence functional associated with the
calculation of local observables is also obtained from Equation 15 in
the many-body setting. Figures 6c, d display the standard and folded
versions of the influence functionals.

In the above formulas, we have made clear that the influence
functional is, in general, a mixed state. If one is interested in the
compressibility of such a mixed state in terms of the matrix-product
operator, one must consider the operator entanglement of the
influence functional, that is, the entanglement entropy of its
vectorized form that we have indicated with 〈〈L|.

In the following section, we will discuss some of the
algorithms developed for efficient compression of the
influence functional as temporal MPS and the complexity of
such an encoding.

4 Algorithms for obtaining a tensor
network encoding of the influence
functional, dissipative time evolutions

The transverse contraction framework introduced in
Section 2 for the description of the dynamics of quantum
many-body systems opens the way to an efficient encoding of
process tensors and influence functionals in the compact form
of temporal MPS. The best procedure to contract the network
associated with time evolution can vary depending on the
system we are considering and the truncation procedure we
choose, as described in the following. For a finite chain, one
possibility is to start from the sides, identify the left- and
rightmost columns as temporal MPS, and progressively apply
columns of tMPO to them until reaching the center, truncating
at each step to prevent their bond dimension from growing
exponentially. Alternatively, for an infinite homogeneous
system, one could start growing the system from the center
in the spirit of the infinite version of the density matrix
renormalization group (DMRG) algorithm.

In this section, we explain the main aspects to take into
account for these transverse algorithms and the compression
procedure for these tMPSs. The steps described here can be
applied to both pure and mixed states, corresponding to the
“folded” picture introduced in Section 2. As such, in the

FIGURE 6
(a) Contracting a patch of the spatiotemporal tensor network gives rise to a tensor with both spatial and temporal open legs, represented by black
solid lines. When cutting the network, we split the two-body gates joining the left and the right halves following the recipe of Figure 2. The resulting tensor
can be identified with the spatiotemporal state |PA〉L defined in (13), with the choice of instruments (11). (b) Starting from a product state, we consider the
overlap of |PA〉L with the initial state of the left half of the system, obtaining the left temporal state defined in the context of Loschmidt echo, 〈LL|. (c)
The partial trace of |PA〉L on its spatial degrees of freedom gives rise to the left influence functional defined in standard tensor networks studies of the
dynamics. (d) We can vectorize and fold the influence functional, obtaining the state 〈〈L|. The same constructions hold for the right half of the
tensor network.
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following description whenever possible we will consider
generic left vectors 〈L| (the same goes for |R〉), assuming
that—depending on the case considered—they refer to the
Loschmidt echo-type setup 〈LL| or the vectorized density
matrices 〈〈L| introduced above.

4.1 Cost functions used for
compressing tMPSs

Transverse contraction algorithms rely on the successive
applications of tMPOs to the tMPSs associated with the left and
right halves of the system, which we will refer to as 〈L| and |R〉,
respectively, with subsequent recompression that can be performed
following different criteria.

For this iterative process, the simplest prescription would be to
compress both 〈L| and |R〉 separately, following the standard recipe
in MPS literature, through their corresponding reduced density
matrices (RDM) (Bañuls et al., 2009): for any time t ∈ [0, T] (T
being the total time of the evolution) appearing in the Trotterized
network, one can define a bipartition in two temporal intervals A �
[0, t] and B � [t + δt, T] and build

ρLA t( ) � trB L| 〉〈L|, ρLB t( ) � trA L| 〉〈L|. (17)
and the same for ρRA,B. From these, we can compute the standard
entanglement entropies,

Sα ρA( ) � 1
1 − α

log trA ρA( )α[ ], (18)

where 0≤ α≤∞ is the Rényi parameter. As is well known, for this
prescription based on RDMs, the complexity of constructing 〈L| and
|R〉 can be related to these S(ρA), which we refer to as temporal
entanglement entropies.

However, the transverse contraction framework offers more
possibilities when it comes to the optimization of the left and
right vectors. The first insight in this direction was presented in
Hastings and Mahajan (2015), where it was realized that the
imaginary time-evolution equations for the RDM of the right
vector2 can be rephrased as a DMRG algorithm for a system
mirrored across the bipartition, with a slightly modified
Hamiltonian. This can be intuitively seen by relating the
(temporal) RDM |R〉〈R| to the evolution of a system made of
two copies of the right subsystem, where one follows the same
equations as the other, up to a complex conjugation. In turn, this
inspired the introduction of a modified cost function, built from the
right vector and its transpose: ~ρR ∝ |R〉〈�R| (where the complex
conjugation is performed to “undo” the conjugation of the bra). An
optimization with respect to this object provided a good estimate for
the whole left-right contraction of the network. As a matter of fact,
for a system with reflection symmetry, 〈�R| coincides with the left
vector 〈L|. This observation then motivates us to focus directly on
optimizing the overlap 〈L|R〉, by providing a faithful representation
of the reduced transition matrices (RTM), which for an arbitrary
bipartition A − B reads

τA t( ) � trB
|R〉〈L|
〈L|R〉 , (19)

and analogously for τB(t). Following this intuition, the complexity
of performing the network contraction should be related to the
properties of the RTM (Equation 19) rather than the RDMs defined
in Equation 17. In Figure 7, we show a graphical representation of
these quantities, comparing the RTMs built for the Loschmidt echo
and the (folded) IF with the regular RDM.

An extended notion of entropy based upon the RTMs can be
defined by substituting ρL,R(t) by τ(t) in Equation 18, resulting in
the generalized entanglement and Rényi entropies (Nakata et al.,
2021; Doi et al., 2023). The relevant quantities for the evaluation of
such generalized entropies are the eigenvalues of the RTM, which are
not necessarily positive or even real. Consequently, the generalized
entropies are complex-valued quantities.

The relationship of these interesting new quantities with the
complexity of representing the associated tensor network is still the
object of investigation (Hastings and Mahajan, 2015; Carignano
et al., 2024; Carignano and Tagliacozzo, 2024). In fact, the
compression procedure based upon RTMs is not straightforward:
unlike the (reduced) DMs, τ(t) is a non-Hermitian matrix. As such,
eigenvalues and singular values do not coincide in general, and it is
not a priori clear which of them is used as a guideline for the network
compression. In the following, we will use the singular values as cost
functions for truncation as they provide a well-defined set of positive
and real quantities. It is also relevant to discuss the role of gauge
freedom in these non-Hermitian problems. In principle, given a
transfer matrix E(T), one can perform a gauge transformation
E(T) → XE(T)X−1 such that the 2D tensor network associated
with the time evolution remains invariant. It has been observed
(Tang et al., 2025) that the temporal entanglement in the 〈L| and |R〉
can be arbitrarily reduced by these transformations. However, this
comes at the cost of accuracy because these transformations can shift
the relevant contributions to the overlap 〈L|R〉 to the tails of
singular values, which are truncated in the required compression
procedure. This issue is mitigated when considering reduced
transition matrices, as these gauge transformations are canceled
when computing these objects.

As such, we will focus on this type of truncation here while
recalling that other methods based on bi-orthogonalization
techniques can also be used when dealing with non-Hermitian
transfer matrices (Wang and Xiang, 1997; Xiang, 1998; Zhong
et al., 2024).

4.2 Compression procedure

The compression of the tMPS is carried out by constructing the
desired cost function, such as the RDM (Bañuls et al., 2009) or the
RTM (Hastings and Mahajan, 2015; Carignano et al., 2024), and
approximating it to a given rank for every possible bipartition. This
is commonly achieved through singular value decompositions of the
relevant objects.

While the truncation over RDM is amply covered in standard
TN literature, let us briefly review the procedure for the case of an
RTM. The notation used is as follows (see Figures 8a, b): given a
tMPS, we will use Greek letters for the physical indices and Latin2 As usual, the same reasoning can also be applied to 〈L|.
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letters for the bond ones. In addition, given the bipartition
introduced above, we define the matrices ΛA(t), which result
from the contraction of the subsystem A of 〈L| with the one of
|R〉, and ΛB(t) as the counterpart for the subsystem B. Notice that
ΛA(t) and ΛB(t) can be seen as acting at the bond level, namely,
ΛA,B(t) ≡ (ΛA,B(t))it it′.

With these definitions, we now proceed to explain the
compression procedure. This is done by truncating the RTMs
(Equation 19) associated with the different bipartitions, which
are consecutively obtained by tracing the temporal sites from the
t � 0 to t � T, or the other way around. For the sake of
concreteness, let us assume the former possibility, although we
discuss the relevance of this choice at the end of the section. Thus,
we start by cutting the tMPS at the first bond index from t � 0 and
bringing the B subsystems of both 〈L| and |R〉 into canonical

form, namely, writing them in terms of left-normalized {Xαk } and
right-normalized {Yαk } matrices, respectively, as depicted in
Figures 8c, d. Once this is done, τB(t) reads

τB t( ) � XΛA t( )Y, (20)
where X (Y) represents the left (right) isometry coming from
contracting the {Xαk } ({Yαk }) matrices (see Figure 8c).

Given that X and Y are left and right isometries, respectively,
τB(t) and ΛA(t) have the same singular values, so that by means of
the gauge freedom of the tMPSs, the optimization problem has been
reduced to applying an SVD to ΛA(t) and discarding the smallest
singular values, instead of decomposing the exponentially large
matrix τB(t). The compressed tMPSs are obtained by inserting
the associated projectors on the link that specifies the bipartition.

FIGURE 7
(a) Reduced transition matrices used to compute the generalized temporal entropies from the path integral encoding a Loschmidt echo. (b)
Reduced transition matrices used to compute the generalized temporal entropy in the context of a quantum quench. Notice that they encode partial
overlap of the left and right influence functional in that context. (c) Shows the temporal entanglement defined as the entanglement of the vectorized left
(or right) influence functional. Notice that when there is a reflection symmetry, (c) differs from (b) because it requires considering a transposition of
the right influence functional before taking the partial overlap. Also, given that we are using the vectorized version of the influence functional, its
entanglement actually represents the operator entanglement of the influence functional, which is the relevant version if we are interested in
understanding how much we can compress the influence functional as an MPO.

FIGURE 8
Pictorial notation for the compression procedure assuming folded tMPSs. (a) Bipartition of a tMPS into top and bottom subsystems. (b) Definition of
ΛA(t) andΛB(t). (c) Reduced transitionmatrix τB(t) once the bottom subsystems of 〈L| and |R〉 are brought into canonical form, that is, they are expressed
in terms of left-normalized {Xαk } and right-normalized {Yαk } matrices, respectively. (d) By definition, the matrices {Xαk } and {Yαk } satisfy the condition∑αkX

αk†Xαk � ∑αkY
αk Yαk† � I, from which it follows that X †X � YY† � I.
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Furthermore, a subsequent gauge transformation can be performed
on the updated tensors to guarantee that ΛA(t) reduces to an
identity. Once optimized the first link, we must only update Λt

by tracing out the adjacent site

ΛA t + δt( ) � ∑
αt

XαtΛA t( )Yαt , (21)

and repeat the process until all the bonds are truncated.
It should be noted that, depending on which dynamical quantity

we are interested in as well as the cost function used, a meaningful
truncation can require starting from t � 0 or t � T. This is especially
the case if one compresses the left and right tMPSs for influence
functionals through their RTM (Equation 19) in the folded network.
As an example, if one follows Hastings and Mahajan (2015), the
compression must be carried out from t � 0 to t � T: as the RTM
constitutes a 2D TN that does not include any local operator O, the
contraction of B(t) represents the multiplication of the time-
evolution operator with its adjoint, which gives the identity (see
Figure 9a). Due to this trivialization, if one performs a truncation
starting from t � T, the states 〈L| and |R〉 after the compression
would have a bond dimension of 1 and contain no useful
information for further calculations. When starting from t � T,
this simplification can be avoided by including O in the

definition of the RTM, as proposed by Carignano et al. (2024).
This is done by contracting the associated transfer matrix EO with
either 〈〈L| or |R〉〉, such that the resulting tMPSs are denoted by
〈〈LO| and |RO〉〉, respectively. Assuming that the operator O is
included in |R〉〉, we can define the RTM

τOA t( ) � trB|RO〉〉〈〈L|
〈〈L|RO〉〉

. (22)

By following this prescription, the contraction of the bottom
rows gives the Heisenberg evolution O(T − t) �
U†(T − t)OU(T − t) instead, which does not simplify (see
Figure 9b). In fact, as we explain in Section 5.1, including the
operator in the RTM allows for establishing a neat picture of the
complexity of computing time-evolved expectation values based on
the concept of operator entanglement.

This extra care concerning the directionality of the
compression is a consequence of having both forward and
return contours merged through the folding operation. For
this reason, quantities with only the forward contour, such as
the Loschmidt echo, do not present this problem. Indeed, for the
Loschmidt echo starting from either the t � 0 or t � T can be seen
as compressing from the side of a state evolving forwards or
backward in time, respectively.

FIGURE 9
Two-dimensional TN representing the RTMs Equations 19, 22. (a) In case of not including the operator, the partial contraction from t to T gives
U†(T − t)U(T − t) � I, so that the RTM TrB|R(T)〉〉〈〈L(T)| equals the projector |R(t)〉〉〈〈L(t)|. Because of this simplification, the associated ΛB(t) has only
one non-zero singular value. Hence, the compressed tMPSs have a bond dimension of 1 when starting from the bottom side. (b) If the operator is added,
then there is a clear connection with the evolution of either the state or operator depending on whether the partial contraction is done from the top
or bottom, respectively.
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5 On the complexity of process tensors
and of the influence functional

Having elucidated the connection between temporal MPS,
influence functionals, and process tensors, we can now employ
the techniques described in the previous section in order to
complete the picture of the cost of encoding influence functionals
as tensor networks, filling some of the gaps in the current
understanding of their complexity. We begin by recalling some
results on tMPS complexity in the literature and then discuss their
implications for process tensors.

5.1 Tensor network results based on
generalized temporal entanglement

As discussed in Section 4, in the framework of transverse
contractions, the generalized temporal entropy can be seen as a
measure describing the complexity of a faithful description of the
network contraction using tMPSs.

5.1.1 Expectation values of local operators
A first result on the complexity of the tMPS associated with the time

evolution of the expectation value of a local operator was given by
Carignano et al. (2024). As explained in Section 4.2, one can define
folded tMPSswith the insertion of the operatorO so that the complexity
of calculating 〈O(T)〉 is given in terms of the ranks of the RTMs
Equation 22. Depending on whether the RTM is obtained by tracing the
top or bottom subsystems, we explicitly construct the vectorized time-
evolved density matrix of the initial state, |ψ(t)〉 ⊗ |�ψ(t)〉 ≡ ΛA(t) or
the evolved operator O(T − t) ≡ ΛO

B(t), respectively (see Figure 9b), a
fact that can be used to determine the behavior of the ranks with time.

This is especially true for τOA(t), which can be expressed as the
multiplication ofΛO

B(t)with theA-subsystems of 〈〈L| and |RO〉〉, as
illustrated in Figure 9b. The A-subsystems of the vectorized
influence functionals can be described in terms of (�ΛL,R

A (t))1/2,
where �ΛL,R

A (t) are the analogies of ΛA(t) for the networks
〈〈L|L〉〉 and 〈〈RO|RO〉〉, respectively; see Carignano et al. (2024)
for details. Notice that the matrices �ΛL,R

A (t) carry only information
on the evolution of the state. Indeed, if we further assume reflection-
invariant systems, we have �ΛL

A(t) � �ΛR
A(t). We thus have

R τOA t( )( )≤min R ΛO
B t( )( ),R �ΛL

A t( )( ){ }, (23)

where R stands for the rank of the corresponding matrix.
Because the rank ofΛO

B(t) is dictated by its operator entanglement,
we obtain that the latter provides an upper bound to the computational
complexity of the transition matrices. If its growth is slower (i.e., sub-
volume law) than that of the entanglement of the time-evolved state,
this implies that the transverse contraction can provide a more efficient
compression of the TN associated with the expectation value, a property
that can be exploited numerically by truncating the tMPS starting from
the operator side (Carignano et al., 2024). Explicitly, ifR(ΛO

B(t)) only
increases polynomially with T, we have

R ΛO
B t( )( )≤ tα 0 R τOA t( )( )≤Tα ∀ t. (24)

On the other hand, in the case of ergodic dynamics, one expects
that the operator entanglement grows linearly with time (Prosen and

Pižorn, 2007), implying an exponential cost in representing
faithfully the IF for this problem. This was confirmed by
Carignano et al. (2024), where some of the specific cases
considered were found to saturate this bound.

5.1.2 Loschmidt echo
The transverse contraction framework also allows providing an

analytical estimate of the computational complexity of evaluating
the TN associated with the Loschmidt echo 〈ψ0|ψ(T)〉 for an
infinite system after a global quench at a critical point, as shown
by Carignano and Tagliacozzo (2024). This result was obtained by
exploiting the universal properties of the model at criticality and
deriving the corresponding properties from the underlying
conformal field theory (CFT). The relevant object for a
translation-invariant system is the (non-Hermitian) transfer
matrix EL(T) (cfr. Section 2) associated with spatial translations
in the system3 and its dominant left and right eigenvectors, which
can be represented as tMPSs.

The connection in the continuum limit was made again thanks
to the path integral formulation, which maps the quench geometry
to that of an infinite strip. CFT can then provide all the relevant
information on the spectrum of the transfer matrix along the strip,
as well as the generalized temporal entropy associated with a time-
like cut, which can be mapped back to the reduced transition
matrices τ(t). In particular, it was shown that for a quench to
the critical point, the generalized temporal entropy grows like
S ~ c log(T), with c being the CFT central charge. This
logarithmic growth at criticality (and thus the simulability of the
corresponding transition matrix) and the related closing of the gap
in the spectrum bear a strong resemblance to what happens in the
ground states of critical chains and the corresponding spatial
entanglement. In those cases, the opening of the gap as we move
away from the critical point should imply that away from criticality,
the generalized temporal entropies for the Loschmidt echo follow an
area law, guaranteeing an even more efficient simulability using
tMPSs. This is indeed the case, as confirmed by numerical
simulations by Carignano and Tagliacozzo (2024).
Complementing those observations, in Figure 10, we plot the
maximum value of the Rényi 2 entanglement entropies for the
Loschmidt echo at the critical point and close to it, showing the area
and logarithmic growths expected.

5.2 Connections with other approaches

It should now be clear that one of the reasons the tensor network
community has considered influence functionals and their
complexity—measured in terms of temporal entropy—is the hope
that these objects might be easier to encode than the evolution of
states and operators, which are generally exponentially difficult to
compress as simple tensor networks.

Recently, we have proposed using generalized temporal
entanglement, computed from the path integral of the

3 See also Sirker and Klümper (2005) and Andraschko and Sirker (2014) for

related works in this direction.
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expectation value of local operators, as a measure of the cost of
simulating these expectation values (Carignano et al., 2024). Prior
studies have instead analyzed the entanglement of independent
influence functionals 〈L| and |R〉 or the process tensors.

Numerical observations (Bañuls et al., 2009; Frías-Pérez and
Bañuls, 2022) have shown that the temporal entanglement of the
influence functional 〈L| grows logarithmically in some models and
linearly in time for others. Subsequent studies (Sonner et al., 2021;
Lerose et al., 2021b; Lerose et al., 2021c; Giudice et al., 2022; Lerose
et al., 2023) confirmed these findings, associating logarithmic
growth with integrability and linear growth with generic
dynamics. In Hastings and Mahajan (2015), a direct connection
was established between the spatial entanglement of a suitably
modified model and temporal entanglement, showing that linear
growth in time arises from a non-Hermitian link in the modified
model’s dynamics, where energy is continually injected. These
results were further validated through explicit calculations in
random and dual-unitary circuits (Foligno et al., 2023; Yao and
Claeys, 2024), where linear growth was found to be the generic
behavior of temporal entropy for the influence functional.

Some authors have suggested that space–time duality might
help overcome the entanglement barrier (Lerose et al., 2023). The
evidence gathered here, however, points to the contrary: for
ergodic systems, influence functionals seem to be
exponentially difficult to compress using temporal matrix-
product states (MPSs). This may seem counterintuitive as
ergodic systems observed locally are expected to exhibit
Markovian dynamics with little or no memory effects.
Consequently, one might expect that the quantum channel
governing the evolution of a local operator could be encoded
using a temporal MPS with a small bond dimension, naturally
leading to the exponential decay of correlations in time. However,
we will review why this is not the case.

The first piece of evidence comes from Carignano et al.
(2024), where it was shown that the bond dimension of a
temporal MPS encoding the evolution of a local operator is
upper-bounded by the bond dimension required to describe
the operator’s evolution itself. Given the results in Prosen and
Pižorn (2007) and subsequent works, the bond dimension

necessary to describe operator evolution in the Heisenberg
picture is expected to grow exponentially in time for ergodic
systems. Such a growth has even been proposed as a definition of
ergodicity. Consequently, the bond dimension of the temporal
MPS encoding the influence functional is also bounded by an
exponential function of time.

Building upon these insights, we incorporate findings from
quantum information studies on the complexity of the process
tensor in ergodic systems. Notably, the definitions of ergodicity
and quantum chaos remain debated. Here, we adopt the operational
definition introduced by Dowling et al. (2024), which generalizes the
classical notion that chaotic systems exhibit extreme sensitivity to
perturbations. In this framework, they define the “orthogonality of
butterfly flutters,” meaning that two orthogonal choices of
instruments applied to the same process tensor should produce
orthogonal system-environment states. Furthermore, such
orthogonality should not be rectifiable by a finite-depth unitary
transformation, encapsulating the notion of information
scrambling. Dowling et al. (2024) demonstrate that, under this
definition, the process tensor has maximal entanglement for any
space-time cut, implying that its temporal MPS representation must
have an exponentially large bond dimension.

By taking the partial trace of the process tensor over its spatial
degrees of freedom, we deduce that the influence
functional—representing a maximally mixed state—is similarly
encoded by an MPO with an exponentially large bond
dimension. Additionally, the fully scrambled entanglement
implies that this maximally mixed state cannot be factorized into
independent mixed states at each time step, unlike in toy models
built from swap tensors (Bañuls et al., 2009; Müller-Hermes et al.,
2012). Furthermore, Dowling et al. (2024) establish that the butterfly
flutter definition of ergodicity encompasses the linear growth of local
operator entanglement as a special case. Thus, we complement the
upper bound obtained by Carignano et al. (2024), which relies on
local operator entanglement growth, with results on the structure of
spatiotemporal entanglement in the process tensor, leading to the
conclusion that, in general, influence functionals of ergodic systems
exhibit linearly growing temporal entanglement and are
consequently difficult to compress as MPOs.

FIGURE 10
Examples of generalized second Rényi temporal entropies (S2) built from the reduced transitionmatrix for the Loschmidt echo for the Isingmodel in
a transverse field. We consider a spatially infinite system and plot the maximum of both real and imaginary parts of S2 as a function of time. Left: results at
the critical point, where we observe a logarithmic growth. Right: away from the critical point, the entropies saturate, exhibiting an area law behavior.
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Parallel findings in the many-body physics community further
support these conclusions. Studies on matrix elements of Floquet
circuits between initial and final singlet states (Ippoliti and Khemani,
2021; Lu and Grover, 2021; Ippoliti et al., 2022), which directly relate
to 〈L|L in the context of the Loschmidt echo, have shown that when
system dynamics are ergodic (as defined by the linear increase of
entanglement entropy in the evolved state), the temporal
entanglement of 〈L|L also grows linearly with the temporal
bipartition size. This confirms that even projections of the
process tensor are exponentially difficult to compress. This
behavior is a converse manifestation of the butterfly flutter
phenomenon: in an information-scrambling system, a specific
product state has support on exponentially many orthogonal
instruments.

A significant implication of these results is that despite
transverse evolution being dissipative (as discussed in earlier
sections), its strength in an ergodic system is insufficient to
induce an entanglement transition in its stationary states (Li
et al., 2019), which always remain in a volume-law phase as if
the evolution were unitary.

These findings suggest that encoding separate left and right
influence functionals in ergodic systems is exponentially hard.
However, in other contexts—such as many-body localized
dynamics—transverse evolution can induce an entanglement
transition, potentially simplifying process tensor encoding
(Ippoliti and Khemani, 2021; Lu and Grover, 2021; Ippoliti
et al., 2022).

Finally, these results raise concerns about the scalability of recent
algorithms in open quantum systems. Many assume an environment
initially in equilibrium with a thermal bath, which for integrable
environments has been shown to yield highly compressible influence
functionals (Makri and Makarov, 1995; Strathearn et al., 2018;
Cygorek et al., 2022). However, it remains unclear whether this
simplification arises from thermal equilibrium assumptions or from
the non-ergodic nature of the environment, which typically consists
of free oscillators. A similar question was explored by Ye and Chan
(2021), where structured baths undergoing unitary dynamics were
considered, demonstrating that the compressibility of the
environment’s influence functional strongly depends on
interaction strength. These observations reinforce the idea that
strongly interacting ergodic systems possess complex influence
functionals that are inherently difficult to compress.

6 Conclusion

In these notes, we have reviewed the connections among various
objects studied in different quantum physics communities within
the unifying framework of tensor networks. We have reviewed how
both the return probabilities defining the Loschmidt echoes and the
time evolution of local expectation values in a closed quantum
many-body system can be encoded in the contraction of
spatiotemporal tensor networks. Depending on the type of
evolution and the system under consideration, such TNs may
involve discretizing the path integral of a continuous system in
space and time or simply contracting the quantum circuits that
describe Floquet dynamics in lattice models. Regardless of these
specific details, we have shown that contracting spatiotemporal

patches of the tensor network results in the same objects: process
tensors. These process tensors have been studied for different
reasons in the quantum information community. In the context
of tensor networks for characterizing out-of-equilibrium dynamics
in many-body quantum systems, these objects are of interest due to
the assumption that they might be easier to compress as matrix-
product states than the full evolving states.

This view has so far been confirmed only for integrable systems,
where we have shown that the complexity of the influence functional
is upper-bounded by the local operator entanglement, which is
conjectured to grow only logarithmically with time (Carignano
and Tagliacozzo, 2024). Unfortunately, the same upper bound
indicates that for generic ergodic dynamics, the complexity of the
influence functional could grow exponentially with time. By
exploiting the connection between influence functionals and
process tensors reviewed here and using the definition of
ergodicity proposed by Dowling and Modi (2024), we find that
the upper bound obtained by Carignano and Tagliacozzo (2024) is
generally saturated. This implies that influence functionals for
ergodic systems are generically difficult to compress as temporal
matrix-product states. These findings align with the results of Lu and
Grover (2021) and Ippoliti et al. (2022), which analyze the scaling of
temporal entropy in the context of the Loschmidt echoes for
different classes of dynamics.

In parallel, in the open quantum systems community, there is a
similarly optimistic impression that influence functionals of
thermalized environments might be efficiently compressible as
matrix-product operators (Strathearn et al., 2018; Cygorek et al.,
2022). Initial results for Gaussian environments appear consistent
with the observation that integrable systems yield simple
environments. An intriguing question remains whether strongly
interacting ergodic environments at equilibrium can also be easily
compressible as temporal matrix-product operators, which, from
our perspective, has not yet been convincingly demonstrated, as
discussed by Park et al. (2024). We have also shown that extracting
influence functionals requires a set of tensor network algorithms
with strong connections to the density matrix renormalization
group methods for open systems. In the thermodynamic limit,
these algorithms are equivalent to those used to determine the
stationary state of quantum channels, which is described by the
spatial transfer matrix we defined.

The temporal entropy of the separated left and right influence
functionals (the leading left and right eigenvectors of such a transfer
matrix) turn out to not be gauge invariant. To address this, we have
begun defining generalized temporal entropies that directly account for
the overlap of the leading left and right eigenvectors, the left-right
influence functionals (Carignano et al., 2024). These entropies are
generally complex-valued; however, in some contexts, their real part
exhibits only a mild growth over time (Carignano and Tagliacozzo,
2024). This suggests the possibility of encoding the overlap of left and
right influence functionals using appropriate temporal matrix-product
operators. Furthermore, we have recently shown that such generalized
entropies can be measured in experiments by appropriately designed
quenches on replicated systems (Bou-Comas et al., 2024). Generalized
entropies thus give hope that the ergodic dynamics can still be efficiently
simulated with tensor networks.

Transforming this hope into a concrete tensor network strategy
is an active area of research. Currently, one of the main obstacles is
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to understand how to connect the scaling of a complex-valued
pseudo-entropy with the complexity of the corresponding
generalized transition matrix and its compressibility in terms of
tensor networks. Regardless of these open questions, we have
reviewed here how the field of partial contractions of
spatiotemporal tensor networks encoding the path integrals of
many-body quantum systems out of equilibrium, both in open
and closed scenarios, is relatively young and very promising,
having produced fertile connections and enhanced our
understanding of out-of-equilibrium dynamics. We thus firmly
believe that this field holds great potential for further breakthroughs.

While completing this manuscript, a new preprint (Milekhin
et al., 2025) that addresses topics related to those discussed here has
appeared on the arXiv.
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