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Quantum cryptography has emerged as a radical research field aimed at mitigating various security threats in modern communication systems. The integration of Quantum Machine Learning (QML) protocols plays a crucial role in enhancing security measures, addressing previously inaccessible threats, and improving cryptographic efficiency. Key research areas in quantum cryptography include Quantum Key Distribution (QKD), eavesdropping detection, QSDC, security analysis of QKD protocols, post-quantum cryptography, Quantum Network Security & Intrusion Detection, Quantum-secure communication beyond QKD, quantum random number generation, Quantum Secure Multi-Party Computation (QSMPC), Quantum Homomorphic Encryption (QHE), and privacy-preserving computation. QML algorithms improve the key generation of QKD, by improving quantum state selection and reducing measurements. This also allows them to increase efficiency because it identifies trends in errors and applies corrections, making quantum cryptography a more dependable option. With intelligent processing machine learning is excellent at handling complex, high-dimensional data-this may provide a viable strategy for enhancing QKD performance and increasingly real-world secure quantum communication networks. This review will explore current research gaps and future developments in QKD, security analysis of QKD protocols, and eavesdropping detection by leveraging various QML algorithms.
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1 INTRODUCTION
Beyond the constraints of classical encryption, the field of quantum cryptography (QC) provides a revolutionary method of secure communication. Despite traditional cryptography methods, QC protocols offer verifiable security assurances by utilizing the concepts of quantum mechanics (Goyal, 2024). Quantum teleportation (QT), quantum secret sharing (QSS), quantum secure direct communication (QSDC), and quantum key distribution (QKD) represent the four fundamental branches of quantum cryptography protocols. Unlike QKD, which is primarily concerned with the secure negotiation of cryptographic keys, QSDC introduces a novel communication paradigm that provides a comprehensive, confidential, and near-instantaneous solution by transmitting actual messages directly over a quantum channel. By eliminating the need for cryptographic keys for encryption and decryption, QSDC ensures secure communication (Pan et al., 2024). Quantum private communication is a practical application for quantum mechanics. It enables secure communication against traditional approaches and advanced technologies such as quantum computers. There are several types of Cryptographic tasks, such as quantum private inquiry and quantum digital signatures control communication. The most basic one is quantum key distribution (QKD) (Liu et al., 2022). The QKD system utilizes physics principles rather than the computational complexity of mathematics problems to enable the provably safe exchange of cryptographic keys against eavesdropping. This fact helps make sure anyone attempting to access the key exchange process may be identified, ensuring the highest level of security possible. Quantum Random Number Generation (QRNG) improves cryptographic solutions by producing real random numbers needed for key-setting and growth processes, among other areas (Gowda et al., 2025). For quantum key generation, random numbers are used. Various protocols used in QKD include BB84 protocols, E91 protocol, CV-QKD protocol, Measurement-Device-Independent QKD (MDI-QKD), Twin-Field QKD Protocol etc. QML is a rapidly evolving field, which is formed by integrating standard machine learning with the concepts of quantum computing. It uses machine learning methods to further research on quantum computing and strives to revolutionize machine learning by utilizing the unique capabilities of quantum physics (Qi et al., 2024). QML plays a significant role in improving the Quantum cryptography research landscape. Various QML algorithms like quantum-inspired feature maps and kernel-based classifiers, Real-time protocol prediction for quantum key distribution, Applications of artificial neural networks in quantum key distribution, Dimensionality reduction using quantum algorithms, Hybrid quantum-classical convolutional neural networks, Kernal-based QML, quantum neural networks with machine learning principles, Quantum convoluted neural networks (QCNN), Quantum Particle Swarm Optimization (QPSO) improves QKD, Random number generation, side channel attack mitigation, Adaptive protocols, post-quantum cryptography, anomaly detection essential for quantum-safe communication and data protection techniques. The rapid growth of developments of QML algorithms to maximize the efficiency of Quantum cryptography research like QKD, eavesdropping detection, and security analysis of QKD protocols is demonstrated in Figure 1a, which represents the number of articles published in this field from 1990 to 2025 as per research data collected google scholar and web of science. Figure 1b illustrates key aspects of both QML and Quantum Cryptography (QC), highlighting how advancements in quantum mechanics and computing enhance classical cryptography and machine learning, leading to the evolution of quantum cryptography and QML. As shown in the figure, integrating QML with quantum cryptography enhances security, optimizes cryptographic processes, and improves vulnerability detection.
[image: Figure 1]FIGURE 1 | The integration of QML into QKD research has facilitated the resolution of more complex problems within the quantum cryptography community. As illustrated in (a) research on eavesdropping detection and security analysis of QKD protocols has significantly increased after 2010, reflecting a growing focus on more robust and intelligent cryptographic applications. (b) Illustrates how advancements in quantum mechanics and quantum computing have contributed to the development of quantum cryptography (QC) and quantum machine learning (QML). Various technologies associated with these verticals are highlighted, paving the way for intelligent, adaptive, and secure quantum communication systems. (a) Quantum cryptography research landscape represents the number of articles published in Quantum cryptography research. (b) Quantum machine learning in augmenting quantum cryptography.
The rest of the article explores the fundamental aspects of quantum cryptography, the role of QML in Quantum cryptography, and three major research areas: quantum key distribution, eavesdropping detection, and the security analysis of QKD protocols with advancements in QML algorithms. Additionally, it highlights current research gaps and future developments in the domain in detail.
2 QUANTUM CRYPTOGRAPHY
Quantum cryptography utilizes quantum mechanics to develop secure communication systems that differ from conventional methods. Quantum cryptography’s security depends on physics principles, unlike traditional encryption, which relies on the computational complexity of certain mathematical problems. Quantum cryptography utilizes quantum physics principles to ensure secure communication. Quantum Encryption employs quantum states to encrypt data directly, along with the prominent QKD application for secure key exchange. Random numbers are essential for generating keys in QKD. As a result, both QKD and random number generation play a crucial role in the landscape of quantum cryptography. This includes advanced protocols like Quantum Secure Direct Communication and Quantum Homomorphic Encryption (Goyal, 2024). The two primary categories of Quantum Key Distribution Protocols (QKDPs) are Continuous Variable (CV) and Discrete Variable (DV) QKDPs. Discrete Variable QKDPs generate discrete outcomes by employing the polarization of a single photon or the spin of an electron for key distribution. Discrete Variable QKDPs, which employ a single proton to store information, CV-QKDPs use light, which has the advantage of being easier to create coherent light. Single photons are used in DV protocols, whereas homodyne or heterodyne detection techniques are used in CV protocols. Some examples of Discrete Variable QKDPs include BB84, E91, B92, and SARG04 protocols. Some protocols like the Coherent-One-Way (COW) protocol, Differential-Phase-Shift (DPS) protocol, and Round-Robin Differential Phase Shift (RRDPS) protocol are Distributed Phase Reference QKDPs. Continuous Variable QKDPs also include some protocols based on source state, squeezed state of light, two-state protocol, and coherent states for discrete modulation. Super-Dense Coding (SDC) also known as the “Ping-Pong” Protocol and LM05 Protocol are examples of two-way protocol (Nwaga and Nwagwughiagwu, 2024). Some of the experimental implementations of quantum cryptography include Fiber-Based QKD Systems, Free-Space Quantum Communication, Integrated Quantum Photonics, Quantum Repeaters, Satellite-Based Quantum Communication, and Quantum Cryptographic Networks (Goyal, 2024). Recent advancements in quantum cryptography include the Semi-Quantum Private Comparison (SQPC) protocol based on Bell states, without quantum entanglement swapping. This enhances the performance of quantum cryptography against various attacks, making it particularly effective for noisy quantum channels (Geng et al., 2024). Gong et al. (2024c) discuss the Novel semi-quantum private comparison protocol with Bell states in which any quantum state is not required to prepare and measure for classical users and it also excludes unitary operation on received quantum particles. This novel approach is also secure against external and internal attacks. Another recent revaluation in quantum cryptography protocols includes Mode-pairing quantum key distribution based on wavelength division multiplexing in multi-user networks developed by Cui et al. (2024) which includes the performance of MP-QKD for multiple users with integration of WDM (wavelength division multiplexing). This analysis is essential for asymmetric network channels to find many applications in quantum communication networks. Multi-party semi-quantum private comparison (MQPC) protocols developed by Gong et al. (2023) represent an advancement in quantum cryptography in which the use of decoherence-free states (DFS) against collective noise multiparty can communicate in the presence of collective-dephasing noise and collective-rotation noise which affects the integrity of quantum communication.
3 QUANTUM MACHINE LEARNING IN AUGMENTING QUANTUM CRYPTOGRAPHY
With the integration of quantum computing into classical machine learning, QML emerges as a powerful approach to enhance computational performance. Various classical machine learning algorithms, including supervised and unsupervised learning, benefit from quantum principles, leading to improved efficiency and scalability. Unsupervised learning, particularly in processing large real-time data, has gained popularity with the development of quantum generative models. Several variants of Generative Adversarial Networks (GANs) with advanced computing capabilities have been introduced. Recently, a hybrid quantum-classical Generative Adversarial Network (GAN) has been developed for image generation, leveraging QML to overcome quantum hardware constraints (Zhou et al., 2023). With the advancement of artificial intelligence and machine learning, traditional optimization techniques struggle to handle complex, nonlinear, and systemic problems. Advanced algorithms such as ant colony optimization, bat optimization, simulated annealing, genetic optimization, fruit fly optimization, particle swarm optimization (PSO), and the gravitational search method, combined with effective preprocessing techniques, offer more robust solutions. Among these, PSO, a nature-inspired metaheuristic algorithm, stands out due to its fewer control parameters, faster search rate, and lower computational complexity. It has proven highly effective in addressing various engineering and AI optimization challenges, particularly in identifying optimal solutions across a wide range of applications (Gong C. et al., 2024; She et al., 2025) discuss quantum-classical hybrid neural network model—St-HQCNN which can be used in quantum-enhanced cryptographic security, anomaly detection, and QKD protocols optimization (Gong L. et al., 2024). discusses the Quantum K-Nearest Neighbor (QKNN) classification algorithm, utilizing a divide-and-conquer strategy, which offers several advantages in QKD, including eavesdropping detection, error and noise reduction, and improved scalability. The advancement of QKD includes a proposed strategy for measurement-free mediated semi-quantum key distribution (MSQKD) using single-particle states. This approach enables two classical users to establish a secret key with the assistance of a third party, enhancing security and scalability while eliminating the need for a quantum detector (Zhou et al., 2024). The Multi-Party Semi-Quantum Private Comparison (SQPC) protocol, utilizing d-dimensional single-particle states, enables the secure comparison of private data sizes with the assistance of a quantum third party. It is well-suited for multi-user and large-scale quantum cloud applications (Gong et al., 2025). An MSQPC protocol is constructed using d-dimensional SPSs to securely determine the size relationship between classical participants’ private data. This protocol relies on unitary operations and a pre-shared key, while entanglement swapping remains optional (Gong et al., 2025). Two prominent fields of quantum technology, QML and quantum cryptography (QC) hold immense potential for future advancements. While research at the intersection of QML and QC is still in its early stages, the outlook is promising as both areas continue to evolve. The integration of QML and QC could pave the way for more secure communication systems in the quantum era, as hardware capabilities and practical applications progress.
3.1 Prospects and constraints of quantum machine learning in QKD, eavesdropping detection and security analysis of QKD protocols
QKD is a fundamental aspect of quantum cryptography, and integrating QML with QKD can significantly enhance the performance of quantum cryptographic systems. Once keys are successfully generated in QKD, detecting eavesdropping becomes a critical step in ensuring the security of quantum communication channels. Strengthening QKD protocols remains a vital frontier, representing the convergence of quantum communication and quantum computing.
The Table 1 provides a summary of recent QML protocols applied in QKD, highlighting current research gaps and potential future directions.
TABLE 1 | Recent advancements in QML algorithms for QKD highlight current research gaps and future directions.
[image: Table 1]4 DISCUSSION
This article discusses advancements in QML for quantum cryptography, especially with a focus on QKD, eavesdropping detection, and security analysis. Recent studies are reviewed, and their prospects and constraints are summarized in a tabular format. Key research gaps include optimization challenges due to the lack of dedicated QML models, practical implementation and real-time testing limitations, hybrid quantum-classical tradeoffs, scalability issues, hardware constraints, security and robustness concerns, quantum memory and data loading difficulties, data encoding challenges, and computational overhead. Future research directions include optimizing model design to enhance security and robustness. Hybrid quantum-classical Generative Adversarial Networks (GANs) help overcome hardware constraints by requiring fewer Qubits and enabling parallel processing. Unsupervised learning minimizes resource usage, reduces noise, lowers computational overhead, and facilitates adaptive quantum encoding and compression—critical for real-time problem analysis. Additionally, advanced optimization algorithms such as ant colony optimization, bat optimization, simulated annealing, genetic optimization, fruit fly optimization, particle swarm optimization (PSO), and the gravitational search method, when combined with effective preprocessing techniques, offer more robust and efficient solutions. Additionally, QSDC protocols are well-suited for a wide range of cryptographic applications, and several advanced protocols extending beyond QSDC have been developed. Unlike the QKD family of protocols, which focuses solely on secret key negotiation, QSDC enables secure communication without requiring cryptographic keys for encryption and decryption.
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QML in QKD

‘Quantum machine learning
in Quantum key distribution

Proposed algorithm

QNN-QRL: (Behera et al., 2025)

Prospects

In this approach, two novel QRL-based
algorithms are introduced and integrated with
2 QNN implemented on BB34 and

B92 protocols. This integration enhances
security, optimizes key management,
improves adaptability, reduces noise, and
optimizes resource utilization

Constraints

Integration QNN-QRL with the classical
system is challenging

Reinforcement learning in a quantum
environment creates instability

Many hardware constraints with the real-time
implementation of QNN-QRL

Optimal parameter prediction for secure
QKD using QML models (Bhargavi and
Subramanya, 2020)

Phase compensation for CV- QKD based on
CNN (Xing et al., 2022)

Optimization of parameters enhances the key
rate, and scalability, and reduces noise

Application of CNN in phase noise
compensation will reduce Classical Post-
Processing Overhead, improve channel
variation adaptation, and improve secret key
rate

Reliability, Standardization, Computational
overload, and Training data dependency are
‘major constraints

Latency concerns

Adversarial attacks

Further research is required to implement the
proposed machine-learning method across
various environments and modulation
schemes

Neural network-based prediction of the
secret-key rate of QKD (Zhou et al,, 2022)

Prediction of the secret key -rate using a neural
network improves performance in noisy
channels and is efficient for secret key rate
estimation

Generalization Issues
Overhead issues

Quantum Federated Learning (Dutta et al.,
2024)

A Multimodal Quantum Federated Learning
Framework with Fully Homomorphic
Encryption offers privacy and performance
optimization

Constraints in hardware, scalability, and
implementation

QML-IDS (Abreu et al., 2024)

Artificial Intelligence in Quantum
Communications (Mahmud and Abdelhadi,
2025)

In QMLAIDS, three QML models: Variational
Quantum Classifier (VQC), Quantum
Support Vector Machine (QSVM), and
Quantum Convolutional Neural Network

(QCNN)

In this article, the applications of various
machine learning algorithms in quantum
communication (QC) are discussed. For
quantum key distribution (QKD) and
simulation, QSVM and QNN techniques are
utilized, enabling fast and efficient key
generation

‘There are still challenges and limitations to
address before practical implementation in
real network systems can be achieved, making
this an active area of research with significant
potential for future development. Integrating
the approach with existing classical IDS
frameworks and traditional ML-based IDS
systems will be explored to enhance protection
‘mechanisms. Moreover, overcoming quantum
hardware limitations and managing privacy
concerns related to processing data on
platforms like IBM’s will be essential for
advancing quantum-enhanced cybersecurity
solutions

Major constraints include coherence issues in
QNN, which lead to errors and training
challenges, as well as hardware limitations in
QSVM. To mitigate these issues, advanced
qubit technologies, optimized algorithms,
hybrid AI models, and error correction
techniques must be employed

Quantum Machine learning
in eavesdropping detection

QKD as a QML task (Decker et al, 2024)

Describes a novel perspective to Optimize
eavesdropping with robust security measures.
‘The BB84 protocol is analyzed in this article

Ethical and security constraints
Future research can be conducted on other
QKD protocols

QGANS (Olaoye and Potter, 2024)

QGAN is applicable to improve
eavesdropping detection in QKD which

improves sampling efficiency, power, and data
generation rate and finds many applications in
felds like drug discovery and material science

Real-time implementation of QGAN finds
many challenges like training instability,
convergence issues, Resource consumption,
and constraints in quantum resources and
algorithms

Quantum deep learning-based anomaly
detection (Hdaib et al., 2024)

The application of Quantum deep learning
enhances the detection accuracy of anomaly
detection

‘The three proposed techniques, combining
quantum autoencoders with quantum KNN,
quantum random forest, and quantum SVM,
effectively detect irregularities in network
traffic with high accuracy

Practical implementation and scalability issues
To enhance the resilience of anomaly
detection systems, researchers may explore
various quantum algorithms, refine quantum
autoencoder designs, and expand evaluations
to more complex datasets

Quantum machine learning
in security analysis of QKD
protocols

High-rate Discretely Modulated CV-QKD
Using QML)
Liao et al. (2025)

QKNN classifier is used to improve secret key
rate and system performance

QKNN-based CVQKD not only enhances the
CVQKD protocol but also introduces a novel
approach for integrating other quantum
‘machine learning techniques into the CVQKD
domain

Resource requirements and security issues are
critical constraints

The proposed QNN is not the only effective
quantum classifier that can be used to enhance
CVQKD when integrated with the proposed
processing architecture

Machine-learning-based anomaly detection
(Corli et al., 2024)

Applying supervised, unsupervised, and
reinforcement learning, advancements in
machine learning enhance anomaly detection

A clear comparison with classical algorithms is
essential

Empirical Risk-aware Machine Learning on
Trojan-Horse Detection for Trusted QKD
Networks (Chou et al., 2024)

Advancements in QML enhance the detection
of various attacks, further improving the
security of QKD protocols

This work promotes a risk-aware
reinforcement learning approach that
incorporates risk assessment and risk
references to design the reward function while
considering the trust conditions

Accurate risk modeling and scalability
The future directions can draw inspiration
from Bayesian online change-point detection
and risk-aware reinforcement learning,
enabling trustworthy QKD networks to gain
valuable insights into optimal trust policies.
This approach, applied within the framework
of trusted node and variant network design,
aims to facilitate the cost-effective deployment
of QKD networks
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