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A fundamental feature of quantum mechanics is that there are observable pairs
that cannot be measured jointly, such as observables corresponding to position
and momentum or spin direction measurements. However, unsharp versions of
non-jointly measurable observables may become jointly measurable. In this
study, we investigate the joint measurability of time-continuous observables
emerging from indirect time-continuous measurements. In particular, we
study a paradigmatic situation where a qubit is interacting with a mode of
light in a cavity, and the light escaping the cavity is continuously monitored.
We find that the properties of the observables can be tuned by changing the type
of the monitoring scheme or by tuning the initial state of the cavity. In particular,
we demonstrate that heterodyne measurements are a joint measurement of a
noisy homodyne measurement of a pair of canonical quadratures. Moreover, we
investigate the purity of the induced qubit observables as a function of the noise.
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1 Introduction

One of the most important differences between classical and quantum physics is how
measurements are defined. Indeterminacy in classical mechanics is captured by classical
probability theory, and in particular, arbitrarily precise simultaneous measurements of
multiple degrees of freedom are possible (Busch et al., 2016). In quantum theory, however,
different degrees of freedom, such as position and momentum, for example, do not
commute (Born and Jordan, 1925). This leads to fundamental differences between
quantum and classical theory, such as various uncertainty relations (Busch et al., 2007).
A general description of a quantum measurement is given by a positive operator-valued
measure (POVM), which provides the measurement outcome probabilities predicted by
quantum mechanics (Heinosaari and Ziman, 2011). POVMs, in contrast to sharp or
projective measurements, are more general. For example, they discriminate quantum states
better (Oszmaniec and Biswas, 2019; Uola et al., 2019) and are a more realistic model for
measurement implementation (Busch et al., 2016; Wiseman, 1996; Guryanova et al., 2020).

Another advantage of POVMs arises from measurement uncertainty. Projective
measurements can only be measured accurately together if they commute; otherwise
the measurements will have uncertainty, following Heisenberg’s and Robertson’s
famous uncertainty relations (Heisenberg, 1927; Robertson, 1929; Robertson, 1934).
However, due to the larger number of possible measurements, we can have POVMs
that are non-commuting but can still be measured accurately. For this reason, the notion of
the joint measurability of POVMs was introduced (Busch, 1985; Busch, 1986). A set of
measurements is said to be compatible or jointly measurable if a single measurement exists
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from which it is possible to postprocess, using classical probability
theory, the measurement outcomes of all of the measurements in the
set (Heinosaari and Ziman, 2011; Stano et al., 2008; Uola
et al., 2016).

Research on joint measurability has often focused on finding
criteria for joint measurability (Busch, 1986; Stano et al., 2008; Jae
et al., 2019; Uola et al., 2014; Busch and Schmidt, 2010; Yu et al.,
2010; Beneduci, 2014; Pellonpää et al., 2023), quantifying
incompatibility (Heinosaari et al., 2015; Designolle et al., 2019;
Pusey, 2015; Haapasalo, 2015; Uola et al., 2015; Cavalcanti et al.,
2016), its relation to other similar concepts such as coexistence
(Lahti, 2003; Haapasalo et al., 2015; Reeb et al., 2013), and its
applications in quantum information processing such as quantum
steering (Karthik et al., 2015; Uola et al., 2020; Kiukas et al., 2017;
Quintino et al., 2014; Nguyen et al., 2019; Cavalcanti and
Skrzypczyk, 2016; Chen et al., 2016.; Chen et al., 2017; Uola
et al., 2021; Uola et al., 2018), Bell nonlocality (Fine, 1982; Wolf
et al., 2009; Andersson et al., 2005; Son et al., 2005; Bene and Vértesi,
2018; Quintino et al., 2016; Hirsch et al., 2018), quantum
contextuality (Budroni et al., 2022; Xu and Cabello, 2019;
Spekkens, 2005; Tavakoli and Uola, 2020; Selby et al., 2023), self-
testing (Tavakoli et al., 2020), tests on Heisenberg uncertainty
relations (Mao et al., 2022), and estimating the parameters of
quantum Hamiltonians (McNulty et al., 2023). More information
can be found in a recent review by Gühne et al. (2023).

Joint measurements can be constructed, for example, by mixing
POVMs adaptively (Uola et al., 2016), using an ansatz that produces
desired marginals (Jae et al., 2019), or by Naimark dilation
(Haapasalo and Pellonpää, 2017). In this study, we focus on the
indirect construction of joint measurements by time-continuous
quantum measurements using the paradigmatic heterodyne and
homodyne measurement schemes well known from quantum optics
and cavity QED.

Continuous measurements themselves are a well-established
concept. Pioneering research on them goes as far back as the
1980s (Srinivas and Davies, 1981; Barchielli et al., 1982; Gisin,
1984; Barchielli and Lupieri, 1985; Diósi, , 1986; Diósi, 1988; B
and elavkin, 1989). They have been applied in quantum optics
(Wiseman, 1996; Carmichael et al., 1989; Wiseman, 1993; Wiseman
and Milburn, 1993; Garraway and Knight, 1994; Wiseman, 1995;
Plenio and Knight, 1998; Doherty and Jacobs, 1999). Some early
derivations of continuous measurement driven by Gaussian noise,
similar to what will be used later here, have been derived in
Carmichael et al. (1989), Wiseman and Milburn (1993), and
Doherty and Jacobs (1999). For a comprehensive treatise on
continuous measurements, see, for example, Jacobs and Steck
(2006). Time-continuous joint measurements have seen some use
in entanglement generation, theoretically (Duan et al., 2000; Clark
et al., 2003; Motzoi et al., 2015) and experimentally (Roch et al.,
2014). Simultaneous continuous weak measurements have also been
used to measure non-commuting observables (Jordan and Büttiker,
2005; Wei and Nazarov, 2008; Ruskov et al., 2010; Chantasri et al.,
2018) with even an experimental demonstration of a measurement
on a superconducting qubit (Hacohe et al., 2016).

It has been established in the case of an empty cavity mode that
such a scenario implements a POVM that depends on the
continuously measured photon stream and is measured on the
initial state prepared in the cavity (Wiseman, 1996; Goetsch and

Graham, 1994). We here extend this concept to a situation where a
two-level system (a qubit), such as an atom, is placed into the cavity,
and we ask how sharp the measurements implemented on the qubit
are. In particular, we focus on two situations: the heterodyne and the
homodyne measurement schemes.

Previous research has focused on the concept of compatibility
and the applications of joint measurements in quantum information
processing. Measurement construction, however, has been a less
popular topic in research, particularly constructions of time-
continuous joint measurements. We study here the construction
of time-continuous measurements. We will indirectly construct a
noisy joint measurement using the paradigmatic heterodyne and
homodyne measurement schemes well-known from quantum optics
and cavity QED. We also study squeezing of the initial state of the
cavity as a potential tuning parameter. We compare the sharpness of
the marginal observables in the heterodyne and homodyne case. We
find that homodyning produces sharper observables than
heterodyning and that the sharpness of the measured quadrature
can be improved by squeezing the initial state of the cavity in the
same quadrature being continuously measured.

This approach may open up new ways of constructing joint
observables that can be tuned using techniques known from
quantum optics. Our theoretical results have applications beyond
cavity QED setups and could also be experimentally used in
superconducting qubits in microwave resonators or ultracold
atomic gases.

The outline of this article is as follows. In Section 2, we discuss
the concept of joint measurability and introduce a quantifier for
the sharpness of qubit observables. Section 3 presents the model
system we study and the different time-continuous
measurements investigated. Then, in Section 4, we numerically
compute the qubit observables induced by the time-continuous
measurement of the light escaping from the cavity, and present
our findings. Lastly, Section 5 discusses the implications of
our findings.

2 Joint measurability

A “positive operator valued measure” (POVM) is a collection of
positive operators which is complete. The POVMs we consider in
this work have a continuous sample space ΩF which is the set of
possible measurement outcomes. In the examples we consider, this
will be a space of functions which are interpreted as the observed
photocurrents (Loubenets, 2001; Krönke and Strunz, 2012; Megier
et al., 2020). A probability measure ](z) on sample space ΩF and
positive operators Fz (effects) define a POVM if

∫
ΩF

d] z( ) Fz � I.

If a system is prepared into a state ρ, then the probability of
obtaining a measurement outcome z ∈ Z when F is measured is
computed using the Born rule

P z ∈ Z( ) � ∫
Z
d] z( ) tr ρFz{ }.

Effects Ax, By are said to be jointly measurable if a probability
measure ]AB(x, y) and a positive operator C(x, y) exist, such that
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PA x ∈ X( ) � ∫
X
∫ΩB

d] x, y( )tr ρCx,y{ },
PB y ∈ Y( ) � ∫ΩA

∫
Y
d] x, y( )tr ρCx,y{ },

for any state ρ. Joint measurability is a correct notion for describing
simultaneous measurement properties of observables. For example,
all sharp observables that commute are jointly measurable, but there
may be non-commuting POVMs for which joint measurability
exists (Gühne et al., 2023). Joint measurability is important in
experimental work since it is a way to measure multiple
quantities (Designolle et al., 2021; Zhou et al., 2016; Anwer et al.,
2020; Smirne et al., 2022). A well-known example of a joint
observable for unsharp position and momentum is provided by
the Husimi Q-function (Husimi, 1940)

Q z( ) � 〈z|ρ|z〉
π

,

where |z〉 is a coherent state and z � 1

2

√ (q + ip), q, p ∈ R. In
particular, Q(z)> 0 for any quantum state. Q(z) corresponds to
a joint measurement of noisy position and momentum observables
(Appleby, 2000; Leonhardt, 1997; Wódkiewicz, 1984; Arthurs and
Kelly, 1965; Raymer, 1994; Leonhardt and Paul, 1993a; Leonhardt
and Paul, 1993b). The effects for these measurements are given by
the projection operators which are convoluted with a Gaussian
probability distribution,

〈ψ|EQ X( )|ψ〉 � 1


π

√ ∫
X

dq∫
R

dq′|ψ q( )|2e− q−q′( )2 ,

〈ψ|EP Y( )|ψ〉 � 1


π

√ ∫
Y

dp∫
R

dp′|~ψ p( )|2e− p−p′( )2 ,

where ψ(q), ~ψ(p) are, respectively, the position and momentum
representations of the state |ψ〉. The Q-function strongly contrasts
with theWigner distribution, which can be negative but provides the
correct marginal distributions for sharp position and momentum
observables (Hillery et al., 1984). We illustrate this in Figure 1 in the
case of the Fock state |4〉.

Importantly, heterodyne measurement provides an
implementation of the measurement of the Husimi Q-function
(Wiseman, 1996).

Measurements on two-level systems or qubits are very well
understood. In particular, joint measurability for qubits is well

established (Busch, 1986; Stano et al., 2008; Busch and Schmidt,
2010; Yu et al., 2010). A positive operator (effect) acting on a two-
dimensional Hilbert space can be written in terms of a bias μ and a
Bloch vector a as

F � 1
2

μI + a · σ( ), ||a||≤ μ≤ 2 − ||a||,
where the latter inequalities are conditions for positivity. We collect
the parameters of the effect into a four-vector.

v � μ, a( ).
The effect I − F has the four-vector v⊥ � (2 − μ,−a). We define

the Minkowski scalar product between the two four-vectors v, v′ as

(v|v′) � μμ′ − a · a′.

This also defines a scalar product between the effects. The
positivity condition is compactly written as v, v⊥ ∈ F+ where F + �
r|(r|r)≥ 0, μ≥ 0{ } (Busch and Schmidt, 2010). The sharpness of the
effect is (Stano et al., 2008)

G v( ) � 1
2

(v|v⊥) − 









(v|v)(v⊥|v⊥)√( ).
G(v) � 1 if the measurement is projective, and G(v) � 0 if the

effect is proportional to the identity operator.

3 Joint time-continuous measurement

In this study, we focus on the Markov regime and on heterodyne
and homodyne measurements of a qubit in a leaky cavity (Figure 2).
The qubit, the cavity mode, and their interaction are described by the
following Hamiltonian in the rotating wave approximation:

H � ωA

2
σz + ωCa

†a + g σ−a + σ+a†( ).
This is the famous Jaynes–Cummings Hamiltonian (Jaynes and

Cummings, 1963). The cavity mode is leaky (with rate κ≥ 0) and
leads to decoherence and dissipation. Such mixed state dynamics of
the average state �ρt are described by the following
Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master
equation (Gorini et al., 1976; Lindblad, 1976):

FIGURE 1
Wigner function (left), Husimi Q-function (middle) and their marginal position distribution (right) for a number state |4〉 of a quantum harmonic
oscillator. TheWigner function has sharp position andmomentummarginals but may be negative. The Husimi Q-function is always positive but provides
unsharp position and momentum distributions as marginals. Heterodyne measurement of a cavity mode corresponds to measuring the Husimi Q
function, thus providing an example of a joint measurement of the position and momentum.
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∂t�ρt � −i H, �ρt[ ] + κ a�ρta
† − 1

2
a†a, �ρt{ }( ) � L�ρt.

The dynamics above can be unraveled in various ways into
stochastic trajectories driven by white noise processes such that the
ensemble average dynamics coincide with the average state
dynamics. The linear quantum state diffusion (QSD) equation
(Gisin and Percival, 1992) that unravels the GKSL equation is

∂tρt � −i H, ρt[ ] − κ

2
a†a, ρt{ } + ξ∗t aρt + ξtρta

†, (1)

where ξ∗t is a complex-valued Gaussian white noise process with
zero mean and correlations M[ξtξ∗s ] � κδ(t − s), where M[·] is
taken with respect to the Gaussian measure ](ξt) of the white noise.
We here use the Stratonovich convention consistently. This
equation describes time-continuous heterodyne measurement of
the cavity mode.

The ensemble average over different realizations of ξt is denoted
by �ρt � M[ρt]. The ensemble average over the traceM[tr ρt{ }] � 1 is
a manifestation of the trace preservation condition. When we denote
by Gt(ρ), the propagator of the linear QSD equation andmove to the
Heisenberg picture, and we can write the trace of the state as
tr ρt{ } � tr ρG†

t (I){ }, where G†
t (I) is the dual map of the

propagator acting on the identity. G†
t (I) is a positive operator.

The trace preservation condition 1 � M[ρG†
t (I)] holds for any

initial state ρ. Thus, G†
t (I) can be also interpreted as a POVM

element corresponding to a particular measurement outcome
process ξt which has a Gaussian measure. Moving back to the
Schrödinger picture, we can see that measurement outcome
probabilities are proportional to the norm of the state tr ρt{ }. The
physical probability (density) for a particular ξt to occur is

d] ξt( )tr ρt{ },
which is the product of the probability (density) for the stochastic
process and the norm of the state. From the linear QSD equation,
we deduce

tr _ρt{ } � tr ρt ξ∗t a + ξta
† − κa†a( ){ }.

We can express the noise ξt in terms of its real and
imaginary parts

ξt � xt + iyt,

where xt and yt are mutually uncorrelated real-valued Gaussian
processes with zero mean and

Mx xtxs[ ] � 1
2
κδ t − s( ), My ytys[ ] � 1

2
κδ t − s( ),

are averages with respect to different marginals of the joint measure
for the process ξt. We can average over xt and yt separately in
Equation 1. When we average over the imaginary part, we obtain
ρXt � My[ρt] and similarly ρYt � Mx[ρt]. The equations of motion
for ρXt are

_ρXt � −i H, ρXt[ ] − κ

2
a†a, ρXt{ } + κ

2
aρXt a

†

−κ
4

a2ρXt + ρXt a
†2( ) + xt aρXt + ρXt a

†( ),
where we usedMyt[ytaρt] � iκ

4 aρ
X
t a

† − iκ
4 a

2ρXt . Similarly, we obtain

_ρYt � −i H, ρYt[ ] − κ

2
a†a, ρYt{ } + κ

2
aρYt a

†

+κ
4

a2ρYt + ρYt a
†2( ) − iyt aρYt − ρYt a

†( ),

FIGURE 2
Measurement scheme. A qubit is interacting with a leaky cavity mode, and the light escaping from the cavity is measured. Measurement outcomes xt
and yt are recorded. If a joint measurement exists, then these currents could be post-processed from a complex measurement record ξt � xt + iyt. This
occurs, for example, in the heterodyne case. We show that the separately measured currents xt , yt using homodynemeasurement are compatible with an
optimal joint qubit observable.
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when averaging over the real part of the noise. We see that the partial
averaging produces a sandwich term and terms containing a2 and
a†2. We also see that when we average over the remaining noise, we
recover the desired average dynamics in both cases. The norm of the
state is a solution to

tr _ρXt{ } � tr ρXt xt a + a†( ) − κ

4
a2 + a†2( ) − κ

2
a†a( ){ }

for the X quadrature and

tr _ρYt{ } � tr ρYt iyt a† − a( ) + κ

4
a2 + a†2( ) − κ

2
a†a( ){ },

for the Y quadrature.
These equations are to be contrasted with an equation where

we directly measure either xt or yt (Wiseman, 1996; Wiseman,
1993; Jacobs and Steck, 2006; Wiseman and Milburn, 2009;
Barchielli and Gregoratti, 2009). To achieve this, we propose a
noisy version of the X and Y quadrature homodyning equations
where we scale the noise term by



λ

√
and the noise-free terms with

λ and add the average evolution with weight (1 − λ). For the X
quadrature, this results in

_ϱλXt � λ −i H, ϱλXt[ ] − κ

2
a†a, ϱλXt{ } − κ

2
a2ϱλXt + ϱλXt a†2( )( )

+ 


2λ

√
xt aϱλXt + ϱλXt a†( )( )

+ 1 − λ( )LϱλXt .

A similar equation also holds for the Y quadrature:

_ϱλYt � λ −i H, ϱλYt[ ] − κ

2
a†a, ϱλYt{ } + κ

2
a2ϱλYt + ϱλYt a†2( )( )

−i 


2λ

√
yt aϱλYt − ϱλYt a†( )( )

+ 1 − λ( )LϱλYt .

The average evolution for noisy X and Y quadratures again
coincides with the desired average dynamics. The parameter
0≤ λ≤ 1 interpolates between not measuring (λ � 0) or making a
perfect X or Y quadrature homodyning measurement (λ � 1). The
norm of the state evolves according to

tr _ϱλXt{ } � tr ϱλXt



2λ

√
xt a + a†( )( ){ }

−tr ϱλXt λκa†a + λ
κ

2
a†2 + a2( )( ){ },

and

tr _ϱλYt{ } � tr ϱλYt



2λ

√
iyt a† − a( )( ){ }

−tr ϱλYt λκa†a − λ
κ

2
a†2 + a2( )( ){ },

for the X and Y quadratures, respectively. It is easy to see for the
choice λ � 1

2 that the time evolution of the states ϱX/2
t and ϱY/2t

matches the evolution of the states ρXt and ρYt , respectively, where the
latter are obtained from the QSD equation through
partial averaging.

We have thus determined that the noisy X and Y POVMs
become compatible when λ � 1/2 and the joint observable is given
by the heterodyning unraveling—that is, the linear QSD equation.

The same noise bound holds for the induced qubit observable
because the trace of the marginal state is the same as that of the
joint state

trA ρA{ } � trA trC ρAC{ }{ } � tr ρAC{ },

where ρAC is the joint state and trA ·{ }, trC ·{ } are partial traces over the
qubit and the cavity degrees of freedom, respectively. This is
intuitively also clear since whenever there is a joint observable
for the qubit and the cavity mode, the qubit observables may be
constructed simply by tracing over the cavity.

4 Numerical examples

It is well known that the heterodyne detection corresponds to
measuring the Husimi Q distribution and the homodyning
corresponds to measuring a quadrature of the cavity mode. The
Husimi Q distribution is a joint distribution for unsharp position
and momentum observables, whereas the quadrature measurement
corresponds to a measurement of sharp, and thus incompatible,
quadratures. In this section, we numerically investigate the noisy
time-continuous version of this relation in terms of the purity of the
induced observables on the qubit.

We consider that the system and the cavity are in a product state
before the measurement process begins. We also assume that the state
of the cavity is pure. We consider two cases: the vacuum state |0〉 and
the squeezed vacuum state |s〉 � e

1
2 s(a2−a†2)|0〉. We use the following

values in the numerical examples: Z � 1, g/ωA � 1.0, κ/ωA � 2.0, and
ωC/ωA � 1.0. The noise ξt � xt + iyt used for the numerical examples
is an approximation of a white noise process with the statistics

M[xt] � M[yt] � M[xtys] � 0,

and

M[xtxs] � M[ytys] � κΓ
2
e−Γ|t−s|

This is illustrated in Figure 2, with the inverse of the correlation
time being Γ/ωA � 15. On this timescale, this Ornstein–Uhlenbeck
process is a good approximation of a white noise process. We can
solve the resulting differential equations as they were ordinary
differential equations, and in the white noise limit they converge
to Stratonovich equations (Wong and Zakai, 1965).

The linear stochastic equations analyzed in this work are all
solved by a propagator

ρt � Gtρ0, G0ρ0 � ρ0.

Depending on the particular scenario, this propagator is a functional
of xt, yt, or xt + iyt. As the processes xt and yt are Gaussians, their
probability measure is readily constructed either in the white noise limit
or as an Ornstein–Uhlenbeck process. Suppose that we observe the
process xτ with 0≤ τ ≤ t with probability μt(x), then as with process yt

we have a probability μt(y). The POVM element Ft[xt] or Ft[yt]
acting on the qubit is obtained from the formula

p xt( ) � tr Gt xt[ ]ρ0{ } � tr Ft xt[ ]ρA{ },
with a similar formula for Ft[yt]. The initial state is
ρ0 � ρA ⊗|ψC〉〈ψC|. Using the properties of the Pauli matrices,
we can reconstruct Ft[xt] � 1

2 (μt[xt]I + at[xt] · σ) by
propagating initial states ρ0 � 1

2 I and ρi � 1
2 (I + σ i), where σ i

corresponds to Pauli matrices in the x, y, and z directions. We
set pi

t[xt] � tr Ft[xt]ρi{ } and determine that

μt xt[ ] � 2p0
t xt[ ], ait xt[ ] � 2pi

t xt[ ] − μt xt[ ],
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with similar formulas for Ft[yt]. Operator Ft constructed this way is
positive but does not yet normalize to unity. Proper normalization is
achieved when integrated against the Gaussian probability measure
(Wiseman, 1996; Barchielli and Gregoratti, 2009). In the following,
we analyze the sharpness of the unnormalized operators.

The continuous measurement yields more information about the
initial state the longer the system is measured. This means that for
measurements of negligible duration, the POVMelement is the identity.
This is independent of the initial state of the system (Figure 3).

In the top panel of Figure 3, we see that the sharpness G for the
homodyne measurement is increased by the squeezing. This occurs
because we squeeze the same quadrature that we measure.
Moreover, for values 0.5< λ≤ 1, homodyne measurement is
sharper than the heterodyne measurement (top panel). In the
lower panel, we compare the case λ � 1/2 and we see that the
noisy homodyne measurement coincides with the heterodyne
measurement. We also observe that the squeezing also increases
the sharpness of the observable in the heterodyne case.

5 Discussion

Since joint measurements have become the standard for
describing the measurement of multiple POVMs, their properties
have been significantly researched. It is of interest to find the least
noisy joint observables whose properties can be tailored. The focus
of previous research has been on the concept of compatibility and
the applications of joint measurements in quantum information

processing, while constructing actual joint measurements has been a
less popular topic of research. Specifically, there are very few studies
that construct time-continuous joint measurements.

In this study, we have ventured on this less traversed avenue. We
explicitly constructed the noisy time-continuous quadratures that
are jointly implemented in the heterodyning measurement. In
particular, we found an explicit threshold for mixing the
homodyne measurement with the average dynamics, leading to
the noisy quadrature measurements implemented in the
heterodyning scenario. This approach may open up new ways to
construct joint observables that can be tuned using techniques
known from quantum optics. A simple tuning parameter we
investigated here was the squeezing of the initial state of the cavity.

We investigated the sharpness of the marginal observables
induced for the qubit subsystem in the heterodyne case and
compared those with the homodyne case. We found that
homodyning produces sharper observables than heterodyning
and the sharpness of the measured quadrature can be improved
by squeezing the initial state of the cavity in the same quadrature
being continuously measured.

This research may open up new ways to implement joint
measurements. Our results are applicable beyond cavity QED
setups and would work for any system where general dyne
measurements can be carried out, such as superconducting
qubits in microwave resonators or ultra cold atomic gases.
These new implementations for joint measurements could also
be applied in quantum network settings, since joint measurement
are necessary for zero-error quantum communication (Gyongyosi
et al., 2018).
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