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This year we celebrate 100 years of quantum mechanics (QM). Incorrect
interpretations of QM and incorrect mental models of the invisible details of
quantum phenomena lead to paradoxes. To explain these, we advocate the
statistical contextual interpretation (SCI) of quantum mechanics. State vectors
(wave functions) and various operators are purely mathematical entities that
permit quantitative probabilistic predictions. “State vector” describes an ensemble
of identically prepared physical systems, and a specific “operator” represents a
class of equivalent measurements of a physical observable. A collapse of
wavefunction is not a mysterious and instantaneous physical process; a
collapsed quantum state describes a new ensemble of physical systems
prepared in a particular way. A value of a physical observable, such as a spin
projection, associated with a pure quantum ensemble is a characteristic of this
ensemble created by its interaction with measuring instruments. Probabilities are
objective properties of random experiments in which empirical frequencies
stabilize. Following Einstein, SCI rejects the claim that QM provides a
complete description of individual physical systems, but it remains agnostic
about whether a more detailed subquantum description can be found or is
necessary. In conformity with Bohr contextuality, SCI rejects Bell-local and Bell-
causal hidden variable models. Nevertheless, by incorporating into a probabilistic
model contextual hidden variablemeasuring instruments, long distance quantum
correlations studied in Bell tests can be explained without evoking quantum
nonlocality or retro-causality. SCI allows the explanation of several quantum
phenomena without evoking quantum magic. SCI does not claim to provide a
complete description of quantum phenomena; in fact, it is unknown whether
quantum probabilities even provide a complete description of existing
experimental data. Time series of experimental data may contain much more
information than is obtained using empirical frequencies and histograms.
Therefore, predictable completeness of QM must be tested and not taken for
granted.
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1 Introduction

In 1925, Werner Heisenberg, Max Born, and Pascual Jordan developed matrix
mechanics (Heisenberg, 1925; Born and Jordan, 1925; Author anonymous, 2024a), the
first consistent formulation of quantum mechanics (QM). To commemorate this
achievement, 2025 has been declared the International Year of Quantum Science and
Technology (IYQ) by the United Nations.

Despite the incredible advances made in quantum science and technology over the past
century, there is still no consensus regarding its interpretation and limitations (Author
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anonymous, 2024b; Schlosshauer et al., 2013; Kupczynski, 2018a;
Kupczynski, 2024a). Incorrect interpretations of QM and incorrect
mental models of invisible details of quantum phenomena lead to
paradoxes and speculations about quantum weirdness and quantum
magic. Most of these paradoxes are due to the “individual”
interpretation, according to which an instantaneous collapse of
wave function describing individual physical system(s) is
triggered by a single measurement performed on one of
these systems.

We here review and advocate a statistical contextual
interpretation (SCI) which is free of paradoxes (Einstein and
Schilpp, 1949; Einstein, 1936; Ballentine, 1989; Ballentine, 1998;
Kupczynski, 2007; Kupczynski, 1973; Kupczynski, 1987a;
Kupczynski, 2005; Kupczynski, 2006; Kupczynski, 2015a;
Kupczynski, 2016a; Kupczynski, 2017a; Khrennikov, 1999;
Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016;
Allahverdyan et al., 2013). According to this interpretation, a
quantum state is not an attribute of an individual physical
system which can be changed instantaneously. The so-called
collapse of the wavefunction is not a mysterious physical process.
Quantum state/wavefunction is a mathematical entity representing
an equivalence class of subsequent preparations of the physical
systems. Quantum states together with specific operators
representing physical observables are used to make probabilistic
predictions for a statistical scatter of measured values of these
observables in well-defined experimental contexts. A value of a
physical observable, such as a spin projection, associated with a
pure quantum ensemble is a characteristic of this ensemble created
by its interaction with measuring instruments. Probabilities are
objective properties of random experiments in which empirical
frequencies stabilize. SCI rejects the claim that quantum
mechanics provides a complete description of individual physical
systems, but it remains agnostic on whether a more detailed
subquantum description can be found or is necessary. In
conformity with Bohr contextuality, SCI rejects Bell-local and
Bell-causal hidden variable models. Nevertheless, by
incorporation into probabilistic model contextual hidden
variables measuring instruments, the quantum correlations
studied in Bell tests can be explained without evoking quantum
nonlocality. SCI does not claim to provide a complete description of
quantum phenomena. In fact, it is not even known whether
quantum probabilities provide a complete description of existing
experimental data. Time series of experimental data may contain
much more information than is obtained using empirical
frequencies and histograms.

SCI (Kupczynski, 2006; Kupczynski, 2007; Kupczynski, 2016a;
Kupczynski, 2017a) is similar but not identical to Ballentine’s
statistical (Ballentine, 1989; Ballentine, 1998) and Khrennikov’s
Växjö interpretation (Khrennikov, 1999; Khrennikov, 2024;
Khrennikov, 2009; Khrennikov, 2016). In Ballentine’s statistical
interpretation, the quantum state also describes an ensemble of
similarly prepared systems, not individual systems. This
interpretation avoids the need for wave function collapse. It is
compatible with hidden variable theories but contrary to SCI and
Växjö interpretation it acknowledges that such theories must be
non-local to comply with Bell’s theorem (Ballentine, 1998). Växjö
interpretation combines realism at the subquantum level with the
contextuality of quantum observables. The value of an observable

depends on the measurement context, in conformity with Bohr’s
complementarity and contextuality. The quantum probabilities are
conditional probabilities. In contrast to SCI, it introduces the
concept of a “prespace,” suggesting that both classical and
quantum spaces are reductions of a more fundamental reality.

A probability can have a different meaning (Khrennikov, 1999;
Author anonymous, 2024c). In SCI, it is an objective property of a
random experiment in which empirical frequencies stabilize. Thus, a
probabilistic description of quantum phenomena can hardly be
considered a complete description of individual physical systems
(Einstein, 1936; Ballentine, 1989; Ballentine, 1998;
Kupczynski, 2006).

Therefore, Einstein believed that QM is an emergent theory and
that a more detailed description of quantum phenomena should be
found (Einstein and Schilpp, 1949; Einstein, 1936; Ballentine, 1989).
Bohr insisted that quantum probabilities were irreducible and that
QM provided a complete description of quantum phenomena and
experiments (Bohr, 1963; Bohr, 1987; Plotnitsky, 2009;
Plotnitsky, 2012).

Heisenberg (1927) demonstrated the uncertainty principle
according to which one may not measure simultaneously, with
arbitrary accuracy, a linear momentum p and a position x of a
sub-atomic particle, ΔxΔp≤ h, where h is a Planck constant. The
principle was generalized by Robertson (1929) and its precise
statistical meaning was given by Kennard (1927). We have two
experiments performed on two identically prepared beams/
ensembles of “particles”. In one experiment, we measure their
linear momenta and, in another, their positions. A statistical
scatter of experimental data is described by respective standard
deviations and σxσp ≤ ħ /2 where Z � h/2π. This interpretation only
refers to a statistical scatter of measurement outcomes and not to
positions and linear momenta of “particles” if no measurements are
performed. According to the Copenhagen interpretation (CI), all
speculations about the sharp unmeasured values of linear momenta
and positions of sub-atomic particles are meaningless, and QM does
not imply that an electron can be here and a meter away at the same
time (Kupczynski, 2024a; Kupczynski, 2024b), as incorrectly
claimed by several authors.

In 1935, Einstein, Podolsky and Rosen (Einstein et al., 1935)
proposed a thought experiment—the “EPR paradox”—intended to
demonstrate the incompleteness of quantum mechanics. They
considered two entangled particles which interacted in the past
moving away from each other in distant locations. According to the
Copenhagen interpretation (CI), measuring the position or
momentum of one particle would instantly give information
about the position or momentum of its distant partner without
disturbing it in any way. Thus, physical properties of objects exist
independently of measurement, contrary to CI. Bohr (1935)
explained that EPR inference requires different incompatible but
complementary experiments and that it could not provide more
information about an individual physical system than was
allowed by QM.

The EPR paradox was rephrased by Bohm (1951) in terms of
measurements of a particle’s spin. If you measure the spin of one
particle, you instantly know the spin of the other. According to QM,
outcomes are produced in irreducibly random ways, but in an ideal
EPR-B experiment they are perfectly correlated or anti-correlated in
specific randomly chosen experimental settings. This is called the
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“EPR-B paradox”, since a pair of fair dice cannot always produce
correlated outcomes (Mermin, 1985; Mermim, 1993; Kupczynski,
2017b; Kupczynski, 2020).

(Bell, 1965, 2004) abandoned irreducible randomness and
proposed the Local Realistic Hidden Variable Model (LRHVM)
in which outcomes are predetermined at a source. Clauser and
Horne (1974) abandoned predetermination and proposed the
Stochastic Hidden Variable Model (SHVM). LRHVM describes
entangled pairs/qubits as pairs of socks and SHVM as pairs of
dice. In these models, correlations between distant outcomes
coded ±1 must obey Bell–CHSH inequalities (Clauser et al., 1969).

Later, hidden variables were assumed to represent all common
causes of events in distant laboratories, and the Local Hidden
Variable Model (LHVM) (Mermin, 1993; Bell, 2004; Valdenebro,
2002; Wiseman, 2014) could be rejected in several Bell tests (Hensen
et al., 2015; Giustina et al., 2015; Shalm et al., 2015; Handsteiner
et al., 2017; The BIG Bell Test Collaboration, 2018; Rosenfeld et al.,
2017; Zhang et al., 2022; Storz et al., 2023).

Since Bell–CHSH inequalities are violated by some quantum
predictions and by experimental data, the majority of the physics
community believes that no other locally causal explanation of
quantum correlation is possible. Therefore, nature does exhibit
non-locality, and entangled particles can influence each other
instantaneously across huge distances. This is a source of
extraordinary metaphysical speculation about experimenters’
freedom of choice, retro-causality, quantum nonlocality, and
quantum magic.

It has been widely explained that such speculations are
unfounded (Kupczynski, 2006; Kupczynski, 2007; Kupczynski,
2016a; Kupczynski, 2017a; Kupczynski, 2018a; Khrennikov, 1999;
Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016;
Allahverdyan et al., 2013; Kupczynski, 1973; Kupczynski, 1987a;
Kupczynski, 2005; Kupczynski, 2015a; Accardi, 1981; Accardi et al.,
2002; Accardi, 2005; Accardi and Uchiyama, 2007; Aerts, 1982;
Aerts, 1986; Aerts et al., 2000; Boughn, 2022; Czahor, 1988;
Dzhafarov, 2021; Fine, 1982; Hance and Hossenfelder, 2022; Hess
and Philipp, 2005; Hess, 2014; Hess et al., 2009; Hess et al., 2016;
Hess, 2022; Jaynes and Skilling, 1989; Jung, 2017; Khrennikov, 2007;
Khrennikov, 2008; Khrennikov, 2019; Khrennikov, 2020a;
Khrennikov, 2022; Kupczynski, 1987b; Khrennikov, 1986;
Khrennikov, 2012; Khrennikov, 2014; Khrennikov, 2018b;
Khrennikov, 2021; Khrennikov, 2023a; Khrennikov, 2024a;
Khrennikov, 2024b; De Muynck et al., 1994; De Muynck, 2002;
Nieuwenhuizen, 2009; Nieuwenhuizen, 2011; Nieuwenhuizen and
Kupczynski, 2017; Peres, 1978; Pitovsky, 1983; Pitovsky, 1994; De la
Peña et al., 1972; Zhao et al., 2008).

• In spin polarization correlation experiments (SPCE) and other
Bell tests, we have four incompatible random experiments for
different pairs of settings. LRHVM use a unique probability
space and a joint probability distribution to describe these
experiments, what is only possible in rare circumstances, and
what is clearly incompatible with experimental protocols in
Bell Tests (Kupczynski, 2007; Kupczynski, 2016a; Kupczynski,
2017a; Khrennikov, 1999; Kupczynski, 1987a; Kupczynski,
2005; Kupczynski, 2015a; Kupczynski, 2017b; Accardi et al.,
2002; Accardi, 2005; Accardi et al., 2007; Accardi and
Uchiyama, 2007; Aerts, 1982; Aerts, 1986; Czahor, 1988;

Fine, 1982; Hess and Philipp, 2005; Hess, 2014; Hess et al.,
2009; Hess et al., 2016; Hess, 2022; Khrennikov, 2007;
Khrennikov, 2008; Khrennikov, 2019; Khrennikov, 2020a;
Khrennikov, 2022; Kupczynski, 2024c; Pitovsky, 1994; De la
Peña et al., 1972).

• In 1982, Arthur Fine was the first to clearly demonstrate that
the following statements are mutually equivalent (Fine, 1982).
1) There is a deterministic hidden-variables model for the
experiment. 2) There is a factorizable, stochastic model. 3)
There is one joint distribution for all observables of the
experiment, returning the experimental probabilities. 4)
There are well-defined, compatible joint distributions for all
pairs and triples of commuting and non-commuting
observables. 5) The Bell inequalities hold.

• Bell and CHSH inequalities are trivial algebraic properties of
experimental spreadsheets (Kupczynski, 2020; Hess and
Philipp, 2005; Kupczynski, 2018b; De Raedt et al., 2017; De
Raedt et al., 2023; De Raedt et al., 2024) containing
quadruplets of ±1 which are, in fact, samples drawn from a
statistical population described by some joint probability
distribution of four compatible random variables. The
outcomes of Bell tests are displayed using four spreadsheets
each containing only couples ±1. The violation of Bell–CHSH
inequalities only provides the evidence that the data in these
four spreadsheets cannot be reshuffled to form quadruples (De
Raedt et al., 2023; De Raedt et al., 2024).

• In QM, interactions of instruments with physical systems
during the measurement process may not be neglected, and
outcomes are not passively registered pre-existing values of the
physical observables. Therefore, the Bell-causal hidden
variable model suffers from a theoretical “contextuality
loophole” (Kupczynski, 2015a; Kupczynski, 2017b;
Kupczynski, 2020; Kupczynski, 2021; Kupczynski, 2023a;
Kupczynski, 2024e; Kupczynski, 2024a; Nieuwenhuizen,
2009; Nieuwenhuizen, 2011; Nieuwenhuizen and
Kupczynski, 2017) because it fails to correctly include
setting-dependent variables that describe measuring
instruments at the moment of measurement.

A detailed discussion of EPR-type paradoxes and Bell Tests in
the spirit of SCI may be found in Kupczynski (2006), Kupczynski
et al. (2007), Kupczynski (2016a), and in a dedicated section of this
study. As we conclude in Kupczynski (2024b) and Kupczynski
(2024c), Bell tests allow only the rejection of probabilistic
couplings provided by Bell-local and Bell-causal hidden variable
models. If contextual variables, describing varying experimental
contexts, are correctly incorporated into a probabilistic model,
then Bell–CHSH inequalities cannot be proven, and nonlocal
quantum correlations may be explained intuitively.

This study is organized as follows. Section 2 recalls different
definitions of probability and Bertrand`s paradox. We explain that
in physics, probabilities are objective properties of random
experiments in which empirical frequencies stabilize. Section 3
compares classical and quantum observables and filters. Section 4
recalls EPR-B paradoxes and explains them using SCI. In Section 5,
quantum predictions for an ideal EPR-B experiment are
derived. Section 6 gives an explanation of how Bell–CHSH
inequalities are trivial arithmetic properties of N×4 spreadsheets
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containing ±1 entries and can be rigorously derived only for random
experiments described by four binary jointly-distributed random
variables. Section 7 discusses hidden variable models proposed to
explain EPR-B experiments. Section 8 is about loophole free Bell
Tests, their interpretation, and their implications. Section 9 presents
a contextual hidden variable model, which allows an explanation of
long-range correlations observed in Bell tests. A more detailed
analysis of existing time-series of data in order to elucidate the
problem of completeness of quantum mechanics is advocated in
Section 10. Additional conclusions are presented in Section 11.

2 Probability and Bertrand paradox

Probability and randomness are subtle notions long debated by
mathematicians and philosophers. There are several definitions of
probability (Khrennikov, 1999; Author anonymous, 2024a; Author
anonymous, 2024b).

Classical probability is the ratio of the number of favorable
outcomes to the total number of possible outcomes. For example, the
probability of drawing a black king from a deck of 52 cards is 2/52 =
1/26. Geometric probability is the probability that a point chosen at
random within a certain geometric figure will satisfy a given
condition, and it is calculated as the ratio of the area (or length,
volume, etc.) of the favorable region to the area of the entire region.
For example, the probability of hitting a specific region on the
dartboard can be calculated by dividing the area of that region by the
total area of the dartboard.

Frequentist probability is the relative frequency of occurrence of
an experiment’s outcome “in the long run” of outcomes
(theoretically if the experiment could be repeated an infinite
number of times). It is an objective property of a random
experiment. Another objective probability is propensity, which is
defined as the tendency of some experiments to yield a certain
outcome, even if they are performed only once. A subjective
probability is based on the personal judgment of an agent and
quantifies her degree of belief of how likely an event is to occur.

The limitations of the classical and geometric probabilities
became evident due to Bertrand’s paradox. This demonstrates
how different methods of defining “randomness” can lead to
different probabilities for the same event. In 1889, Bertrand
posed the following problem. Consider an equilateral triangle
inscribed in a circle. What is the probability that a randomly
chosen chord of the circle is longer than a side of the triangle?
He provided three different methods to choose a random chord,
each yielding a different probability (Bertrand, 1889; Author
anonymous, 2024c).

Bertrand’s paradox can be rephrased in a more intuitive way
(Kupczynski, 1987a). If we consider two concentric circles on a plane
with radii R andR/2 respectively, we can askwhat the probability P is that
a chord of the larger circle chosen at random cuts the smaller one at least
one point? The various answers seem to be equally reasonable. If we
divide the ensemble of all chords into sub-ensembles of parallel chords,
we find that P = ½. If we consider sub-ensembles of chords having the
same beginning, we find that P = ⅓. Finally, if we choose midpoints of
chords lying in small circle, we find that P = ¼.

The solution of Bertrand’s paradox is simple. Different
probabilistic models leading to different answers correspond to

random experiments performed using different specific
experimental protocols. It proves the contextual character of
probabilities and their intimate relation to specific random
experiments (Kupczynski, 2015a). Therefore, the probability of
obtaining “heads” in a coin flipping experiment using a specific
coin and a specific flipping device is neither a property of the coin
nor of the flipping device. It is only a property of the whole
experiment: “flipping this particular coin with that particular
flipping device.” This is why in physics, probabilities are objective
properties of phenomena and random experiments in which
empirical frequencies stabilize.

3 Classical versus quantum: properties,
filters, and observables

In classical physics, measurement outcomes may contain
experimental errors, but measurements are assumed to be non-
invasive, meaning that they do not change the properties they
measure. Therefore, macroscopic physical systems are described
by properties pi (i = 1, . . . ,n) quantified by the values of classical
compatible observables which can be measured in any order.

If we have a mixed statistical ensemble (a beam) B of
macroscopic systems, we can choose systems having particular
properties using classical filters. A classical filter Fi or a macro
selector is a device which passes only through systems having a
property pi. Classical filters operate according to Boolean yes-or-no
logic. If we have n different properties, we have n filters
corresponding to them. A lattice of classical filters have simple
properties: Fi Fj =Fj Fi Fj =Fj Fi. There also exists a maximal filter
F= F1 F2 . . .Fn which transforms a mixed statistical ensemble into a
pure statistical ensemble in which all the systems have exactly the
same properties (Kupczynski, 2015a). Mixed statistical ensembles
of physical systems can be described by a joint probability
distribution of random variables associated with measured
physical observables.

In quantum experiments, the information obtained about
invisible physical systems is indirect and obtained from their
interactions with macroscopic measuring instruments. As Bohr
correctly insisted, the atomic phenomena are characterized by
“. . .the impossibility of any sharp separation between the
behaviour of atomic objects and the interaction with the
measuring instruments which serve to define the conditions
under which the phenomena appear” (Bohr, 1987, v. 2,
pp. 40–41). Quantum observables have the following properties
of Bohr-contextuality (Khrennikov, 2020b; Kupczynski, 2021): the
output of any quantum observable is indivisibly composed of the
contributions of the system and the measurement apparatus.

The formalism of QM was inspired by optical experiments with
polarized light. Linearly polarized light passes without noticeable
attenuation by a subsequent identical polarizer. The intensity of
linearly polarized light after a passage through another polarizer is
reduced according to Malus law � I0 cos 2 θ , where I0 is the initial
intensity and θ is the angle between the light’s initial polarization
direction and the axis of the polarizer.

Discrete atomic spectral lines and the photoelectric effect proved
that exchanges of energy between electromagnetic field and matter are
quantized, and “carriers” of quantized exchanged energy are called
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“photons.” Therefore, linearly polarized monochromatic light is usually
represented as a beam of linearly polarized photons carrying energy h].
This mental picture is misleading because we cannot see photons—they
are not point-like objects. When a sophisticated photon detector, after
several steps of signal enhancement, produces a click, we conclude that
a photon was detected. The intensity of light is now measured by
counting clicks on detectors.We say that each linearly polarized photon
has a probability (propensity)� cos 2 θ to pass through a polarizer if θ is
the angle between the direction of the photon’s initial polarization and
the axis of the polarizer.

After passing through a quantum filter, the linear polarization of
light becomes a contextual property of photons. A quantum filter Fi
is a device which creates a contextual property “i”: passing by Fi. A
physical system having a property “ i” has a probability (propensity)
pij to pass through another filter Fj, acquiring after the passage a new
property“ j.”Quantum filters are idempotent, Fi Fi = Fi , but in general
they do not commute Fi Fj ≠Fj Fi, and the lattice of quantum filters is
isomorphic to the lattice of projectors on subspaces of a Hilbert space.
Quantum filters are not selectors of pre-existing attributes of physical
systems but are creators of the contextual properties defined above
(Kupczynski, 2015a).

Incompatible filters, such as polarizers with non-parallel axes, create
incompatible contextual properties which cannot be measured
simultaneously and, if measured in a sequence a previous contextual
property, is destroyed in a new measurement. As explained in the
preceding section, the probabilities are objective properties of
phenomena and random experiments, and thus considering
propensity as the property of individual physical systems (here,
invisible photons) is in fact unfounded. This is why vectors in SCI
quantum state are not considered to be properties of the individual
physical systems. Treating a wavefunction as an attribute of the
individual physical system leads to the EPR paradox, which is
discussed in the next section.

4 EPR paradox and statistical
contextual interpretation

Resumed here is the discussion of the EPR paradox in
Kupczynski (2016a). Before the publication of the EPR paper, it
was believed that:

A1: Any pure state of a physical system is described by a specific
unique wavefunction Ψ.

A2: Any measurement causes a physical system to jump
instantaneously into an eigenstate of the dynamical variable
being measured. This eigenstate becomes a new wavefunction
describing a state of the system.

A3: A wave function Ψ provides a complete description of a pure
state of an individual physical system.

EPR considers two particular individual systems, I + II, in a pure
quantum state; they interacted in the past, separated, and evolved freely
afterward (Einstein et al., 1935). Using A2, they concluded that

• A single measurement performed on one of the systems—for
example, on system I—gives instantaneous knowledge of the
wave function of system II moving freely far away.

• By choosing two different incompatible observables to be
measured on system I, it is possible to assign two different
wave functions to system II (the same physical reality: the
second system after the interaction with the first).

Since a measurement performed in a distant location on system I
does not disturb system II in any way, according to A1 and
A3 system II should be described by a unique wavefunction and
not by two different wave functions. Moreover, these wave functions
are eigenstates of two non-commuting operators that represent
incompatible physical observables which allow indirect deduction
of the values of these incompatible physical observables for the same
system II without disturbing it in any way which contradicts
Heisenberg uncertainty relations and CI.

EPR discussed particle positions and momenta, and Bohm
discussed an experiment in which a source produces pairs of
particles prepared in a spin singlet state (Bohm, 1951). One of a
pair (photon or electron) is sent to Alice and another to Bob in
distant laboratories. According to A1, each pair of photons is
described by a state vector:

Ψ � +| 〉P −| 〉P − −| 〉P +| 〉P( )/ �
2

√
. (1)

—where | + 〉P and | − 〉P are state vectors corresponding to
photon states in which their spin is “up” or “down” in direction
P, respectively. If we measure a spin projection of a photon I on
direction P, we have an equal probability of obtaining result “1” or
“–1”. If we obtain “1,” a reduced state vector of the photon II is
| − 〉P; if we obtain “-1,” a reduced state vector of the photon II is
| + 〉P. By choosing direction P for the measurement to be
performed on photon I, when “photons are in flight and far
apart” we can assign different incompatible reduced state vectors
to the same photon II. In other words, we can predict with certainty
and without in any way disturbing the second photon that the
P-component of the spin of photon II must have the opposite value
to the value of the measured P- component of the spin of photon I
(Ballentine, 1998). Therefore, for any direction P, the P-component
of the spin of photon II has unknown but predetermined value
which contradicts QM and is called the “EPR-B paradox”.

Bohr (1935) promptly replied to the EPR paper and explained
that two different wave functions could be assigned to system II
only in two different incompatible experiments in which both
systems were exposed to different influences before the
measurement on system I was performed. In order to make
predictions concerning the individual physical systems in EPR
scenario 1, much more detailed knowledge of how a particular
pair was prepared in each of these incompatible experiments is
necessary (Kupczynski, 2006).

In 1936, Einstein advocated a purely statistical interpretation of
QM and explained that the EPR paradox disappears because “. . .Ψ
function does not, in any sense, describe the state of one single
physical system and reduced wave functions describe different sub-
ensembles of systems” (Einstein, 1936). This statistical
interpretation has been generalized and promoted with success
by Ballentine 1989 and Ballentine 1998: “. . .the habit of
considering an individual particle to have its own wave function
is hard to break . . . though it has been demonstrated
strictly incorrect”.
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According to the statistical contextual interpretation of QM
(SCI) (Ballentine, 1998; Kupczynski, 2006; Kupczynski, 2007;
Kupczynski, 2016a; Khrennikov, 2009; Allahverdyan et al., 2013):

1. A state vector Ψ is not an attribute of a single electron, photon,
trapped ion, quantum dot, etc. A state vector Ψ or a density
matrix ρ describe only an ensemble of identical state
preparations of some physical systems.

2. A wave function reduction is neither instantaneous nor non-local.
In an EPR experiment, a state vector describing system II obtained
by reduction of an entangled state (Equation 1) of two physical
systems I + II describes only a sub-ensemble of systems II being
partners of those systems I for which a measurement of some
observable gave the same specific outcome. Different sub-
ensembles are described by different reduced state vectors.

3. A value of a physical observable, such as a spin projection, is
not a predetermined attribute of a system but is a property of a
pure ensemble of identically prepared physical systems created
in the interaction with a measuring instrument (Kupczynski,
1987b, 2015a).

The solution of the EPR-B paradox given by SCI is simple: the
wave function reduction is not instantaneous, and a reduced one-
particle state | + 〉P “describes” only an ensemble of partners of the
particles I which were detected to have “spin down” in the
direction P. For different directions P, we perform specific
experiments, and we obtain a different sub-ensemble of
particles II. Strong correlations between distant outcomes in
EPR experiments are due to contextuality and various
conservation laws. More detailed discussion of EPR and EPR-B
paradoxes may be found, for example, in (Kupczynski, 2009).

5 Kolmogorov and quantum
probabilistic models

Outcomes of any random experiment are described by a specific
probability space Ω, σ-algebra of its all sub-ensembles F, and a
probabilistic measure μ. A sub-ensemble E ∈ F is an event
corresponding to a subset of possible outcomes of a random
experiment. A probability of observing this event is given by
0≤ μ(E)≤ 1. In statistics, instead of Ω we use a sample space S
which contains only the possible outcomes of a studied random
experiment.

Every random experiment is defined by its experimental context
C (Kupczynski, 2017a; Kupczynski, 2015a; Khrennikov, 1999;
Khrennikov, 2024; Khrennikov, 2009; Khrennikov, 2016;
Khrennikov, 2022). If its outcomes are discrete, it may be
described by a random variable A and a probability distribution

P a|C( ) � P A � a C|( ) (2)

and its expectation value

E A|C( ) � ∑
a

aP a|C( ). (3)

In quantum experiments, the context of an experiment is
determined by a preparation of an ensemble of physical systems

represented by a density operator ρ (or a state vector ψ) and by a
Hermitian operator Â representing the experimental set-up used to
measure a physical observable A. Instead of (Equations 2, 3), we have

P a
∣∣∣∣∣∣∣ψ, Â( ) � 〈a

∣∣∣∣ψ〉∣∣∣∣ ∣∣∣∣2, (4)

—where | a〉 is a corresponding eigenvector of the operator Â and

E A
∣∣∣∣ψ, Â( ) � 〈ψ Â

∣∣∣∣ ∣∣∣∣ψ〉. (5)

If a density matrix ρ is used to describe a pure or mixed prepared
ensemble, then

E A
∣∣∣∣ρ, Â( ) � Tr ρÂ( ). (6)

In an idealized EPR-B experiment (Equation 1), which is
impossible to implement, a source sends two correlated signals
which arrive to distant laboratories, pass by polarization
analyzers, and produce coincident counts on detectors. The
experimental situation is much more complicated since clicks are
not registered at the same time and one has to decide which clicks
are correlated by introducing specific time windows and deciding
how to use them in order to define coincident clicks (Kupczynski,
2017b; 2021).

An idealized EPR-B experiment is described by the following
probabilistic model (Kupczynski, 2020, 2023a, 2024a; Cetto et al.,
2020). Randomly chosen polarization measurement settings are (x, y),
prepared ensemble E is described by ρ� |ψ〉〈ψ | , Âx � �σ · �nx and B̂y �
�σ · �ny represent spin projections on the corresponding unit vectors, and

E AxBy( ) � Tr ρÂx ⊗ B̂y( ) � 〈ψ
∣∣∣∣ Âx ⊗ B̂y

∣∣∣∣ψ〉 � ∑
αβ

αβpxy α, β( )
� − �nx · �ny � −cos θxy( ),

(7)
—where Âx ⊗ B̂y|αβ〉xy � αβ|αβ〉xy, pxy(α, β) � |〈ψ|αβ〉xy|2 and
α = ±1 and β = ±1 (Kupczynski, 2024b; Cetto et al., 2020).

The model is contextual because a triplet ρ, Âx, B̂y{ } changes if a
preparation or defined by Equations 4-7 experimental settings
change. For each choice of settings (x, y), QM provides a specific
Kolmogorov model.

Since E(AxBy) � −1 for θxy � (θx − θy) � 0, it has been
incorrectly claimed that QM predicts strict anti-correlations of
two space-like events produced in an irreducibly random way.
Since two space-like events produced randomly cannot be
correlated (E(AxBy) � 0), irreducible randomness was
abandoned, and several hidden variable models were proposed to
explain the correlations predicted by QM. In fact, QM does not
predict strict correlations for EPRB-type experiments. Directions
can only be defined by some small intervals Ix and Iy containing
angles close to θx and θy respectively. Therefore, the correct quantum
prediction for expectation values is (Kupczynski, 2016a, 1987b)

E AxBy( ) � − ∫∫
IxIy

cos θ1 − θ2( ) dρx θ1( )dρy θ2( ). (8)

After defining in the next section Bell–CHSH inequalities, we
will discuss several hidden variable models proposed to explain
quantum correlations Equations 7, 8.
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6 Experimental spreadsheets and
Bell–CHSH inequalities

Let us consider a random experiment described by four jointly
distributed binary random variables (A, A’, B, B’) taking the values ±
1. In each trial of this experiment, four outcomes (a. a, b, b’) are
obtained and displayed in an N×4 experimental spreadsheet
(Kupczynski, 2020). Since b = b’ or b = -b’ thus

s| | � ab − ab′ + a′b + a′b′
∣∣∣∣ ∣∣∣∣ � a b − b′( )∣∣∣∣ ∣∣∣∣ + a′ b + b′( )∣∣∣∣ ∣∣∣∣≤ 2. (9)

From Equation 9 we obtain CHSH inequality:

S| |≤ ∑
a,a′,b,b′

ab − ab′ + a′b + a′b′
∣∣∣∣ ∣∣∣∣p a, a′, b, b′( )≤ E AB( )-E AB′( )∣∣∣∣ ∣∣∣∣

+ E A′B( ) + E A′B′( )∣∣∣∣ ∣∣∣∣≤ 2,
(10)

—where p(a, a′, b, b’) is a joint probability distribution of (A, A′, B,
B’), and E(AB) � ∑a,babp(a, b) is a pairwise expectation of A and B
obtained using a marginal probability distribution p(a, b) �
∑a′,b′p(a, a′, b, b′) (Kupczynski, 2020).

If all pair-wise expectation values in Equation 10 are estimated
using the same N×4 experimental spreadsheet, then the inequality
(Equation 10) is strictly obeyed by all finite samples. The inequalities
(Equation 10) are in fact necessary and sufficient conditions for the
existence of a joint probability distribution of only pairwise
measurable ±1-valued random variables (Fine, 1982). The
inequalities (Equation 10) are also valid if |A|≤1, |A’|≤1|, |B|≤1,
and |B’|≤1. It is now well known that cyclic combinations of pairwise
marginal expectations of jointly distributed binary random variables
must obey non-contextuality inequalities (NCI) (Araujo et al., 2013).
Bell–CHSH inequalities are a special case of NCI.

If we have four N×4 spreadsheets containing outcomes from four
runs of the same random experiment, as discussed above, but we use
each of these spreadsheets to estimate only one pairwise expectation E
(A, B), E(A,B′), E (A’. B), and E(A’. B’) respectively, then 50% of the
time, these estimates violate the inequality (Equation 10) (Kupczynski,
2016a; Kupczynski, 2023a; Gill, 2014), Only if N increases to infinity the
probability of the violation of the inequality (Equation 10) tends to 0.
Therefore, the violation of CHSH-inequality by experimental data in
EPR-type experiments allows only the evaluation of the plausibility of
particular probabilistic models (Kupczynski, 2024c). The next section
will discuss such models.

7 Local realistic models for the
EPR–Bohm experiment

7.1 Local realistic hidden variable
model (LRHVM)

In an attempt to explain correlations in an ideal EPR-B
experiment, (Bell, 1965, 2004; Kupczynski, 2015a, 2024d)
proposed a probabilistic model in which outcomes registered in
distant laboratories are predetermined at a source:

E AxBy( ) � ∑
λ∈Λ

Ax λ( )By λ( )P λ( ), (11)

—where Ax( λ) � ± 1 and. By( λ) � ± 1 . In LRHVM, we have four
jointly distributed random variables (Ax(L), By(L), Ax’(L), By’ (L)) being
functions of the same random variable L. The random variable L
describes a classical random experiment in which λ is sampled with
replacement from a probability space Λ. For each value of λ, all
outcomes can be calculated. LRHVM describes entangled pairs as
pairs of socks, which can have different sizes and colors; for
example, Harry draws a pair of socks, sends one sock to Alice and
another to Bob, who in function of (x, y) record corresponding
properties of color or size.

Since (Ax(L), By(L), Ax’(L), By’ (L)) are jointly distributed, they
thus obey CHSH inequality:

S| | � E AxBy( ) + E AxBy′( ) + E Ax′By( ) − E Ax′By′( )∣∣∣∣∣ ∣∣∣∣∣≤ 2. (12)

Bell knew that in the EPR-B experiment, (Ax, By, Ax’, By’) are not
jointly measurable and that their joint probability distribution does
not exist. He did not notice that to prove his inequalities, he was tacitly
using the existence of a joint probability distribution of (Ax(L), By(L),
Ax’(L), By’ (L)). As explained in the preceding section, the inequalities
(Equations 10 and 12) can be rigorously proven for a random
experiment outputting in each trial four ±1 outcomes.

7.2 Stochastic hidden variable model (SHVM)

(Clauser and Horne, 1974; Kupczynski, 2024e) proposed a
stochastic hidden variable model (SHVM) in which λ does not
determine outcomes in a given trial but only their probability.

Using the notation of Big Bell Test collaboration (The BIG Bell
Test Collaboration, 2018):

P(a, b|x, y) � ∑
λ

P a|x, λ( )P(b|y, λ)P λ( ), (13)

—where P(-|-) denotes a conditional probability. Equation 13 for a
fixed setting (x, y) describes a family of independent random
experiments labelled by λ and

E AxBy( ) � ∑
λ

E A|x, λ( )E B
∣∣∣∣y, λ( )P λ( ). (14)

Pair-wise expectations defined by Equation 13 are also
constrained by CHSH inequalities Equation 12. In SHVM,
entangled photon pairs are described as pairs of dice, and the
correlations which can be created in this model are quite limited.

7.3 Local causal hidden variable
model (LHVM)

LHVM is a generalization of the preceding two models, where λ
represents all possible common causes of events happening in
distant laboratories, and “. . .they may include the usual quantum
state; they may also include all the information about the past of
both Alice and Bob. Actually, the λ′s may even include the state of
the entire universe” (The BIG Bell Test Collaboration, 2018;
Kupczynski, 2024a) —except that inputs (x, y) cannot depend
on them.
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P a, b, x, y( ) � ∑
λ

P a|x, λ( )P b y, λ)P(x, y∣∣∣∣ ∣∣∣∣λ( )P λ( ) (15)

and

P x, y
∣∣∣∣λ( ) � P x, y( ). (16)

The condition (Equation 16) is called “measurement
independence,” experimenters’ “freedom-of-choice” (FoC) or “no
conspiracy” (The BIG Bell Test Collaboration, 2018; Hall, 2010;
Myrvold et al., 2020; Blasiak et al., 2021; Kupczynski, 2024b, 2022).
Since correlation does not mean causation, this terminology is based
on the incorrect causal interpretation of conditional probabilities
(Kupczynski, 2017a, 2021, 2023a, 2024a, 2024b, 2024c, 2022). In a
probabilistic model, P(x, y|λ) ≠ P(x, y) does not imply that FoC is
constrained by causal influences.

If λ represents ontic properties of entangled pairs or common
causes, it thus cannot not depend in any sense on chosen settings:

P λ, x, y( ) � P λ( )P x, y( )0P λ
∣∣∣∣x, y( ) � P λ( ). (17)

However, hidden variables can also describe measuring
instruments, so they can depend on the chosen settings
(Kupczynski, 2006; Kupczynski, 2016a; Kupczynski et al., 2007).
As Theo Nieuwenhuizen explained, the model (Equations 13–16)
suffers from a theoretical contextuality loophole because the hidden
variables describing measuring instruments had not been included
(Nieuwenhuizen, 2009; Nieuwenhuizen, 2011; Nieuwenhuizen and
Kupczynski, 2017).

There is no doubt that experimenters can freely choose binary
random labels of their setting (x, y), and this is what they do (Hensen
et al., 2015; Giustina et al., 2015; Shalm et al., 2015; Handsteiner
et al., 2017; The BIG Bell Test Collaboration, 2018; Rosenfeld et al.,
2017; Zhang et al., 2022; Storz et al., 2023). However, this random
choice of labels (x, y) is followed by a choice of corresponding
specific instruments and setting-dependent measuring procedures.
Since measuring instruments play an active role in quantum
experiments, it is reasonable to assume that outcomes depend
not only on setting-independent hidden variables that describe
prepared physical systems but also on setting-dependent hidden
variables that describe local instruments and measuring procedures;
and thus statistical independence (Equation 17) is violated:

P λ
∣∣∣∣x, y( ) ≠ P λ( ). (18)

Bell was the first to notice that if hidden variables depend on
settings; then Bell–CHSH inequalities could not be derived.
However, since Equation 18 implied the violation of Equation 16,
this option was rejected as violating FoC (Kupczynski, 2017a; The
BIG Bell Test Collaboration, 2018; Myrvold et al., 2020; Kupczynski,
2023a, 2024a, 2024b). As explained above, the violation of Equation
16 does not constraint FoC.

Bell clearly demonstrated that LRHVM is inconsistent with QM
because there exist four particular experimental settings for which,
using Equation 7, one obtains |S|≤ 2

�
2

√
, which significantly violates

Equation 12. Various Bell Tests (Hensen et al., 2015; Giustina et al.,
2015; Shalm et al., 2015; Handsteiner et al., 2017; The BIG Bell Test
Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al., 2022; Storz
et al., 2023) were performed in order to check the plausibility of local
hidden variable models. Before explaining a contextual hidden

variable model in which hidden variables depend on settings, the
next section discusses recent Bell tests and their implications.

8 Bell tests and what they have proven

Bell tests are inspired by an ideal EPR experiment. Entangled
pairs are created at a source and sent to distant locations or are
created directly in distant laboratories using specific synchronized
preparations/treatments such as entanglement swapping or
entanglement transfer protocols (Kupczynski, 2024a). Despite
differences, experimental protocols are subdivided into three steps:

1) Preparation of an ensemble E of pairs of entangled
physical systems.

2) Random local choice of labels/inputs (x, y) using random
number generators (RNG), and signals coming from distant
stars (Handsteiner et al., 2017; The BIG Bell Test
Collaboration, 2018) or/and human choices (The BIG Bell
Test Collaboration, 2018; Rosenfeld et al., 2017; Zhang et al.,
2022; Storz et al., 2023). This study uses four pairs of labels/
inputs—(x, y), (x, y’), (x’, y), and (x’, y’) —which denote four
incompatible experimental settings/contexts.

3) Implementation of correlated and synchronized
measurements in distant locations and readout of binary
outcomes (a, b) (called outputs), which are the coded
information corresponding to clicks on different distant
detectors, etc.

In Bell Tests to each randomly chosen input (x,y)
corresponds a specific pair of correlated distant experiments.
Outcomes of these experiments are described by four pairs of
binary random variables: (Axy, Bxy), (Axy’, Bxy’), (Ax’y, Bx’y), and
(Ax’y’, Bx’y’) (Kupczynski, 2024a). Our notation is inspired by the
contextuality-by-default approach (CbD) (Kupczynski, 2021;
Dzhafarov and Kujala, 2014; Dzhafarov et al., 2015; Kujala
et al., 2015) in which random variables measuring the same
content in a different context are a priori stochastically
unrelated, such as Axy and Ax’y. It is evident that in Bell tests,
a joint probability distribution of these eight random variables
does not exist, and Bell– CHSH inequalities cannot be derived
without additional assumptions (Khrennikov, 2022).

A pair of random empirical variables (Axy, Bxy) describes a
scatter of outputs in the experiment using settings (x, y). We have
four random experiments described by specific empirical probability
distributions. Using these distributions, we may test the plausibility
of quantum and local hidden variable models proposed to explain a
statistical scatter of outcomes in an ideal EPR-B experiment. If
random variables in probabilistic models are denoted (A’xy, B’xy) in
order to not be confounded with empirical random variables (Axy,
Bxy), then we say that a probabilistic model provides a probabilistic
coupling if:

E Axy( ) � E A’xy( ), E Bxy( ) � E B’xy( ),E AxyBxy( ) � E A’xyB’xy( ).
(19)

Therefore, in Bell tests, we are testing the plausibility of different
probabilistic couplings, in particular for LRHVM:
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E A’xy( ) � E A’xy’( ) � E Ax( ),E B’xy( ) � E B’x’y( )
� E By( ), E A’xyB’xy( ) � E AxBy( ), (20)

where (Ax, By, Ax’, By’) are jointly distributed Equation 11. More
detailed discussion may be found in Kupczynski (2024a).

There is still much confusion in journals, books, and in social
media concerning the metaphysical implications of the results of Bell
tests (The BIG Bell Test Collaboration, 2018; Rosenfeld et al., 2017;
Zhang et al., 2022; Storz et al., 2023), so it is beneficial to explain it
here. Using LHVM Equations 15–17, one derives inequalities which
must be satisfied by specific combinations of probabilities of events to
be observed in the experiments performed using different
experimental settings. These combinations are denoted “S,” “J,” or
“T,” which are called in brief “Bell parameters”. If the observed
parameter violates inequality, one can conclude that measured
systems were not governed by any LHVM. It should be noted that
this conclusion is always statistical and typically takes a form of a
hypothesis test, leading to a conclusion of the form: “. . .assuming
nature is governed by local realism, the probability to produce the
observed Bell inequality violation . . . is P(observed or stronger | local
realism)≤ p. This p-value is a key indicator of statistical significance in
Bell Tests” (The BIG Bell Test Collaboration, 2018)

Since p-values in several experiments are very small, one
concludes: Local realism, i.e., realism plus relativistic limits on
causation, was debated by Einstein and Bohr using metaphysical
arguments, and recently has been rejected by Bell tests. Such a
conclusion is imprecise and misleading. As correctly observed by
Wiseman (2014), “the usual philosophical meaning of ‘realism’ is the
belief that entities exist independent of the mind, a worldview one
might expect to be foundational for scientists.” It is also claimed that
Bell tests allow the rejection of local causality, where Bell-local
causality is defined: Alice’s output a depends only on her input x
and on λ describing all possible common causes included in the
intersection of the of the backward light cones of a and b and
independent of inputs x and y.

It is true that tested probabilistic models have been motivated by
various metaphysical assumptions. Nevertheless, Bell tests allow
only the rejection of a statistical hypothesis that says that LHVM
Equations 15–17 provides a probabilistic coupling (Equation 20)
consistent with experimental data. Therefore, the violation of
Bell–CHSH inequalities does not allow for far reaching
metaphysical speculations. We agree also with De Raedt
et al., (2023):

. . .all EPRB experiments which have been performed and
may be performed in the future and which only focus on
demonstrating a violation BI-CHSH merely provide evidence
that not all contributions to the correlations can be reshuffled to
form quadruples . . . These violations do not provide a clue
about the nature of the physical processes that produce
the data. . ..

Similar conclusions have been drawn (Kupczynski, 1987a,
2018b, 2020; Dzhafarov, 2021; Hess and Philipp, 2005;
Khrennikov, 2007, 2008, 2019, 2020a, 2022; De Raedt et al., 2024).

Bell tests confirm the existence of long range correlations
between outcomes of experiments performed in space-like
locations. If additional context-dependent variables that describe
measuring instruments and procedures are correctly incorporated

into a probabilistic model (Equation 11), then Bell–CHSH
inequalities cannot be derived and “nonlocal “correlations can be
explained without evoking quantum magic. Such a model is
discussed in the next section.

9 Contextual hidden variable model
and the violation of statistical
independence

We incorporate into the model (Equation 11) additional
variables that describe distant measuring contexts
(Kupczynski, 2024a).

• λ1 ∈ Λ1 and λ2 ∈ Λ2 describe correlated physical systems and
do not depend on measurement settings (x, y).

• μx ∈ Μx and μy ∈ Μy describe measurement procedures and
instruments at the moment of measurement when settings (x,
y) were chosen.

• Inputs/labels (x, y) are randomly chosen in separate random
experiments.

• Outputs are created locally: a � A′
x(λ1, μx) � ± 1

and b � B′
y(λ2, μy) � ± 1

The resulting contextual model (CHVM) is defined by
three equations

E AxBy( ) � ∑
λ∈Λxy

Ax λ1, μx( )By λ2, μy( )P λ1, λ2( )Pxy μx, μy( ), (21)

—where Λxy � Λ1 × Λ2 × Mx × My,

P a, b, x, y( ) � ∑
λ∈Λxy

P a | λ1, μx( )P(b λ2, μy)P( μx, μy
∣∣∣∣∣ ∣∣∣∣∣x, y)P x, y( )P λ1, λ2( )

(22)
and

P μx, μy x, y
∣∣∣∣( ) � Pxy μx, μy( ) ≠ P μx, μy( ) (23)

In Bell tests, P(x, y) = P(x) P(y), but in the contextual model
Equation 21 and in QM, it does not matter how labels (x, y) are
chosen. In general, spaces Λxy for different settings (x, y) do not
overlap and, as Larsson and Gill (2004) demonstrated, Bell–CHSH
inequalities cannot be derived and |S|≤ 4.

The model (Equations 21–23) violates statistical independence,
and P(x, y|μx, μy) ≠ P(x, y):
P μx, μy, x, y( ) � Pxy μx, μy( )P x, y( ) � P μx, μy( ) → P x, y

∣∣∣∣ μx, μy( )
� P μx, μy( )
P μx, μy( ) � 1.

(24)
The Equation 24: P(x, y | μx, μy) � 1 only “says” that if a hidden

event μx, μy{ } “happened”, then the settings (x,y) were used
(Kupczynski, 2017a, 2021, 2023a, 2024a, 2022). It has nothing to
do with conspiracy or FoC.

Since inputs (x,y) were chosen using signals from distant stars
(Handsteiner et al., 2017), random number generators or random
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human choices were made during online computer games (The BIG
Bell Test Collaboration, 2018), and thus the freedom-of-choice
loophole was successfully closed, but it did not prove statistical
independence. As I proposed in preceding papers, a violation of
statistical independence should be called “Bohr-contextuality”—not
to be cofounded with CbD contextuality (Dzhafarov and Kujala,
2014; Dzhafarov et al., 2015; Kujala et al., 2015) or simply
contextuality.

CHVM violates Bell-locality and Bell-causality, but outputs are
created in a locally causal way. Hidden variables describing physical
systems and measuring contexts in space-like separated laboratories
can be statistically correlated, but the violation of statistical
independence and apparently non-local correlations may be
explained without evoking spooky influences. It may be the effect
of setting dependent post-selection of data (Kupczynski, 2017b,
2021, 2024a), or it may be due to the global space-time
symmetries (Kupczynski, 2023a, 2024a, 2023b).

The model (Equation 21) can be further simplified. For example,
μx can be a fixed set of variables describing experimental procedures
labeled by x. If in a distant laboratory, a setting labeled by y is used,
then a measuring instrument and/or laser beam are rotated by angle
θxy � θx − θy. Therefore, due to global rotational symmetry,
μy � f(μx, cos(θxy)), and:

E AxBy( ) � ∑
λ∈Λxy

Ax λ1, μx( )By λ2, f μx, cos θxy( )P λ1, λ2( )(( . (25)

The model (Equation 25) seems to have enough flexibility in
order to explain long range correlations in Bell tests depending on
θxy � θx − θy. The model (Equation 25) does not allow the
derivation of any Bell-type inequalities.

10 Can a quantum-mechanical
description of physical reality be
considered complete?

This question asked by Einstein, Podolsky, and Rosen (EPR)
(Einstein et al., 1935) and answered by Bohr (1935) has been debated
for 90 years. Many incorrectly believe that the results of recent Bell
tests prove that if we reconcile QM with general relativity, we will
obtain a complete description of physical reality. In fact, we should
be much more humble (Kupczynski, 2024c) because we even do not
know whether QM is predictably complete.

QM gives probabilistic predictions for distributions of the results
obtained in long runs of one experiment or in several repetitions of
the same experiment on a single physical system. It is unclear how
and in what sense a claim can be made that QM provides a complete
description of individual physical systems. This is why (Einstein,
1936; Einstein and Schilpp, 1949) never accepted that a statistical
theory may provide a complete description of individual physical
systems and believed that QM should be completed by some
microscopic theory of sub-phenomena that enable the
reproduction of quantum probabilistic predictions.

According to Bohr, quantum probabilities describe completely
quantum phenomena and experiments, and no more detailed sub-
quantum description is possible or necessary. Quantum probabilities
are thus irreducible, and QM is not an emergent theory. In statistical
mechanics, probabilities reflect a lack of knowledge about the

properties of physical systems. In SCI, quantum probabilities
reflect a lack of knowledge about the interactions of physical
systems with measuring instruments in well-defined experimental
contexts. The Bertrand paradox teaches that probabilities are not
properties of individual physical systems but are only properties of
random phenomena and experiments as a whole. In this sense, they
do not provide a complete description of individual
physical systems.

Whether a more detailed description of quantum phenomena
does exist is an open question, and several hidden variable models
have been proposed and discussed. Bell tests permit the rejection of
several hidden variable models but neither prove the completeness
nor non-locality of QM. Several years ago, we pointed out that the
question about the completeness of QM cannot be answered by
constructing ad hoc sub-quantum hidden variable models. It can
only be answered by a different and a more detailed analysis of
experimental data (Kupczynski, 2006; Kupczynski et al., 2007;
Kupczynski, 2016a, 1986, 1984).

In quantum experiments, outcomes are registered by online
computers as finite time series of data. It can be a laser beam which,
after passing by a PBS (polarization beam splitter), produces clicks
on detectors coded ±1. It can be a physical system in a trap, a
physical observable is measured, an outcome is recorded, and initial
conditions in the trap are reset.

No single result is predictable in all these experiments. Empirical
frequency distributions are obtained from long-term series of counts
and compared with probabilistic predictions of QT. In this way,
predictable completeness of QT is taken for granted, and any fine
structure of time-series, if it existed, would be averaged.

Let us consider two experiments repeated N times each. In the
first experiment, we obtain a time series of the results, 1,-1,1,-1, . . .
1,-1 . . ., and in the second, 1,-1,-1,1,1,1,-1,-1, 1,-1,-1,1,1,1,-1 . . . By
increasing the value of N, the relative frequency of achieving 1 can
approach ½ as close as we wish. However, it is not a complete
description of these time series. By searching for reproducible fine
structures in experimental time series, we can investigate whether
QM is emergent without constructing specific hidden
variable models.

In any more detailed description of quantum phenomena, pure
quantum ensembles become mixed statistical ensembles with
respect to additional uncontrollable parameters that describe
physical systems and measuring instruments. There is a principal
difference between a pure statistical ensemble and amixed one. For a
pure ensemble, any sub-ensemble has the same properties. Sub-
ensembles of a mixed statistical ensemble may differ from one to
another if mixing is not perfect. These differences can be, in
principle, detected by using so called purity tests (Kupczynski,
2006, 1986, 1984; Kupczynski et al., 2007), which I introduced in
a different context (Kupczynski, 1974, 1977).

Let us consider time series of outcomes T(S, E, i) obtained in an
ith run of an experiment E performed on physical system(s) S. Since
we do not control the distribution of hidden variables, time-series
T(S, E, i) may differ from run to run of the same experiment. Using
the language of mathematical statistics, T(S, E, i) represents a
random sample drawn from some statistical population. A pure
ensemble is one characterized by such empirical distributions of
various counting rates, which remain approximately unchanged for
any rich sub-ensembles drawn from this ensemble in a random way
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(Kupczynski et al., 2007; Kupczynski, 1973, 1986). Therefore, we
must test the null hypothesis H0:

Samples T(S, E, i) for different values of i are drawn from the
same statistical population.

Various statistical non-parametric compatibility tests can be
used to test H0.

Purity tests are not sufficient. To prove that QM is not
predictably complete, it is necessary to study in more detail time
series of data, detect some temporal fine structure, and find a
stochastic model to explain it. Several methods are used to study
and compare empirical time-series: frequency or harmonic analysis,
periodograms, autocorrelation and partial autocorrelation
functions, etc. (Kupczynski, 2009, 2011). The aim of most
physical experiments is to compare empirical probability
distributions with quantum probabilistic predictions. Therefore,
all fine structures in time-series of data, if they exist, are
averaged out and are not discovered.

Completeness of QM has been discussed for nearly 100 years,
but a detailed study of experimental time series of existing
experimental data is still to be done. As demonstrated recently
with Hans de Raedt, sample inhomogeneity invalidates dramatically
significance tests (Kupczynski and De Raedt, 2016); therefore, if
sample homogeneity is not tested carefully enough, then the sample
homogeneity loophole is not closed and statistical inference cannot be
trusted (Kupczynski and De Raedt, 2016; Kupczynski,
2015b, 2016b).

11 Conclusion

This review article has explained why speculations about
quantum nonlocality and quantum magic are rooted in incorrect
interpretations of QM and/or in incorrect “mental pictures” and
models that try to explain invisible details of quantum phenomena.
In particular, it is not true that in Bell tests, entangled qubits behave
as “a pair of dice showing always perfectly correlated outcomes.”

We advocate an abstract statistical contextual interpretation
(SCI) of QM which is free of paradoxes. SCI rejects the existence
of a universal wave function. Quantum probabilities are objective
properties of quantum phenomena. Whether these probabilities can
be explained as emergent is an open question which cannot be
settled by philosophical discussions and no-go theorems; it can be
only elucidated by more detailed study of experimental time series of
data than is usual.

Bell tests are subtle experiments that are imperfect
implementations of an ideal EPRB experiment. It is often
claimed that the violation of Bell–CHSH inequalities in these
tests allow the rejection with great confidence of local realism
and local causality. Such conclusions, though, are misleading.

Bell–CHSH are trivial properties of N×4 spreadsheets on which the
outcomes of measurements of four jointly distributed random variables
(e.g., Ax, By, Ax’, By’) are displayed. In Bell tests, such experimental
spreadsheets do not exist because there are four pairs of distant random
experiments performed using four incompatible experimental settings
(x, y). These experiments are described by empirical probability
distributions of four pairs of random variables (Axy, Bxy).
Bell–CHSH inequalities cannot be derived, and estimated pairwise
expectations E(Axy Bxy) are not constrained by these inequalities.

Probabilistic couplings can be postulated in order to explain
statistical regularities in experimental data, such as E(AxyBxy) =
E(AxBy). The quantum probabilistic model and Bell-causal hidden
variable model can only be tested as plausible probabilistic couplings
(Kupczynski, 2024a). Quantum coupling (Equation 7) is constrained
by quantum–CHSH inequalities: |S|≤ 2

�
2

√
(Kupczynski, 2020;

Kupczynski, 2024a; Khrennikov, 2019; Cirel’son, 1980; Landau,
1987). Local hidden variable couplings (Equations 11,13, 15–17)
are constrained by Bell–CHSH inequalities: |S|≤ 2.

It was incorrectly believed that if the freedom-of-choice loophole
was closed then hidden variables could not statistically depend on
randomly chosen binary inputs (settings’ labels). This is untrue
because variables describing distant measuring instruments used in
different settings can depend on inputs and may be correlated due to
global rotational symmetry. Therefore, closing the freedom-of-choice
loophole does not close the contextuality loophole.

In contextual hidden variable models (Equations 21–23) and
(Equation 25), which are neither Bell-local nor Bell-causal, distant
outcomes are locally determined by setting independent hidden
variables that describe prepared qubits and setting dependent hidden
variables that describe distant measuring instruments and procedures.
This model is only constrained by |S|≤ 4. Due to global rotational
symmetry, the pairwise expectation values of distant random variables
(describing Alice’s and Bob’s outcomes) have to depend on angle
θxy � θx − θy, where (θx, θy) are the respective angles by which
distant qubits are rotated before local read-outs.

We can intuitively explain how parameters describing measuring
devices in space-like locations may obey the equation
μy � f(μx, cos(θxy)), even if (θx, θy) are chosen perfectly
randomly. We imagine two observers in front of two screens on
which two identical triangles are projected. They record their
observations by six coordinates μ=(x1, y1; x2, y2; x3, y3). Next,
(θx, θy) are chosen randomly, and rotated triangles are projected
onto respective screens. Now the observers’ recordings differ:
μx � R(θx)μ, μy � R(θy)μ and μx � R(θxy)μy. Variables
describing distant measuring devices and procedures can be
strongly correlated without any spooky influences. We used a
shortened notation according to which the rotation 2 x 2 matrices
are applied at the same time to coordinates of three triangle’s vertices.

Therefore, Bell tests prove only that the probabilistic coupling
LHVM is inconsistent with the experimental data. They allow the
rejection of Bell-locality and Bell-causality assumptions but have little to
say about the completeness of QM or local causality in nature. As has
been observed, quantum nonlocality is a misleading notion (Boughn,
2022; Czahor, 1988; Dzhafarov, 2021; Fine, 1982; Hance and
Hossenfelder, 2022; Hess and Philipp, 2005; Hess, 2022; Jaynes and
Skilling, 1989; Jung, 2017; Khrennikov, 2007; Khrennikov, 2008;
Khrennikov, 2019; Khrennikov, 2020a; Khrennikov, 2022;
Kupczynski, 2018b; Kupczynski, 2023a; Kupczynski, 2024a;
Kupczynski, 2024b; Peres, 1978; Pitovsky, 1983; Pitovsky, 1994;
Żukowski and Brukner, 2014; De Raedt et al., 2017; De Raedt et al.,
2023; De Raedt et al., 2024; Żukowski and Brukner, 2014; Jung, 2020;
Boughn, 2017), and extraordinary metaphysical speculations based on
the results of Bell tests are unfounded.

Correlation does not mean causation. Alice’s and Bob’s
experimental outcomes may be correlated, but a probabilistic
scatter of Alice’s outcomes cannot depend on what Bob is
measuring in his distant laboratory. This is called “no-signaling.”
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No-signaling was verified and confirmed for raw experimental data
in all Bell tests. Nevertheless, to study correlations in some
experiments involves rejecting single clicks and combining
coincident clicks in pairs on Alice’s and Bob’s detectors. This has
created an apparent signaling in some experiments (Hensen et al.,
2015; Weihs et al., 2024; Adenier and Khrennikov, 2007; Adenier
and Khrennikov, 2017; Bednorz, 2017) which could be explained
without evoking spooky influences (Kupczynski, 2017b;
Kupczynski, 2021; Kupczynski, 2024a; Khrennikov, 2022). The
presence of signaling patterns in the experimental data means
that these data have to be described by random variables labelled
by both the content and context of the experiment, and of course a
joint probability distribution of such variables does not exist.

An external world certainly does exist and it does not depend on
whether it is observed or not. Our mathematical models describe only
imperfectly its different layers (Kupczynski, 2024c). Quantum
phenomena under investigation depend on the detailed contexts of
our experiments. The information obtained is contextual and
complementary, but quantum probabilities are objective properties
of quantum phenomena.

Questions about the completeness of quantum mechanics can
only be answered by a search of reproducible fine structures in time
series of experimental data which were not predicted by QM. It
would not only demonstrate that QM may not provide the most
complete description of the individual physical systems but also that
QM is not predictably complete (Kupczynski, 2006; Kupczynski,
2009; Kupczynski, 2011).

We finish this article with words of Einstein (1936):
Is there really any physicist who believes that we shall never get any

insight into these important changes in the single systems, in their
structure and their causal connections . . . To believe this is logically
possible without contradiction; but it is so very contrary to my scientific
instinct that I cannot forego the search for amore complete description.
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