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This study considers the hypothetical quantum network case where Alice wishes
to transmit one qubit of information (specifically a pure quantum state) to M
parties, where M is some large number. The remote receivers locally perform
single-qubit quantum state tomography on the transmitted qubits in order to
compute the quantum state within some error rate (dependent on the
tomography technique and the number of transmitted qubits). We show that
with the use of an intermediate optimal symmetric universal quantum cloning
machine (between Alice and the remote receivers) as a repeater-type node in a
hypothetical quantum network, Alice can send significantly fewer qubits
compared to direct transmission of the message qubits to each of the M
remote receivers. This is possible due to two properties of quantum cloning.
The first is that single qubit quantum clones retain the same Bloch angle as the
initial quantum state. This means that if the mixed state of the quantum clone can
be computed to high enough accuracy, the original pure quantum state can be
inferred by extrapolating that vector to the surface of the Bloch sphere. The
second property is that the state overlap of approximate quantum clones, with
respect to the original pure quantum state, quickly converges (specifically for
1 → M, the limit of the fidelity as M goes to infinity is 2

3). This means that Alice can
prepare a constant number of qubits (which are then passed through the
quantum cloning machine) in order to achieve a desired error rate if M is
large enough. Combined, these two properties mean that for a large M, Alice
can prepare many orders of magnitude fewer qubits in order to achieve the same
single qubit transmission accuracy compared to the naive direct qubit
transmission approach.
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1 Introduction

Unknown quantum information cannot, in general, be cloned; this is a fundamental
property of quantum mechanics (Wootters and Zurek, 1982; DGBJ, 1982). However,
approximate quantum cloning is possible (Buž ek and Hillery, 1996). This study proposes
that universal, symmetric, optimal quantum cloning machines can be used in a repeater-
type quantum network in order to transmit single qubits to a large number (M) of remote
receivers, where each remote receiver applies single-qubit quantum state tomography on the
received qubits in order to compute what the mixed-density matrix state of the received
quantum clones are, and then extrapolates what the original intended pure quantum state is
(with some error rate). The proposed protocol is conceptually outlined in Figure 1. The use
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of qubits as the unit of transmitted information in this hypothetical
protocol is motivated by the security given by the no-cloning
theorem itself and thus is used in a standard single qubit
quantum key distribution (Wootters and Zurek, 1982; DGBJ,
1982; Bennett and Brassard, 2014; Shor and Preskill, 2000;
Renner et al., 2005; Christandl et al., 2004)—in this case, that
measuring individual qubits that are being transmitted does not
give sufficient information to fully reconstruct the original quantum
state. Therefore in this hypothetical scenario, we also imagine that
we wish to keep the information contained in the qubits used in this

protocol secure as well. These single qubits transmitted in the
proposed protocol have the same security inherent in quantum
key distribution.

Since the initial 1 → 2 quantum cloning was proposed (Buž ek
and Hillery, 1996), it has been generalized to N → M quantum
cloning (Gisin and Massar, 1997). There are many variants of
approximate quantum cloning (Scarani et al., 2005; Fan et al.,
2014; Murao et al., 1999; Fiurasek et al., 2005; Fan et al., 2003;
Bruß et al., 2000; Durt et al., 2005; Fiurášek, 2001; Hardy and Song,
1999; Buzek and Hillery, 1998; Fan et al., 2001; Karimipour et al.,
2002; van Loock and Braunstein, 2001; Iblis et al., 2005; Chefles and
Barnett, 1999), and there have been numerous experimental
demonstrations of variants of quantum cloning (Cummins et al.,
2002; Liu et al., 2021; Chen et al., 2011; Nagali et al., 2010; Bouchard
et al., 2017; Du et al., 2005; Pelofske, 2024; Pelofske, 2022; Pelofske
et al., 2022). The primary characteristics that differentiate quantum
cloning variants are as follows. Universal means that the cloning
process is input-state-independent, and non-universal means that
the cloning process is state-dependent. Symmetric means that all
generated clones have the same quality, whereas non-symmetric
means that the generated clones can be of different quality (e.g.,
distinguishable). Optimal quantum cloning means that the process
produces clones which are of the highest quality possible within the
laws of quantummechanics; this bound in terms of quantum fidelity
is given by Equation 1:

FN→M � MN +M +N

M N + 2( ) . (1)

FIGURE 1
Qubit cloning network diagram, where the 1 → M universal symmetric quantum cloning machine acts like a repeater for producing multiple
approximate quantum clones. Each qubit that is fed into the quantum cloning machine results in M approximate quantum clones that are weakly
entangled (denoted in red). Alice can send C independent instances of the same qubit through this cloning process, resulting in C approximate clones
(that are not entangled) being produced for each of the M hypothetical receivers. To simplify the protocol, we assume that there are M remote
receivers and that the symmetric universal quantum cloning machine produces M quantum clones from a single input qubit. Only the group of clone
qubits produced by each execution of the symmetric universal quantum cloning machine will produce qubits which are weakly entangled. This
hypothetical protocol is also assumed to be noiseless, in the sense that this assumes no decoherence and no loss of qubits during transmission.

FIGURE 2
Ideal quantum clone fidelity (Equation 1) for 1 → M universal
cloning as a function of M for M � 2 . . .2000.
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Whereas typically in quantum networks, one of the central goals
is to share entanglement using entanglement swapping (Shchukin
and van Loock, 2022; Xu et al., 2017; Goebel et al., 2008; Bruschi
et al., 2014; Zhao et al., 2010; Sangouard et al., 2008), there are a
number of proposed algorithms that encode information into
individual qubits, usually in the context of quantum machine
learning (Pérez-Salinas, 2020; Thumwanit, 2021; Ambainis, 2009;
Tapia et al., 2023). Therefore, it is conceivable that in a hypothetical
future large-scale quantum network, one may wish to transmit a
single qubit state to a large number of remote parties. We can
imagine two potential cases where the proposed method could be
used. The first is where the preparation of the single qubit state
requires a non-insignificant amount of computing time, and
therefore Alice wishes to reduce the total number of preparations
(particularly to offload the computing time onto the quantum
cloning process). The second is where a quantum cloning
machine already has a direct networked connection to the
intended recipients, and therefore it is easier for Alice to send
qubits through the quantum cloning node in order to distribute
the quantum information.

Accurately measuring which quantum state has been
prepared, particularly on hardware experiments, is of
considerable interest for quantum information processing. In
particular, quantum state tomography of a single qubit (Roman,
2016) is the simplest of these types of tasks since there is not an
exponential overhead that comes with larger system sizes.
Therefore, this study strictly considers the case in which
recipients measure the state of single qubits using quantum-
state tomography. There are many methods for performing full
quantum-state tomography, but in this case we use Pauli basis
state tomography in all simulations. Geometrically, the factor by
which the Bloch vector of an input message state in the Bloch
sphere representation is shrunk when copied by an optimal
universal symmetric quantum cloning process is given by

η N,M( ) � N

M

M + 2
N + 2

, (2)

(Scarani et al., 2005; Bruss et al., 1998; Bruß et al., 1998) (for a
qubit, e.g., d � 2).

For universal symmetric quantum cloning machines, there is a
known optimal bound on the best quantum state fidelity that can be
achieved for single-qubit clones. This bound is shown in Equation 1.
The primary motivation of this proposed single-qubit distribution
methodology is that limM→∞F1→M � 2

3. This fidelity convergence is
plotted in Figure 2. Thus, the single-qubit clone quality is
asymptotic, which means in particular that there are not
diminishing returns as M gets extremely large, in terms of error
measures such as the state overlap between any one of the
approximate quantum clones and the original message qubit. In
this context, the property of quantum cloning machines that gives
this asymptotic fidelity quality is that asymptotic quantum cloning
(where the number of clones tends to infinity) is the same as direct
quantum-state estimation (Bae and Acín, 2006; Yang and Chiribella,
2013). Quantum state estimation is the general task of learning
information about a quantum state using measurements (Paris and
Rehacek, 2004), and quantum state tomography is a specific type of
quantum state estimation.

Iqbal (2022) and Iqbal et al. (2023) studied similar concepts of
using quantum cloning for qubit transmission but limited the
number of clones to four; they did not use single-qubit quantum
state tomography (QST) or geometric extrapolation to determine
the intended pure quantum state. Wang and Cai (2018); Wang and
Cai (2019) similarly studied using many qubit copies to transmit
information but only examined making repeated quantum copies of
classical bits; they did not extend the number of clones to large M.

2 Methods

In order to quantify how close the post-processed quantum
clones are to the original pure quantum state, we measure the
distance along the surface of the Bloch sphere between the
extrapolated single qubit clone vector (since universal quantum
cloning only shrinks the Bloch vector by a factor given in Equation 2,

FIGURE 3
Comparison of single-qubit clone emulation against full quantum circuit parallel single-qubit state tomography forM � 2 andM � 3. For each point,
the mean geodesic distance from the intended point on the Bloch sphere is plotted, averaged over 1,000 separate simulations (3 ·M · 1000
measurements were taken for both procedures for each point, although because the cloning is symmetric, these properties hold for any of theM clones).
The high agreement shown in these plots demonstrates that the clone emulation trick matches full (parallel measured) quantum state tomography
of a small (example) universal quantum-cloning machine unitary, implemented as a quantum circuit. Data are plotted on a log–log scale axis.

Frontiers in Quantum Science and Technology frontiersin.org03

Pelofske 10.3389/frqst.2025.1598893

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1598893


and does not change the angle of the vector) and the pure quantum
state vector at the point at which they intersect the surface of the
Bloch sphere. This error measure thus quantifies the geodesic
distance along the Bloch sphere between two Bloch vectors. This
measure is 0 when the two states are exactly the same and is a
maximum of π when the vectors point in opposite directions. The
distance between the two points along the surface of the Bloch
sphere is computed by arccos(ρx · ρclonex + ρy · ρcloney + ρz · ρclonez),

where ρx, ρy, ρz are the x, y, z coordinates for the intersection point
on the surface of the Bloch sphere for the pure quantum state, and
ρclonex, ρcloney, ρclonez are the x, y, z coordinates for the intersection
point of the extrapolated vector of the single-qubit clone density
matrix. Due to numerical precision error, this term will occasionally
be outside of [−1, 1] making it undefined for arccos, in which case
the computed value is set to −1 or 1, respectively. The
implementation of the numerical simulation protocol is specified

FIGURE 4
Comparison of direct quantum state tomography and quantum state tomography on single-qubit emulated clones, using the metric of mean
distance along the Bloch sphere surface (top) and mean infidelity, which is 1 minus the standard-state overlap quantum fidelity measure (bottom). Both
metrics quantify the error of the transmission protocol, when recipients measure using quantum state tomography; therefore, both error rate measures
closer to 0 correspond to a lower error rate. Due to the convergence of the state overlap between the single qubit clones and the original state
(Equation 1), for example, the error rates of M � 100 and M � 106 have converged to nearly identical values, resulting in those lines being visually nearly
identical. This figure shows that as expected when transmitting single qubits, the direct qubit transmission (labeled “Direct QST”) gives the lowest error
rate. The maximum error rates for both metrics are plotted as black horizontal dashed lines. Data are plotted on a log–log scale axis.
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with the goal of showing how relatively easy this protocol can be
implemented conceptually. The difficulty of the proposed protocol is
strictly due to the quantum information processing and quantum
networking that would be required to actually physically
implement it.

The extrapolation procedure we employ is to compute the
coordinates of the mixed-state density matrix within the Bloch
sphere and then compute the intersection of that Bloch vector with
the surface of the Bloch sphere. The extrapolated Bloch vector
intersection point with the Bloch sphere can be computed by
solving the positive value of t in (t · x)2 + (t · y)2 + (t · z)2 − 1 � 0,
where x, y, and z are the coordinates of the mixed state Bloch vector.
The extrapolated x, y, z coordinates are then given by x · t, y · t and
z · t. This is easily computed over many numerical simulations using
“sympy” (Meurer et al., 2017). The error of the extrapolated point
can then be measured by the distance along the surface of the
Bloch sphere, as described above, or can be measured by
converting the coordinates into a density matrix form, and the
state overlap with the message state can be measured. The second
metric we will use to quantify the error rate of the single-qubit
state tomography (both for the standard approach and the
proposed quantum cloning approach) is the well-established
quantum fidelity (Jozsa, 1994; Müller, 2023) metric, which
measures the state overlap between two density matrices
(Equation 3). A fidelity of 0 means there is no state overlap,
and a fidelity of 1 means that the two states exactly overlap. The
error rate will be reported as 1 minus the fidelity—for example,
infidelity. The quantum fidelity measure, which is an overlap
measure between two density matrices, is given as

F ρ1, ρ2( ) � Tr
�����������
ρ1

√
ρ2

��
ρ1

√√[ ]2. (3)

The density matrix reconstruction was performed using a
slightly modified version of Qiskit Ignis (Contributors, 2023),
with the least squares parameter optimization performed using
the Python 3 package “cvxopt” (Diamond and Boyd, 2016; Agra
et al., 2018) which uses convex optimization (Agrawal et al., 2019;
Agrawal and Boyd, 2020a; Agrawal, 2019; Agrawal and Boyd,
2020b) to perform maximum likelihood estimation (Smolin

et al., 2012). Conversion formulas between density matrix
representations and Bloch sphere coordinates are given in
Supplementary Appendix S1. All simulations in this study
assume no de-coherence of any of the quantum states during
transmission (or any other part of the protocol) and assume in
general ideal conditions—for example, we assume no qubit loss
during transmission either. The only noise considered is shot noise
(e.g., finite sampling effect).

Quantum fidelity is a standard quantum state overlap measure
and therefore is most likely to be interpretable. However, the
distance along the surface of the Bloch sphere provides a
geometrical intuition which is very compatible with the notion of
single-qubit quantum cloning, and therefore we report both error
measures in this study.

2.1 Clone emulation

Single qubit clones of universal, symmetric, quantum cloning
machines have well defined properties—namely, that the clones of
quantum state correspond geometrically to the vector of the original
state being shrunk by factor η (Equation 2).

This means that for the purposes of analyzing unentangled
sequences of single-qubit clones (e.g., the unentangled sequences
described in Figure 1), the relevant quantum cloning procedure can
be emulated by constructing a density matrix that describes the mixed
state of the original pure quantum state, shrunk by η. Importantly, this
involves only a single qubit, and thus classical simulations of the state
are extremely rapid and can be executed for any M. This procedure is
referred to as clone emulation in order to clarify that it does not produce
a full set of M quantum clones (which themselves form an entangled
system) and is a limited but extremely useful tool for analyzing single-
qubit quantum cloning in this proposed protocol. It should emphasized,
however, that this cloning emulation is only a numerical simulation
method that allows us to examine the expected error rates and overhead
of this hypothetical networking protocol. If one were to implement this
protocol, the full universal quantum cloning machine would need to
implement a very large and complex unitary, thus generatingM weakly
entangled clones. Exact statevector simulation of such a quantum

FIGURE 5
Average error rate (y-axis) as a function of M when using 1 → M quantum cloning. Both the error rate metrics of quantum infidelity (right) and
geodesic distance along the surface of the Bloch sphere between the two vectors (left) are shown. A fixed number of shots, 106 (per Pauli basis, meaning
3 · 106 in total), is used to estimate these error rates. These plots show a clear convergence of error rates while M is increasing. Log–log scale axis.

Frontiers in Quantum Science and Technology frontiersin.org05

Pelofske 10.3389/frqst.2025.1598893

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1598893


cloning unitary for very a large M is not feasible because of the
exponentially growing computing time and memory cost of a full
statevector simulation of quantum states.

In this study, M is denoted simultaneously as the number of
approximate quantum clones generated by the 1 → M cloning
process and the number of remote clone receivers illustrated in
Figure 1. Each of the M clones that is produced given an input of a
single original pure quantum single-qubit state is thus sent to exactly one
(independent) remote receiver which then performs local operations and
measurements. Additionally in all simulations, the same original message
qubit is repeatedly transmitted to allM parties so that a baseline of error
rate metrics can be measured as other parameters are changed.

For all numerical simulations, a single qubit state is used since
the cloning process is universal (state-independent). For the clone
emulation procedure, 10,000 instances (for each number of shots)

are executed instead of allM instances. This only works because the
cloning is symmetric (i.e., all quantum clones are identical) and
because the remote receiver measurements are always from separate
groups of clones (cyan boxes in Figure 1) and are therefore not
entangled. Note that if we were interested in computing the full
quantum state of a group of clones (e.g., the red boxes in Figure 1),
the computational cost would be immense for a large M—in
particular, this would require at least M qubits with no or very
few errors and for a significant number of quantum gates to be
executed; see Pelofske (2024), Pelofske (2022), and Pelofske et al.
(2022) for detailed circuit descriptions of quantum telecloning
circuits, as an example. Alternatively, if the form of the cloning
state density matrix was known, then it could be computed and
sampled; however, this would require a matrix that has dimensions
2M by 2M. For the scenario in Figure 1, it is not necessary that these

FIGURE 6
Average breakeven point in terms of M (y-axis), as a function of the two error rate metrics (x-axis); distance along the surface of the Bloch sphere
(top) and quantum infidelity (bottom). The breakeven point we define as the point where the two single qubit transmission methods require Alice to
prepare the same number of message qubits in order for the transmission error rate to be equivalent (for all M remote receivers) when the single qubit
states are being measured using Pauli basis quantum-state tomography. X-axis is log scale.
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full state simulations be performed in order to assess the
transmission error rates that each remote receiver would
experience. In particular, for universal and symmetric quantum
cloning, the clone quality is significantly simplified, as single-qubit
state tomography on approximate quantum clones can show what
the resulting transmission accuracy would be (after single-qubit
quantum state tomography and state reconstruction).

In order to verify that the clone emulation worked as expected,
we performed simulations that compared classical simulations of
quantum cloning circuits with the single qubit emulation. This
comparison was made using parallel single-qubit quantum state
tomography run using full statevector simulations of quantum
cloning circuits in order to compute (ground-truth) clone quality.
The quantum cloning circuits used to simulate this protocol are a
variant of quantum cloning known as “quantum telecloning”; they
are universal, symmetric, and optimal. The construction of these
telecloning circuits is described in Pelofske (2024), Pelofske (2022),
and Pelofske et al. (2022). Supplementary Appendix S1 shows an
example of one of these circuits, described in the form of an explicit
compiled quantum circuit diagram.

3 Results

Figure 3 verifies that the clone emulation procedure produces
identical results, up to shot noise, compared with the full parallel
single-qubit state tomography procedure. The full parallel single-
qubit state tomography procedure was performed using the
quantum telecloning circuits from Pelofske (2024), Pelofske
(2022), and Pelofske et al. (2022).

Figure 4 compares direct single-qubit state tomography and
extrapolated quantum state reconstruction from the approximate
quantum clones. “Direct QST” refers to the procedure where Alice
transmits the qubit to each of theM recipients, repeated many times
(plotted on the x-axis of Figure 4). The metrics used for this
comparison are i) distance along the surface of the Bloch sphere
(closer to 0 means lower error rate) and ii) 1 − F (closer to 0 means
lower error rate). As expected, because limM→∞F1→M � 2

3, there is
an asymptote of the error rate of the reconstructed quantum states as
M gets large; M � 100 and M � 106 are effectively visually
indistinguishable, which makes sense because all of the generated
clones at this scale are approaching the same state overlap with the
pure quantum state. The data in Figure 4 represent the mean error
rate from 1,000 separate executions of quantum state tomography
for each point on the x-axis. The emulated quantum clones are
generated in batched simulations of 10,000 per parameter.

Figure 4 shows that the proposed protocol (Figure 1) provides a
significant improvement over direct single-qubit transmission when
M is large (but when considering only single qubits, and particularly
single clones of the original qubit, as expected, direct QST gives the
lowest error rate). The tradeoff that this protocol proposes is to
sacrifice some error rate in the smallM regime in order to make the
total number of transmitted copies of that original qubit very large,
and at very largeM we obtain a constant error rate (Figure 5). Note
that because of the asymptotic clone quality, M can be any large
finite number. Figure 5 shows this asymptotic clone quality as M
becomes extremely large for both error metrics for a fixed number of
shots. This shows that, for sufficiently large M, Alice can use a

constant number of qubits (for a desired error rate) in order to
transmit those qubits, via a symmetric universal quantum cloning
machine, to M remote receivers. Figure 4 shows that there is
approximately an order of magnitude separation between the
limiting behavior of the quantum cloning and the direct qubit
transmission. In order to quantify this, we can measure the
breakeven point between these two transmission methods.

The breakeven point is defined as the point where the two
methods (the direct single qubit transmission and the proposed
quantum cloning protocol) require the same number of message
qubits to be prepared by Alice in order for the receiver error rate (for
allM receivers) to be the same. Figure 6 plots this breakeven point as
a function of the error rate. The breakeven point for this range of
error rates was computed using an interpolation between the
datapoints in Figure 4.

For a desired error rate, ifM is greater than the break-even point in
Figure 6, Alice must produce a constant number of message qubits
(given by the error-dependent curve, approximated to high accuracy by
theM � 100000 curve in Figure 4) to be passed through the quantum
cloning machine (Figure 1). In order for the direct single qubit
transmission, without quantum cloning, to achieve the same error
rate and throughput (e.g., sending the qubits to each of the M remote
receivers), Alice would need to prepareM qubits per Pauli basis (in this
case, three) for each sample shown by the x-axis of the blue Direct QST
curve in Figure 4. This shows a clear and significant scaling advantage
when using quantum cloning to perform this type of single-qubit
transmission compared to direct qubit transmission without cloning.

Figure 6 contains three key observations. The first is that the
scaling of the breakeven point as a function of M is increasing—as
the transmission error rate decreases, M increases. This increase of
M is not significant (it reaches 25 in Figure 6), but a thorough
analysis of this scaling for substantially smaller error rates is an
interesting question for the future. Second, the breakeven point is
similar but not identical for the two error metrics. Third, the
breakeven point scaling, at least for the tested error rate range, is
incredibly favorable to the proposed quantum cloning protocol.
Thus, in order for Alice to see a reduction in the number of local
qubit preparations, M (the number of remote receivers) must be
greater than 25. Importantly, as shown by the convergence of the
transmission error rates for large M in Figure 5, the number of
qubits that Alice must prepare locally for any desired error rate (or
better) is then constant for any larger value of M.

4 Discussion and conclusion

This study proposes a hypothetical use for a large scale universal
symmetric quantum cloning machine in the context of transmitting
a single qubit from a local sender Alice to a large number of remote
receivers M which receive multiple transmitted qubits and perform
single qubit quantum state tomography in order to reconstruct the
intended quantum state. We have shown that the use of a large-scale
quantum cloning node in a hypothetical quantum network can
significantly reduce the total number of qubits that Alice must
prepare locally. This occurs when the transmitted qubits can be sent
through a universal symmetric quantum cloning machine and when
M is sufficiently large (Figure 6). This method works due to two
properties of optimal symmetric universal quantum cloning.
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1. Single-qubit clones retain the same Bloch angle as the parent
clone in the Bloch sphere representation; the loss of fidelity
corresponds to a shrinking of the Bloch vector, making the
clone a mixed quantum state when the original quantum state
was pure. This means that given a sufficient number of samples
of an approximate quantum clone generated from the same
input quantum state, the original quantum state can be
extrapolated by extending the computed mixed state Bloch
vector to the surface of the Bloch sphere.

2. The state overlap (e.g., fidelity) of the clones generated by
1 → M quantum cloning quickly converges to 2

3 in the limit as
M goes to infinity. There is thus a limit on the reduction of
clone quality as M becomes large.

The primary logical next question is the extent to which more
general (universal, symmetric) N → M quantum cloning processes
could be used in this type of quantum information distribution
protocol since typically entangled states contain more interesting
algorithmic information that one may wish to distribute over a
quantum network. Specifically, the most important question is how
the extrapolation procedure can be extended to entangled multi-
qubit systems. It would be of interest to determine the extent to
which entangled quantum states can be accounted for in this type of
quantum cloning extrapolation protocol. This certainly should be
possible, although the clear Bloch sphere geometric argument used
in this paper would not easily extend to N≥ 2; most likely, an
extrapolation method based purely on the density matrices would
be necessary.

The emphasis of this study is to show proof-of-principle for a
specific type of quantum networking protocol. Importantly, this
type of protocol is far from currently feasible on real quantum
computers or quantum networks; this study does not examine
real world aspects that would certainly be relevant, such as
timing. Quantifying how real world decoherence error rates,
both for the transmission and for the preparation of the
quantum cloning circuit, impact the reconstruction error is
another important future question. Noise, particularly de-
coherence, could both shrink the length of the Bloch vector as
well as bias its angle. Nevertheless, the implementation shown
here uses the real-world characterization protocol of quantum
state tomography, thus showing that this could be algorithmically
implemented if there was hardware that could perform these
operations. It would need to be possible to obtain good low error
rate state reconstruction despite very large numbers of clones
being generated in total.

Although not investigated here, this proposed protocol could
certainly also be applied to message qubits which are mixed states.
However, this would cause the cloning fidelity to be even lower than
it is when the message qubit is a pure quantum state, thus
necessitating more copies to passed through the quantum cloning
machine in order to achieve reasonably low error rate single-qubit
state tomography for the receivers.
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