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Quantum cryptography has emerged as a radical research field aimed at
mitigating various security threats in modern communication systems. The
integration of Quantum Machine Learning (QML) protocols plays a crucial role
in enhancing security measures, addressing previously inaccessible threats, and
improving cryptographic efficiency. Key research areas in quantum cryptography
include Quantum Key Distribution (QKD), eavesdropping detection, QSDC,
security analysis of QKD protocols, post-quantum cryptography, Quantum
Network Security & Intrusion Detection, Quantum-secure communication
beyond QKD, quantum random number generation, Quantum Secure Multi-
Party Computation (QSMPC), Quantum Homomorphic Encryption (QHE), and
privacy-preserving computation. QML algorithms improve the key generation of
QKD, by improving quantum state selection and reducing measurements. This
also allows them to increase efficiency because it identifies trends in errors and
applies corrections, making quantum cryptography a more dependable option.
With intelligent processing machine learning is excellent at handling complex,
high-dimensional data-this may provide a viable strategy for enhancing QKD
performance and increasingly real-world secure quantum communication
networks. This review will explore current research gaps and future
developments in QKD, security analysis of QKD protocols, and eavesdropping
detection by leveraging various QML algorithms.
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1 Introduction

Beyond the constraints of classical encryption, the field of quantum cryptography (QC)
provides a revolutionary method of secure communication. Despite traditional
cryptography methods, QC protocols offer verifiable security assurances by utilizing the
concepts of quantum mechanics (Goyal, 2024). Quantum teleportation (QT), quantum
secret sharing (QSS), quantum secure direct communication (QSDC), and quantum key
distribution (QKD) represent the four fundamental branches of quantum cryptography
protocols. Unlike QKD, which is primarily concerned with the secure negotiation of
cryptographic keys, QSDC introduces a novel communication paradigm that provides a
comprehensive, confidential, and near-instantaneous solution by transmitting actual
messages directly over a quantum channel. By eliminating the need for cryptographic
keys for encryption and decryption, QSDC ensures secure communication (Pan et al.,
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2024). Quantum private communication is a practical application
for quantum mechanics. It enables secure communication against
traditional approaches and advanced technologies such as quantum
computers. There are several types of Cryptographic tasks, such as
quantum private inquiry and quantum digital signatures control
communication. The most basic one is quantum key distribution
(QKD) (Liu et al., 2022). The QKD system utilizes physics principles
rather than the computational complexity of mathematics problems
to enable the provably safe exchange of cryptographic keys against
eavesdropping. This fact helps make sure anyone attempting to
access the key exchange process may be identified, ensuring the
highest level of security possible. Quantum Random Number
Generation (QRNG) improves cryptographic solutions by
producing real random numbers needed for key-setting and

growth processes, among other areas (Gowda et al., 2025). For
quantum key generation, random numbers are used. Various
protocols used in QKD include BB84 protocols, E91 protocol,
CV-QKD protocol, Measurement-Device-Independent QKD
(MDI-QKD), Twin-Field QKD Protocol etc. QML is a rapidly
evolving field, which is formed by integrating standard machine
learning with the concepts of quantum computing. It uses machine
learning methods to further research on quantum computing and
strives to revolutionize machine learning by utilizing the unique
capabilities of quantum physics (Qi et al., 2024). QML plays a
significant role in improving the Quantum cryptography research
landscape. Various QML algorithms like quantum-inspired feature
maps and kernel-based classifiers, Real-time protocol prediction for
quantum key distribution, Applications of artificial neural networks

FIGURE 1
The integration of QML into QKD research has facilitated the resolution of more complex problems within the quantum cryptography community.
As illustrated in (a) research on eavesdropping detection and security analysis ofQKD protocols has significantly increased after 2010, reflecting a growing
focus onmore robust and intelligent cryptographic applications. (b) Illustrates how advancements in quantummechanics and quantum computing have
contributed to the development of quantum cryptography (QC) and quantummachine learning (QML). Various technologies associated with these
verticals are highlighted, paving the way for intelligent, adaptive, and secure quantum communication systems. (a) Quantum cryptography research
landscape represents the number of articles published in Quantum cryptography research. (b) Quantum machine learning in augmenting quantum
cryptography.
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TABLE 1 Recent advancements in QML algorithms for QKD highlight current research gaps and future directions.

QML in QKD Proposed algorithm Prospects Constraints

Quantum machine learning
in Quantum key distribution

QNN-QRL: (Behera et al., 2025) In this approach, two novel QRL-based
algorithms are introduced and integrated with
a QNN implemented on BB84 and
B92 protocols. This integration enhances
security, optimizes key management,
improves adaptability, reduces noise, and
optimizes resource utilization

Integration QNN-QRL with the classical
system is challenging
Reinforcement learning in a quantum
environment creates instability
Many hardware constraints with the real-time
implementation of QNN-QRL

Optimal parameter prediction for secure
QKD using QML models (Bhargavi and
Subramanya, 2020)

Optimization of parameters enhances the key
rate, and scalability, and reduces noise

Reliability, Standardization, Computational
overload, and Training data dependency are
major constraints

Phase compensation for CV- QKD based on
CNN (Xing et al., 2022)

Application of CNN in phase noise
compensation will reduce Classical Post-
Processing Overhead, improve channel
variation adaptation, and improve secret key
rate

Latency concerns
Adversarial attacks
Further research is required to implement the
proposed machine-learning method across
various environments and modulation
schemes

Neural network-based prediction of the
secret-key rate of QKD (Zhou et al., 2022)

Prediction of the secret key -rate using a neural
network improves performance in noisy
channels and is efficient for secret key rate
estimation

Generalization Issues
Overhead issues

Quantum Federated Learning (Dutta et al.,
2024)

A Multimodal Quantum Federated Learning
Framework with Fully Homomorphic
Encryption offers privacy and performance
optimization

Constraints in hardware, scalability, and
implementation

QML-IDS (Abreu et al., 2024) In QML-IDS, three QML models: Variational
Quantum Classifier (VQC), Quantum
Support Vector Machine (QSVM), and
Quantum Convolutional Neural Network
(QCNN)

There are still challenges and limitations to
address before practical implementation in
real network systems can be achieved, making
this an active area of research with significant
potential for future development. Integrating
the approach with existing classical IDS
frameworks and traditional ML-based IDS
systems will be explored to enhance protection
mechanisms. Moreover, overcoming quantum
hardware limitations and managing privacy
concerns related to processing data on
platforms like IBM’s will be essential for
advancing quantum-enhanced cybersecurity
solutions

Artificial Intelligence in Quantum
Communications (Mahmud and Abdelhadi,
2025)

In this article, the applications of various
machine learning algorithms in quantum
communication (QC) are discussed. For
quantum key distribution (QKD) and
simulation, QSVM and QNN techniques are
utilized, enabling fast and efficient key
generation

Major constraints include coherence issues in
QNN, which lead to errors and training
challenges, as well as hardware limitations in
QSVM. To mitigate these issues, advanced
qubit technologies, optimized algorithms,
hybrid AI models, and error correction
techniques must be employed

Quantum Machine learning
in eavesdropping detection

QKD as a QML task (Decker et al., 2024) Describes a novel perspective to Optimize
eavesdropping with robust security measures.
The BB84 protocol is analyzed in this article

Ethical and security constraints
Future research can be conducted on other
QKD protocols

QGANS (Olaoye and Potter, 2024) QGAN is applicable to improve
eavesdropping detection in QKD which
improves sampling efficiency, power, and data
generation rate and finds many applications in
fields like drug discovery and material science

Real-time implementation of QGAN finds
many challenges like training instability,
convergence issues, Resource consumption,
and constraints in quantum resources and
algorithms

Quantum deep learning-based anomaly
detection (Hdaib et al., 2024)

The application of Quantum deep learning
enhances the detection accuracy of anomaly
detection
The three proposed techniques, combining
quantum autoencoders with quantum KNN,
quantum random forest, and quantum SVM,
effectively detect irregularities in network
traffic with high accuracy

Practical implementation and scalability issues
To enhance the resilience of anomaly
detection systems, researchers may explore
various quantum algorithms, refine quantum
autoencoder designs, and expand evaluations
to more complex datasets

(Continued on following page)
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in quantum key distribution, Dimensionality reduction using
quantum algorithms, Hybrid quantum-classical convolutional
neural networks, Kernal-based QML, quantum neural networks
with machine learning principles, Quantum convoluted neural
networks (QCNN), Quantum Particle Swarm Optimization
(QPSO) improves QKD, Random number generation, side
channel attack mitigation, Adaptive protocols, post-quantum
cryptography, anomaly detection essential for quantum-safe
communication and data protection techniques. The rapid
growth of developments of QML algorithms to maximize the
efficiency of Quantum cryptography research like QKD,
eavesdropping detection, and security analysis of QKD protocols
is demonstrated in Figure 1a, which represents the number of
articles published in this field from 1990 to 2025 as per research
data collected google scholar and web of science. Figure 1b illustrates
key aspects of both QML and Quantum Cryptography (QC),
highlighting how advancements in quantum mechanics and
computing enhance classical cryptography and machine learning,
leading to the evolution of quantum cryptography and QML. As
shown in the figure, integrating QML with quantum cryptography
enhances security, optimizes cryptographic processes, and improves
vulnerability detection.

The rest of the article explores the fundamental aspects of
quantum cryptography, the role of QML in Quantum
cryptography, and three major research areas: quantum key
distribution, eavesdropping detection, and the security analysis of
QKD protocols with advancements in QML algorithms.
Additionally, it highlights current research gaps and future
developments in the domain in detail.

2 Quantum cryptography

Quantum cryptography utilizes quantum mechanics to develop
secure communication systems that differ from conventional
methods. Quantum cryptography’s security depends on physics
principles, unlike traditional encryption, which relies on the

computational complexity of certain mathematical problems.
Quantum cryptography utilizes quantum physics principles to
ensure secure communication. Quantum Encryption employs
quantum states to encrypt data directly, along with the
prominent QKD application for secure key exchange. Random
numbers are essential for generating keys in QKD. As a result,
both QKD and random number generation play a crucial role in the
landscape of quantum cryptography. This includes advanced
protocols like Quantum Secure Direct Communication and
Quantum Homomorphic Encryption (Goyal, 2024). The two
primary categories of Quantum Key Distribution Protocols
(QKDPs) are Continuous Variable (CV) and Discrete Variable
(DV) QKDPs. Discrete Variable QKDPs generate discrete
outcomes by employing the polarization of a single photon or
the spin of an electron for key distribution. Discrete Variable
QKDPs, which employ a single proton to store information, CV-
QKDPs use light, which has the advantage of being easier to create
coherent light. Single photons are used in DV protocols, whereas
homodyne or heterodyne detection techniques are used in CV
protocols. Some examples of Discrete Variable QKDPs include
BB84, E91, B92, and SARG04 protocols. Some protocols like the
Coherent-One-Way (COW) protocol, Differential-Phase-Shift
(DPS) protocol, and Round-Robin Differential Phase Shift
(RRDPS) protocol are Distributed Phase Reference QKDPs.
Continuous Variable QKDPs also include some protocols based
on source state, squeezed state of light, two-state protocol, and
coherent states for discrete modulation. Super-Dense Coding (SDC)
also known as the “Ping-Pong” Protocol and LM05 Protocol are
examples of two-way protocol (Nwaga and Nwagwughiagwu, 2024).
Some of the experimental implementations of quantum
cryptography include Fiber-Based QKD Systems, Free-Space
Quantum Communication, Integrated Quantum Photonics,
Quantum Repeaters, Satellite-Based Quantum Communication,
and Quantum Cryptographic Networks (Goyal, 2024). Recent
advancements in quantum cryptography include the Semi-
Quantum Private Comparison (SQPC) protocol based on Bell
states, without quantum entanglement swapping. This enhances

TABLE 1 (Continued) Recent advancements in QML algorithms for QKD highlight current research gaps and future directions.

QML in QKD Proposed algorithm Prospects Constraints

Quantum machine learning
in security analysis of QKD
protocols

High-rate Discretely Modulated CV-QKD
Using QML)
Liao et al. (2025)

QKNN classifier is used to improve secret key
rate and system performance
QkNN-based CVQKD not only enhances the
CVQKD protocol but also introduces a novel
approach for integrating other quantum
machine learning techniques into the CVQKD
domain

Resource requirements and security issues are
critical constraints
The proposed QkNN is not the only effective
quantum classifier that can be used to enhance
CVQKD when integrated with the proposed
processing architecture

Machine-learning-based anomaly detection
(Corli et al., 2024)

Applying supervised, unsupervised, and
reinforcement learning, advancements in
machine learning enhance anomaly detection

A clear comparison with classical algorithms is
essential

Empirical Risk-aware Machine Learning on
Trojan-Horse Detection for Trusted QKD
Networks (Chou et al., 2024)

Advancements in QML enhance the detection
of various attacks, further improving the
security of QKD protocols
This work promotes a risk-aware
reinforcement learning approach that
incorporates risk assessment and risk
references to design the reward function while
considering the trust conditions

Accurate risk modeling and scalability
The future directions can draw inspiration
from Bayesian online change-point detection
and risk-aware reinforcement learning,
enabling trustworthy QKD networks to gain
valuable insights into optimal trust policies.
This approach, applied within the framework
of trusted node and variant network design,
aims to facilitate the cost-effective deployment
of QKD networks
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the performance of quantum cryptography against various attacks,
making it particularly effective for noisy quantum channels (Geng
et al., 2024). Gong et al. (2024c) discuss the Novel semi-quantum
private comparison protocol with Bell states in which any quantum
state is not required to prepare and measure for classical users and it
also excludes unitary operation on received quantum particles. This
novel approach is also secure against external and internal attacks.
Another recent revaluation in quantum cryptography protocols
includes Mode-pairing quantum key distribution based on
wavelength division multiplexing in multi-user networks
developed by Cui et al. (2024) which includes the performance of
MP-QKD for multiple users with integration of WDM (wavelength
division multiplexing). This analysis is essential for asymmetric
network channels to find many applications in quantum
communication networks. Multi-party semi-quantum private
comparison (MQPC) protocols developed by Gong et al. (2023)
represent an advancement in quantum cryptography in which the
use of decoherence-free states (DFS) against collective noise
multiparty can communicate in the presence of collective-
dephasing noise and collective-rotation noise which affects the
integrity of quantum communication.

3 Quantum machine learning in
augmenting quantum cryptography

With the integration of quantum computing into classical
machine learning, QML emerges as a powerful approach to
enhance computational performance. Various classical machine
learning algorithms, including supervised and unsupervised
learning, benefit from quantum principles, leading to improved
efficiency and scalability. Unsupervised learning, particularly in
processing large real-time data, has gained popularity with the
development of quantum generative models. Several variants of
Generative Adversarial Networks (GANs) with advanced
computing capabilities have been introduced. Recently, a hybrid
quantum-classical Generative Adversarial Network (GAN) has been
developed for image generation, leveraging QML to overcome
quantum hardware constraints (Zhou et al., 2023). With the
advancement of artificial intelligence and machine learning,
traditional optimization techniques struggle to handle complex,
nonlinear, and systemic problems. Advanced algorithms such as
ant colony optimization, bat optimization, simulated annealing,
genetic optimization, fruit fly optimization, particle swarm
optimization (PSO), and the gravitational search method,
combined with effective preprocessing techniques, offer more
robust solutions. Among these, PSO, a nature-inspired
metaheuristic algorithm, stands out due to its fewer control
parameters, faster search rate, and lower computational
complexity. It has proven highly effective in addressing various
engineering and AI optimization challenges, particularly in
identifying optimal solutions across a wide range of applications
(Gong C. et al., 2024; She et al., 2025) discuss quantum-classical
hybrid neural network model—St-HQCNN which can be used in
quantum-enhanced cryptographic security, anomaly detection, and
QKD protocols optimization (Gong L. et al., 2024). discusses the
Quantum K-Nearest Neighbor (QKNN) classification algorithm,
utilizing a divide-and-conquer strategy, which offers several

advantages in QKD, including eavesdropping detection, error and
noise reduction, and improved scalability. The advancement of
QKD includes a proposed strategy for measurement-free
mediated semi-quantum key distribution (MSQKD) using single-
particle states. This approach enables two classical users to establish
a secret key with the assistance of a third party, enhancing security
and scalability while eliminating the need for a quantum detector
(Zhou et al., 2024). The Multi-Party Semi-Quantum Private
Comparison (SQPC) protocol, utilizing d-dimensional single-
particle states, enables the secure comparison of private data sizes
with the assistance of a quantum third party. It is well-suited for
multi-user and large-scale quantum cloud applications (Gong et al.,
2025). An MSQPC protocol is constructed using d-dimensional
SPSs to securely determine the size relationship between classical
participants’ private data. This protocol relies on unitary operations
and a pre-shared key, while entanglement swapping remains
optional (Gong et al., 2025). Two prominent fields of quantum
technology, QML and quantum cryptography (QC) hold immense
potential for future advancements.While research at the intersection
of QML and QC is still in its early stages, the outlook is promising as
both areas continue to evolve. The integration of QML and QC
could pave the way for more secure communication systems in the
quantum era, as hardware capabilities and practical
applications progress.

3.1 Prospects and constraints of quantum
machine learning in QKD, eavesdropping
detection and security analysis of
QKD protocols

QKD is a fundamental aspect of quantum cryptography, and
integrating QML with QKD can significantly enhance the
performance of quantum cryptographic systems. Once keys are
successfully generated in QKD, detecting eavesdropping becomes
a critical step in ensuring the security of quantum communication
channels. Strengthening QKD protocols remains a vital frontier,
representing the convergence of quantum communication and
quantum computing.

The Table 1 provides a summary of recent QML protocols
applied in QKD, highlighting current research gaps and potential
future directions.

4 Discussion

This article discusses advancements in QML for quantum
cryptography, especially with a focus on QKD, eavesdropping
detection, and security analysis. Recent studies are reviewed,
and their prospects and constraints are summarized in a tabular
format. Key research gaps include optimization challenges due to
the lack of dedicated QML models, practical implementation and
real-time testing limitations, hybrid quantum-classical tradeoffs,
scalability issues, hardware constraints, security and robustness
concerns, quantum memory and data loading difficulties, data
encoding challenges, and computational overhead. Future research
directions include optimizing model design to enhance security
and robustness. Hybrid quantum-classical Generative Adversarial
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Networks (GANs) help overcome hardware constraints by
requiring fewer Qubits and enabling parallel processing.
Unsupervised learning minimizes resource usage, reduces noise,
lowers computational overhead, and facilitates adaptive quantum
encoding and compression—critical for real-time problem
analysis. Additionally, advanced optimization algorithms such
as ant colony optimization, bat optimization, simulated
annealing, genetic optimization, fruit fly optimization, particle
swarm optimization (PSO), and the gravitational search
method, when combined with effective preprocessing
techniques, offer more robust and efficient solutions.
Additionally, QSDC protocols are well-suited for a wide range
of cryptographic applications, and several advanced protocols
extending beyond QSDC have been developed. Unlike the QKD
family of protocols, which focuses solely on secret key negotiation,
QSDC enables secure communication without requiring
cryptographic keys for encryption and decryption.
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