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Quantummeasurement is a dynamical process involving an apparatus coupled to
a test system. The ideal measurement of the z-component of a spin-12 (sz � ± 1

2)
has been modeled by the Curie–Weiss model for quantum measurement.
Recently, the model was generalized to higher spins, and its thermodynamics
were solved. Here, the dynamics are considered. To this end, the dynamics for the
spin-12 case are cast in general notation. The dynamics of themeasurement of the
z-component of a spin-1 (sz � 0,± 1) are solved in detail and evaluated
numerically. The energy costs of the measurement, which are macroscopic,
are evaluated. The generalization to higher spin is straightforward.
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1 Introduction

This year, we celebrate the centennial of the formulation of quantum theory; see
Capellmann (2017) for the prehistory. After the “Zur Quantummechanik” by Born and
Jordan (1925), the Dreimänner Arbeit by Born et al. (1926) on the matrix mechanics was
soon followed by Schrödinger’s (1926) formulation of wave mechanics, inspired by the
insights of De Broglie (1924). The predictive power of the theory was expressed by Born’s
(1926) rule. For a compilation of historical contributions, see Wheeler and Zurek (2014).

The interpretation of quantum mechanics has been discussed throughout the century
since then. The Copenhagen interpretation— with the Born rule and the collapse
postulate—emerged as the most reasonable. Many attempts to deepen understanding
begin with these postulates. However, they are merely shortcuts for what happens in a
laboratory. With our collaborators Armen Allahverdyan and Roger Balian, we have taken
the viewpoint of starting from the uninterpreted quantum formalism and applied it to the
dynamics of an idealized measurement. The elements of this approach that have already
been solved do not need to be interpreted; interpretation is needed to put the results in a
proper, global context. As discussed below, this effort has led to a specified version of the
statistical interpretation of quantum mechanics, popularized by Ballentine (1970).

The present study deals with the dynamics of an ideal quantum measurement. It is
based on the Curie–Weiss model for measuring the z-component of a spin 1

2, introduced by
Allahverdyan et al. (2003a). After reviewing various models for quantum measurement, it
was considered in great detail by Allahverdyan et al. (2013). The apparatus consists of a
mean-field type magnet having N≫ 1 spins 1

2 coupled to a harmonic oscillator bath. The
magnet starts in a metastable, long-lived, paramagnetic state, which is separated by free
energy barriers from the stable states with upward or downward magnetization. It is in a
“ready” state for use in a measurement.
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When employed as an apparatus, the magnetization acts as
a pointer for the outcome. The coupling to the tested spin causes
a quick transition to one of the stable states, thereby
registering the measurement. For this to succeed, the coupling
must be large enough to overcome the free energy barrier. While
the final state of the magnet is described by thermodynamics,
much detail is contained in the dynamical evolution toward
this state.

In an ideal measurement, the Born rule appears due to the non-
disturbance of the measured operator. It provides probabilities for
the pointer, that is, for the final magnetization to be upward or
downward. The state of the microscopic spin is correlated with it and
inferred from the pointer indication.

Understanding the dynamics also provides a natural route
toward the interpretation of quantum mechanics. Indeed, when
assuming the quantum formalism, the task is to work out its
predictions, and only then to interpret the results. This leads to
viewing the wave function, or, more generally, the density matrix, as
a state of best knowledge and the “collapse of the wave function” or
“disappearance of cat states” as an update of knowledge after the
selection of the runs with identical outcomes, compatible with the
quantum formalism. Notably, quantum theory is not a theory of
Nature based on an ontology; rather, it is an abstract construct to
explain its probabilistic features.

The “measurement problem,” that is, describing the
individual experiments that occur in a laboratory, is, in our
view, still the most outstanding challenge of modern science.
Many attempts have been made to solve it by making adaptations
or small alterations to quantum mechanics or by interpreting it
differently. We hold the opinion that this entire enterprise is in
vain; one should start completely from scratch to “derive
quantum mechanics,” that is to say, establish the origin of
quantum behavior in Nature1.

Various formalisms of quantum mechanics were reviewed by
David (2015). The insight that quantum mechanics is only
meaningful in a laboratory context, stressed in particular by
Bohr, is central to the approaches of Auffeves and Grangier
(2016) and Auffeves and Grangier (2020), it leads to new insights
regarding the Heisenberg cut between quantum and classical (Van
Den Bossche and Grangier, 2023). One century of interpretation of
the Born rule, including the modern one, was overviewed by
Neumaier (2025).

1.1 The Curie–Weiss model for quantum
measurement

A macroscopic material consists of atoms, which are quantum
particles. The starting point for their dynamics lies in quantum
statistical mechanics. For a measurement, the apparatus must be
macroscopic and have a macroscopic pointer so that the outcome of
the measurement can be read off or processed automatically. Hereto,
an operator formalism is required, with dynamics set by the
Liouville–von Neumann equation, the generalization of the
Schrödinger equation to mixed states.

Progress on solvable models for quantum measurement has
been made in recent decades when we, together with A.
Allahverdyan and R. Balian introduced and solved the so-called
Curie–Weiss model for quantum measurement (Allahverdyan A. E.
et al., 2003) in our “ABN” collaboration. Here, the classical
Curie–Weiss model of a magnet is taken in its quantum version
and applied to the measurement of a quantum spin 1

2. Various
further aspects were presented in Allahverdyan A. E. et al. (2003),
Allahverdyan et al. (2005a), Allahverdyan et al. (2005b),
Allahverdyan et al. (2007), and Allahverdyan et al. (2006). They
were reviewed and greatly expanded in Allahverdyan et al. (2013).
Lecture notes were presented by Nieuwenhuizen et al. (2014). A
straightforward interpretation for a class of these measurement
models was provided by Allahverdyan et al. (2017); it is a
specified version of the statistical interpretation made popular by
Ballentine (1970).

Simultaneous measurement of two noncommuting quantum
variables was worked out (Perarnau-Llobet and Nieuwenhuizen,
2017a), as well as an application to Einstein-Podolsky-Rosen type of
measurements (Perarnau-Llobet and Nieuwenhuizen, 2017b). A
numerical test on a simplified version of the Curie–Weiss model
reproduced nearly all of its properties (Donker et al., 2018).

Our ensuing insights, which are suitable for teachers of quantum
theory (at the high school, bachelor’s, or master’s levels), are
presented in Allahverdyan et al. (2024) and summarized in a
feature article (Allahverdyan et al., 2025).

1.2 Higher-spin Curie–Weiss models

The mentioned Curie–Weiss model was recently
generalized by us to measure a spin l> 1

2 (Nieuwenhuizen,
2022). This study will be termed “Models” henceforth. For spin
l, the state of the magnet is described by 2l order parameters. To
assure an unbiased measurement, the Hamiltonian of
the apparatus and the interaction Hamiltonian with the tested
system have Z2l+1 symmetry. The statics were solved for spin-1, 32,
2, and 5

2.
Here, the dynamics are worked out for spin-1, laying the

groundwork for higher-spin dynamics. In the spin 1
2 Curie–Weiss

model, it was found that Schrödinger cat terms disappear through
two mechanisms: dephasing of the magnet, possibly followed by
decoherence due to the thermal bath. Similar behavior is now
investigated for spin-1.

The setup of the article is as follows. In Section 2, we recall the
formulation of the Curie–Weiss model for general spin-l and discuss
aspects of its physical implementation for spin 1

2 and spin-1. In

1 An analogy is offered by the dark matter problem in cosmology.

Abandoning particle dark matter, we view dark “matter” as a form of

energy and assume new properties of vacuum energy. This provides a

description of black holes with a core rather than a singularity

(Nieuwenhuizen, 2023), aspects of dark matter throughout the history

and future of the Universe (Nieuwenhuizen, 2024a), and the giant dark

matter clouds around isolated galaxies (Nieuwenhuizen, 2024b),

explaining the “indefinite flattening” of their rotation curves (Mistele

et al., 2024). Remarkably, this approach is a generalization of the

classical Lorentz–Poincaré electron—a charged, non-spinning spherical

shell filled with vacuum energy (Nieuwenhuizen, 2025).
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Section 3, we revisit the spin-12 case and cast its dynamics in a general
form. In Section 4, we analyze the dynamics of the spin-1 situation.
We close with a summary in Section 5.

2 Higher-spin Curie–Weiss
Hamiltonian models

We start by recalling some properties of higher-spin models that
we introduced in “Models” (Nieuwenhuizen, 2022). The statics were
considered there; here, we define and study the dynamics, recalling
parts of the spin 1

2 case. We often refer to the review by Allahverdyan
et al. (2013) to be termed “Opus.”

In the following, we denote quantum operators by a hat,
specifically ŝ and ŝz for the measured spin and σ̂(i) and σ̂(i)z for
the spins of the apparatus. For simplicity of notation, we follow
Models and denote the eigenvalues without a hat, notably those of
ŝz by s and the ones of σ̂(i)z by σ i. Sums over i lead to the
operators m̂k and their scalar values mk for k � 1, 2, . . . , 2l.
Switching between these operators and their eigenvalues is
straightforward.

The strategy is to measure the z-component of a quantum spin-l
with (l � 1

2, 1,
3
2,/ ). The eigenvalues s of the operator ŝz lie in

the spectrum2

s ∈ specl � −l,−l + 1, . . . , l − 1, l{ }. (2.1)

The measurement will be performed by employing an apparatus
with N≫ 1 vector spins-l having operators σ̂(i), i � 1, . . . , N. They
have components σ̂(i)a (a � x, y, z), with eigenvalues σ(i)a ∈ specl.
These operators are mutually coupled in the Hamiltonian of M. For
each i � 1,/N, and for each σ̂(i)a , a � x, y, z, they are also coupled
to a thermal harmonic oscillator bath; for the case l � 1

2, this was
worked out by Allahverdyan et al. (2003a), Allahverdyan et al.
(2003b), and Allahverdyan et al. (2013). The generalization of
such a bath for arbitrary spin-l is straightforward and will be
applied to the spin-1 model.

2.1 Spin–spin Hamiltonian of the magnet

A quantum measurement is often assumed to be
“instantaneous.” In our idealized modeling, it will take a finite
time, but the tested spin will not evolve in the meantime. In
other words, the spin itself is “sitting still” and waiting to be
measured. Neither should it evolve during the “fast”
measurement. This is realized when its Hamiltonian ĤS

commutes with ŝz; we consider the simplest case: ĤS � 0.
In order to have an unbiased apparatus, the Hamiltonian of the

magnet should have degenerate minima and maximal symmetry. To
construct such a functional, we consider, in the eigenvalue
presentation, the form

C2 � ]2 ∑N
i,j�1

cos
2π σ i − σj( )

2l + 1
, ] ≡

1
N
, (2.2)

which is maximal in ferromagnetic states σ i � σ1 (i � 2, . . . , N).
In general, these interactions do not seem realistic,
but here, the cosine rule allows expressing this as spin–spin
interactions,

C2 � co2l + si2l , (2.3)

which is bilinear in the single-spin sums

col � 1
N

∑N
i�1

cos
2πσ i
2l + 1

, sil � 1
N

∑N
i�1

sin
2πσ i
2l + 1

. (2.4)

The discrete values of the spin projections allow expressing these
terms in the 2l spin moments,

mk � 1
N

∑N
i�1

σki , k � 1, . . . , 2l( ), (2.5)

while m0 ≡ 1. For l � 1
2, the values s � ± 1

2 imply

cos πs � 0, sin πs � 2s. (2.6)
Applying this for s → σ i and summing over i yields

co1
2
� 0, si1

2
� 2m1, m1 � 1

N
∑N
i�1

σ i. (2.7)

In the case l � 1, one has s � 0,± 1. The rule

cos
2πs
3

� 1 − 3
2
s2, sin

2πs
3

�
�
3

√
2

s, (2.8)

leads to s → σ i and summing over i leads to

co1 � 1 − 3
2
m2, si1 �

�
3

√
2
m1, (2.9)

Here, m2 ranges from 0 to 1 with steps of ] ≡ 1/N, while m1 ranges
from −m2 to m2 with steps of 2]. At finite N, one can label the
discrete m1,2 as

m1 � 2n1 − n2( )], m2 � n2],
0≤ n2 ≤N, 0≤ n1 ≤ n2( ). (2.10)

The results for s � 3
2, 2, and

5
2 are given in Models.

Let out of the N spins σ i, a number Nσ � ∑iδσi ,σ take
the value σ ∈ specl and let xσ � Nσ /N be their fraction.
The sum rule ∑σNσ � N implies m0 ≡ ∑σxσ � 1. The
moments read

mk � ∑l
σ�−l

xσσ
k, k � 1, . . . , 2l, (2.11)

Inversion of these relations determines the xσ as linear
combinations of the mk. For l � 1

2, one has

m1 � 1
2
x1

2
− 1
2
x−1

2
, x±1

2
� 1
2
± m1. (2.12)

For spin-1 (l � 1), one has

m1 � −x−1 + x1, m2 � x−1 + x1. (2.13)

2 To simplify the notation, we replace the standard notation for spins with

s → l and sz → s. For an angular momentum L2 � l(l + 1), the model also

applies to the measurement of L̂z with eigenvalues m → s. We employ

units Z � k � 1.
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With x−1 + x0 + x1 � 1, their inversion reads

x0 � 1 −m2, x±1 � m2 ± m1

2
. (2.14)

In a quantum approach, one goes to operators and sets s → ŝz,
σ i → σ̂(i)z , andmk → m̂k. For the Hamiltonian ĤM � NĤ, we follow
Allahverdyan et al. (2003a) and Allahverdyan et al. (2003b) and
adopt the spin–spin and four–spin interactions:

ĤM � NĤ, Ĥ � −1
2
J2Ĉ2 − 1

4
J4Ĉ

2

2. (2.15)

Multispin interaction terms like −1
6J6Ĉ

3
2 − 1

8J8Ĉ
4
2 can be added

without changing the overall picture.

2.2 The interaction Hamiltonian

The coupling between the tested spin S and the magnet M is
chosen similar to Equation 2.2,

ĤSA � NÎ, Î � g

N
∑N
i�1

cos
2π ŝzσ̂

(i)
z( )

2l + 1
, (2.16)

where g is the coupling constant. It takes the values

Is σ i{ }( ) � − g

N
∑N
i�1

cos
2πs
2l + 1

cos
2πσ i
2l + 1

(
+ sin

2πs
2l + 1

sin
2πσ i
2l + 1

), (2.17)

This can be expressed as a linear combination of the moments
m1, / , m2l. For l � 1

2, one has

Is m1( ) � −4gsm1, (2.18)
and for l � 1, denoting m � (m1, m2),

Is m( ) � −g 1 − 3
2
s2( ) 1 − 3

2
m2( ) + 3

4
sm1[ ]. (2.19)

The total spin Hamiltonian,

Ĥ � ĤM + ĤSA � ĤM −NÎ, (2.20)

has Z2l+1 symmetry: on the diagonal basis, a shift s → s + �s with
�s � 1, 2, . . . , 2l + 1 can be accompanied by a shift σ i → σ i + �s for all i.
This is evident in the cosine expressions and implies a somewhat
hidden invariance in the formulation in terms of the momentsmk, as
discussed in Models.

2.3 Coupling to a harmonic oscillator bath

For a general spin l, the magnet–bath coupling is taken as the
spin–boson coupling of Opus Equation 3.10,

ĤMB ≡
�
γ

√ ∑N
i�1

∑
a�x,y,zσ̂

(i)
a B̂

(i)
a , (2.21)

with γ≪ 1, where the bath operators read

B̂
(i)
a � ∑

k

��
ck

√
b̂
(i)
k,a + b̂

† n( )
k,a( ), (2.22)

for each i, a, there is a large set of oscillators labeled by k, having a
common coupling parameter ck. These bosons have the
Hamiltonian

ĤB � ∑N
i�1

∑
a�x,y,z

∑
k

Zωkb̂
†(i)

k,a b̂
(i)
k,a, (2.23)

with the ωk also identical for all n, a. The autocorrelation function of
B defines a bath kernel K, which is identical for all i, a,

trB R̂B 0( )B̂(i)
a t( )B̂ j( )

b t′( )[ ] � δi,jδa,b K t − t′( ),
B̂
(i)
a t( ) ≡ eiĤBtB̂

(i)
a e−iĤBt.

(2.24)

Writing ck � c(ωk), this leads to

K t( ) � ∑kc ωk( ) eiωkt

eβωk − 1
+ e−iωkt

1 − e−βωk
( )

≡
1
2π

∫+∞

−∞
dω eiωt ~K ω( ).

(2.25)

The kernel ~K(ω) can be read off and expressed in the spectral
density ρc(ω) � ∑kc(ωk) δ(ω − ωk),

~K ω( ) � 2π
|ω|ρc ω| |( ) ω

eβω − 1
. (2.26)

We adopt an Ohmic spectrum with a Debye cutoff,

~K ω( ) � e−ω| |/Γ

4
ω

eω/T − 1
, (2.27)

where T � 1/β is the temperature of the phonon bath, and Γ the
typical cutoff frequency. In Opus, we also consider a Lorentzian
(power law) cutoff, for which the statics allows analytic results.

With the couplings in Equations 2.21, 2.22, and 2.23
independent of a, ĤMB is statistically invariant under Z2l+1.
Combined with the invariance of ĤM and ĤSA, this ensures an
unbiased measurement.

2.4 Evolution of the density matrix

The evolution of the density matrix of the total system is given
by the Liouville–von Neumann equation. On the eigenbasis of ŝz,
its elements R̂s�s evolve independently as given in Equation 4.8 of
Opus; this involves the apparatus spins and the bath. The
procedure of Opus for spin l � 1

2 appears to hold for general
spin-l operators.

Let us consider the time evolution of R̂s�s as given in Equation 4.8
of Opus (we now denote i → s, j → �s), where the action of the
harmonic oscillator bath has been expressed in the bath kernel K(t)
and which involves commutators of R̂s�s with the spin operators σ̂(i)a ,
a � x, y, z; i � 1, . . . , N.

Formally, the initial state (Equation 5.4) is a constant function of
the σ̂(i)z . In addition, _Rs�s(ti) is a function of them, so it is consistent to
assume that, at all t, R̂s�s only depends on the σ̂(i)z . As a result, the
a � z terms of Equation 4.8 in Opus have vanishing commutators
for any spin l. Left with the x, y commutators, we define (using the
index n rather than i to label the σ̂x,y)

σ̂(n)± � σ̂(n)x ± iσ̂(n)y . (2.28)
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Because ∑ax,yσ̂
(n)
a Ôσ̂(n)a � 1

2∑α�±1σ̂
(n)
α Ôσ̂(n)−α for any operator Ô,

Equation 4.8 in Opus takes the form

dR̂s�s t( )
dt

� −iĤsR̂s�s t( ) + iR̂s�s t( )Ĥ�s

+ γ

2
∑

α,β�±1
∑N
n�1

∫t

0
du K βu( )Ĉ α,n( )

s�s,β u( ),
(2.29)

where

Ĉ
α,n( )

s�s,+ u( ) � e−iuĤs σ̂(n)−α e
iuĤs R̂s�s t( ), σ̂(n)α[ ],

Ĉ
α,n( )

s�s,− u( ) � σ̂(n)−α , R̂s�s t( )e−iuĤ�s σ̂(n)α eiuĤ�s[ ], (2.30)

are commutators involving the Hamiltonian of M coupled to S
in state s, without the bath, viz.

Ĥs � ĤM + Ĥ
s

SA � NH m̂1( ) +NIs m̂1( ). (2.31)

The action of the bath is expressed in the kernelK(± u), with the
smallness of γ allowing truncation at its first order. Equations 2.29,
2.30 are valid for general spin l � 1

2, 1,
3
2,/ .

Most importantly, the R̂s~s are decoupled in the separate s, �s
sectors, a property of ideal measurement but absent in general.
Examples of these non-idealities are a spin S having nontrivial
dynamics during the measurement and a biased measurement, in
which the Hamiltonian of the magnet and/or the bath depends on
the state of S.

2.5 Physical implementation of the model

The spin-12 Curie–Weiss model for quantum measurement
(Allahverdyan A. et al., 2003) was initially conceived as a tool to
understand the dominant physical aspects of idealized quantum
measurements. It has served this purpose well. Let us look here at
possible realizations of the model.

Curie–Weiss models are mean-field types of spin models.
Their distance-independent couplings apply to a small
magnetic grain. The grain need not be very large. From studies
of spin glasses and cluster glasses, it is known that “fat spins,”
clusters of hundreds or thousands of coherent spins, are easily
detectable (Mydosh, 1993).

The Ising nature of the couplings refers to fairly anisotropic
spin–spin interactions. For spin 1

2, Equation 2.15 expresses the pair
and quartet couplings between the z-components of the spins.
Multispin interactions are a natural result of the overlap of
electronic orbits; here, they are approximated as not decaying
with the distance between the spins in the grain. How reasonable
this approximation is must be considered in each separate
application. The main feature of our modeling, a first-order
phase transition in the magnet, suggests that it represents a large
class of short-range systems. This is underlined by the model’s
support of the Copenhagen postulates of collapse and Born
probabilities.

These features also hold for the spin-1 Curie–Weiss model.
However, on top of this, Equation 2.8 produces the combination
Σ̂i ≡ σ̂(i)2z − 2/3, which takes the values 1/3 for the “out-of-plane”
cases σ i � ± 1 and −2/3 for the “in-plane” case σ i � 0. Separate-spin
terms of the form ∑iDσ̂(i)2z are well known, stemming from crystal

fields. For the apparatus, the co21 term of Equation 2.3 relates to the
interaction ∑ijΣ̂iΣ̂j between the Σ̂i, so it involves both the
aforementioned D-term and also the terms σ̂(i)2z σ̂(j)2z . How to
implement these crystal-field-type spin–spin interactions in
practice is an open question.

Concerning numerical implementations, Donker et al. (2018)’s
approximation of the Curie–Weiss model can be generalized to
higher spin.

3 The spin 1
2 case revisited

3.1 Elements of the statics

We set the stage by considering the spin-12 situation, the original
Curie–Weiss model for quantum measurement in slightly adapted
notation3. The spin operators are σ̂x,y,z, with σ̂z � diag(12,−1

2). It
holds that [σ̂a, σ̂b] � iεabcσ̂c and σ̂2x + σ̂2y + σ̂2z � 3

4σ̂0 with σ̂0 �
diag(1, 1).

The magnet has N these spins σ̂(i)x,y,z, i � 1, 2, . . . , N. They have
magnetization operator

M̂1 � Nm̂1, m̂1 � 1
N

∑N
i�1

σ̂(i)z , (3.1)

taking eigenvalues −1
2≤m1 ≤ 1

2. In the paramagnetic state,
m1 � 0. The Hamiltonian is taken as pair and quartet interactions,

ĤM � NĤ, Ĥ � −2J2m̂2
1 − 4J4m̂

4
1. (3.2)

With x̂σ � N̂σ/N, it holds that

m̂1 � 1
2
x̂1/2 − 1

2
x̂−1/2, x̂±1/2 � 1

2
Î ± m̂1. (3.3)

The spins have eigenvalues σ i � ± 1
2, so that m̂1 has eigenvalues

m1 � ]∑iσ1 ranging from −1
2 to

1
2 with steps of ].

3.2 The interaction Hamiltonian

To use the magnet coupled to its bath as an apparatus for a
quantum measurement, a system–apparatus (SA) coupling is
needed. According to Equation 2.18, it is chosen as a
spin–spin coupling,

ĤSA � −4g∑N
i�1

ŝσ̂(i)z � −4gNŝm̂1, (3.4)

and takes the values Hs
SA(m1) � −4gsNm1. The full

Hamiltonian of S + A in the sector s thus reads

Ĥs � −2J2Nm̂2
1 − 4J4Nm̂4

1 − 4gsNm̂1. (3.5)

The eigenvalues of ŝz are s � ± 1
2 and those of σ̂

(i)
z are σ i � ± 1

2, so
that m̂1 has the eigenvalues ]∑N

i�1σ i. The degeneracy of a state with
magnetization m1 is

3 For the connection with the parameters in Opus, see ref 1.

Frontiers in Quantum Science and Technology frontiersin.org05

Nieuwenhuizen 10.3389/frqst.2025.1603372

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1603372


GN � N!

N−1
2
! N1

2
!
� N!

Nx−1
2

( )! Nx1
2

( )!, (3.6)

and entropy SN � logGN. At large N, we get the standard result
for the entropy SN � NS with

S � 1 − 2m1

2
log

1 − 2m1

2
− 1 + 2m1

2
log

1 + 2m1

2
. (3.7)

Combining Equation 3.5 and Equation 3.6, the free energy in the
s-sector reads

Fs m1( ) � −2J2Nm2
1 − 4J4Nm4

1 − 4gsNm1 − T logGN m1( ), (3.8)

which yields, for large N,

Fs

N
� −2J2m2

1 − 4J4m
4
1 − 4gsm1 − TS m1( ). (3.9)

3.3 Dynamics of the spin 1
2 model

At the initial time ti of the measurement, the state of the tested
system, S, here ŝ, a spin-12 operator, is described by its 2 × 2 density
matrix r̂(ti) with elements rs�s(ti) for s, �s � ± 1

2. The magnet M has
N≫ 1 quantum spins-12 σ̂

(i) (i � 1, . . . , N). In each s, �s sector, S + M
lie in the state R̂s�s(t) � R̂

†

�ss(t), which is an operator that can be
represented by a 2N × 2N matrix. At ti, M is assumed to lie in the
paramagnetic state wherein the spins are fully disordered and
uncorrelated. Multiplying by the respective element of r̂(ti) leads
to the elements of the initial density matrix of S + M

R̂s�s ti( ) � rs�s ti( ) σ̂
(1)
0

2
⊗
σ̂(2)0

2
⊗/⊗

σ̂(N)
0

2
. (4.1)

3.4 Truncation for spin 1
2

The dynamics of the off-diagonal elements (cat terms) were
worked out in Opus. In the relevant short-time domain, the
spin–spin couplings are ineffective; therefore, it suffices to study
independent spins coupled by the interaction Hamiltonian and the
bath. These elements vanish dynamically, truncating the density
matrix R̂ to a form diagonal on the eigenbasis of ŝz. There is no
reason to repeat that here; for spin-1, this will be worked out
in Section 4.1.

3.5 Registration for spin 1
2

Registration of the measurement is described by the evolution of
the diagonal elements of the density matrix of the full system. For the
situation of higher spin, it is instructive to reconsider and slightly
reformulate the spin 1

2 situation.
For �s � s, the Hamiltonian terms drop out of Equation 2.29;

hence, the dynamics are a relaxation set by

dR̂ss t( )
dt

� γ

2
∑

α,β�±1
∑N
n�1

∫t

0
du K βu( )Ĉ α,n( )

ss,β u( ). (4.2)

For l � 1
2, the spin operators σ̂x,y,z anticommute; hence, for any

function f of the σ̂(i)z , it holds that

σ̂(n)α f σ̂(i)z{ }( ) � f̂ −1( )δi,n σ̂(i)z{ }( )σ̂(n)α

≡ f(n) σ̂(i)z{ }( )σ̂(n)α .
(4.3)

This brings the σ̂(n)α and σ̂(n)−α next to each other, which allows to
eliminate them using the sum ∑α�±1σ̂

(n)
α σ̂(n)−α � σ̂(n)0 . With only

functions of the σ̂(i)z (i � 1, . . . , N) remaining, we can go to their
diagonal bases to work with scalar functions of their eigenvalues
σ i � ± 1

2 (see also Opus, Section 4.4). This expresses Equation 2.30 as

C(n)
s�s,+ u( ) ≡ ∑

α�±1
Cα n

s�s,+ u( ) � e−iuHs eiuH
(n)
s R(n)

s�s t( ) − e−iuH
(n)
s eiuHsRs�s t( ),

C(n)
s�s,− u( ) ≡ ∑

α�±1
Cα n

s�s,− u( ) � R(n)
s�s t( )e−iuH(n)

�s eiuH�s − Rs�s t( )e−iuH�s eiuH
(n)
�s ,

(4.4)
where for any function f({σ i}), f(n) has the sign of σn reversed,

f(n) σ i{ }( ) � f −1( )δi,nσ i{ }( ). (4.5)

We employed the obvious rules (fg)(n) � f(n)g(n) and
[f(g)](n) � f(g(n)). The terms in Equation 4.4, being scalars,
yield the relation C(n)

s�s,−(u) � C(n)
s�s,+(−u), which allows combining

the integrals of Equations 2.29 and 2.30 as a single one from u �
−t to t. Because γ≪ 1, the typical scale of t, the registration time 1/γT
is much larger than the bath equilibration time 1/T. Hence, we may
now take the integral over the entire real axis to arrive at the Fourier-
transformed kernel �K(ω) at specific frequencies.

The next step is to reduce the 2N × 2N matrix problem to a
problem of N + 1 variables by considering Rss({σ i}) � Rss(m1) to
be functions of the order parameterm1 � ]∑ σ i. This is formally true
at ti and valid for _Rs�s(ti); hence, it remains valid over time. Denoting
Ps(m1) as the probability that Rss({σ i})/rss(ti) involvesm1 � ]∑iσ i, it
picks up the degeneracy numberGN in Equation 3.6 of realizations {σ i}
with the same m1,

Ps m1( ) � GN m1( )Rss m1( )
rss ti( ) . (4.6)

To obtain the evolution of _Ps, we multiply Equation 4.2 by
GN(m1)/rss(ti). At given m1, one has m

(n)
1 � m1 − 2]σn, so we can

split the terms with σn � 1
2 (and −1

2) and perform the sum over n. The
fraction of terms that flips an up spin σn � 1

2 is x1
2
(m1), which

multiplies P(m1 − ]); flipping a down spin σn � −1
2 happens with

probability x−1
2
(m1), which multiplies P(m1 + ]). Due to Equation

4.6, these Ps involve the ratios

GN m1( )
GN m1 − ]( ) �

x−1
2
m1 − ]( )

x1
2
m1( ) ,

GN m1( )
GN m1 + ]( ) �

x1
2
m1 + ]( )

x−1
2
m1( ) ,

(4.7)

which has the effect of eliminating the x±1
2
(m1). Introducing the

operators E± and Δ± � E± − 1 by

E±f m1( ) � f m1 ± ]( ),
Δ±f m1( ) � f m1 ± ]( ) − f m1( ), (4.8)

the evolution of Ps gets condensed as
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_Ps m1( ) � γN

2
∑
α�±1

Δα x1
2 α

m1( ) ~K Ωsα m1( )[ ]Ps m1( ){ }. (4.9)

where

Ωs± m1( ) � Δ∓Hs � Hs m1 ∓ ]( )−Hs m1( ). (4.10)
This is now a problem for N + 1 functions P(m1; t) subject to the
normalization ∑m1

P(m1; t) � 1.

In Figure 1, the distribution of themagnetizationm1 is depicted at
various times. In Figure 2, this evolution is represented in a 3d plot.

3.6 H-theorem and relaxation to equilibrium

The dynamical entropy of the distribution Ps(m1; t) �
GN(m1)Rss({σ i}; t)/rss(ti) is defined as

FIGURE 1
Evolution of the magnetization distribution Ps(m1; t) for s � +1

2 at times 0, 1, . . . ,8 in units of 1/γT . The paramagnetic state at t � 0 is peaked around
m1 � 0; the coupling between S and A moves the peak toward m1 � +1

2. In doing so, it first broadens and later narrows significantly.

FIGURE 2
The case of Figure 1 plotted in 3d at intervals Δt � 0.2/γT .
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Ss t( ) � −Tr R̂ss t( )
rss ti( ) log

R̂ss t( )
rss ti( )

� −∑
m1

Ps m1; t( )logPs m1; t( )
GN m1( ) .

(4.11)

As in Opus, we introduce a dynamical free energy:

Fs
dyn t( ) � Us t( ) − TSs t( )

� ∑
m1

Ps m1; t( ) Hs m1( ) + T log
Ps m1; t( )
GN m1( )[ ], (4.12)

which adds the Ps logPs term to the average of the free energy
functional FN(m1) � Hs(m1) − TSN(m1). With β � 1/T, Equation
5.36 yields.

_F
s

dyn � T∑
m1

_Ps m1( )logPs m1( )eβHs m1( )

GN m1( )

� γNT

2
∑
α�±1

∑
m1

Δα x1
2 α
~K Ωs α( )Ps[ ]logPseβHs

GN
.

For general functions f1,2(m1) and α � ± 1, partial
summation yields

∑
m1

Δαf1( )f2 � ∑
m1

f1 Δ−αf2( ) � ∑
m1

Eα f1 Δ−αf2( )[ ]
� −∑

m1

Eαf1( ) Δαf2( ). (4.13)

provided that the boundary terms f1,2(m]
±) at m]

± � ± (1 + ])
vanish. As discussed, this holds for Ps but also for the logarithm in
Equation 4.13 because we may insert a factor (1 − δm1 ,m] − δm1 ,−m])
that makes this explicit. For α � +1, we now use the last expression,
and for α � −1, we use the second one, which yields, also using
Equation 4.10 and the property ~K(−ω) � ~K(ω)eβω satisfied in
(Equations 2.26, 2.27), the result

_F
s

dyn � −γNT∑
m1

~K Δ+Hs( ) × eΔ+βHs E+x1
2

( ) E+Ps( )x−1
2
Ps{ }Δ+ log

Pse
βHs

GN
.

(4.14)

The various x–factors are such that a term GN(m1)x−1
2
can be

factored out to yield

_F
s

dyn � −γNT∑
m1

∑
β�±1GNx−1

2
~K Δ+Hs( )

× eΔ+βHs E+
Ps

GN
( ) Ps

GN
{ }Δ+ log

Pse
βHs

GN
. (4.15)

With Δ+Hs � E+Hs −Hs, GN � exp(SN) and
Fs(m1) � Hs(m1) − TSN(m1), this can finally be expressed as

_F
s

dyn t( ) � −γNT∑m1
x−1

2
~K Δ+Hs( )e−βFs

× Δ+
Ps

e−βFs
( ) Δ+ log

Ps

e−βFs
( ). (4.16)

The last factors have the form (x′ − x)log(x′/x), which is
nonnegative, so that Fs

dyn is a decreasing function of time.
Dynamic equilibrium occurs when these factors vanish, which
happens when the magnet has reached the thermodynamic
equilibrium set by the Gibbs state Ps � e−βFs /Zs and
R̂ss � e−βĤs /Zs, with Zs � ∑m1

exp(−βFs) � ∑m1
GN(m1)

exp(−βHs) � Tr exp(−βĤs), as usual. The dynamical free energy
(Equation 4.12) indeed ends up at the thermodynamic one,

Fs
dyn ∞( ) � −T logZs � Fs g( ). (4.17)

This constitutes an example of the apparatus going dynamically
to its lowest thermodynamic state and the pointer state indicating
the measurement outcome s � ± 1

2. The temporal evolution from
Fdyn(0) to Fs(g) is depicted in Figure 3.

3.7 Decoupling the apparatus

Near the end of the measurement, at a suitable time tdc, the
apparatus is decoupled from the system, by setting g � 0; in
doing so, an energy Udc � −∑m1

Ps(m1; tdc)HSA(m1) must be
supplied to the magnet, which will then relax further its
nearby minimum of the g � 0 situation, to provide a stable

FIGURE 3
Evolution of the dynamical free energy Fsdyn(t), identical in both sectors s � ± 1

2, after coupling the apparatus to a spin-12 at time t � 0. Its approach to
the Gibbs state with Fs(g) (bottom line), exponential in t, expresses the registration of the measurement.
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pointer indication with a macroscopic order parameter M1 �
Nm1 that can be read off.

4 Dynamics of the spin-1 model

Wenow focus on the spin-1 case, in which the tested system, S, is
ŝ, a spin-1 operator with ŝz having eigenvalues sz � −1, 0, 1. Our
magnet M has N≫ 1 quantum spins-1 σ̂(i) (i � 1, . . . , N).
According to Equation 2.5, one now deals with two order
parameters,

m̂1 � 1
N

∑N
i�1

σ̂ i, m̂2 � 1
N

∑N
i�1

σ̂2i . (5.1)

While m̂1 is the usual magnetization in the z-direction, m̂2 is a spin-
anisotropy order parameter that discriminates the sectors with
eigenvalues σ i � ± 1 from the sector with eigenvalues σ i � 0.

The quantity Ĉ2, the operator-form of Equation 2.2, is our
starting point for a permutation-invariant Hamiltonian that ensures
unbiased measurement. Expanding the cosine, employing Equation
2.8 for each spin σ̂ i, and summing over i yields a polynomial in the
moments m̂1,2,

Ĉ2 � 1 − 3
2
m̂2( )2

+ 3
4
m̂2

1. (5.2)

For the Hamiltonian, we take as in Equation 3.2

ĤN � NĤ, Ĥ � −1
2
J2Ĉ2 − 1

4
J4Ĉ

2

2. (5.3)

It can be understood as containing the single-spin term m̂2, the
pair couplings m̂2

1 � 1/N2∑ijσ̂ iσ̂j and m̂
2
2 � 1/N2∑ijσ̂

2
i σ̂

2
j , the triplet

couplings m̂2
1m̂2 and the quartet couplings m̂4

1, m̂
2
1m̂

2
2, and m̂4

2.
However, note its different conception in Section 2.5.

At the initial time ti of the measurement, its state is described by
its 3 × 3 density matrix r̂(ti) with elements rs�s(ti) for s, �s � −1, 0, 1.

In each s, �s sector, M lies in its state R̂s�s(t) � R̂
†

�ss(t), which is an
operator that can be represented by a 3N × 3N matrix. This
exponential problem gets transformed into a polynomial one, a
step that is exact for the considered mean-field-type Hamiltonian.

At ti, M is assumed to lie in a paramagnetic state, wherein the
spins are fully disordered and uncorrelated. For each spin, its state is
thus σ̂(i)0 /3 where σ̂(i)0 � diag(1, 1, 1). Multiplying by the respective
element of r̂(ti) leads to the elements of the initial density matrix of S
+ M in the s, �s � 0,± 1 sector,

R̂s�s ti( ) � rs�s ti( ) σ̂
(1)
0

3
⊗
σ̂(2)0

3
/⊗

σ̂(N)
0

3
. (5.4)

For general angular momentum, the commutation relations
[L̂a, L̂b] � iεabcL̂c and L̂

2
x + L̂

2
y + L̂

2
z � l(ł + 1)Î carry over to

general spin

σ̂a, σ̂b[ ] � iεabcσ̂c, σ̂2x + σ̂2y + σ̂2z � l l + 1( )σ̂0, (5.5)

While we considered l � 1
2 in Section 3, we now focus on l � 1.

We proceed as for spin 1
2. The a � z commutator in Equation

2.29 does again not contribute. We introduce σ̂α � σ̂x + iασ̂y for
α � ± 1. From Equation 5.5, it follows for general l that

σ̂ασ̂−α � l l + 1( )σ̂0 + ασ̂z − σ̂2z
σ̂ασ̂−α( )σσ′ � l + 1 − ασ( ) l + ασ( )δσσ′. (5.6)

In the present case l � 1, this has nontrivial values

σ̂ασ̂−α( )σσ � 2δσ,α + 2δσ,0, σ � 0,± 1( ), (5.7)
with Equation 5.6 implying that the σ � −α term indeed drops out.
The SO(3) generators

σ̂x � 1�
2

√
0 1 0
1 0 1
0 1 0

⎛⎜⎝ ⎞⎟⎠, σ̂y � 1�
2

√
0 −i 0
i 0 −i
0 i 0

⎛⎜⎝ ⎞⎟⎠,

σ̂z �
1 0 0
0 0 0
0 0 −1

⎛⎜⎝ ⎞⎟⎠,

(5.8)

allow verifying these relations. Each of the σ̂(i) (i � 1, . . . , N)
has such a presentation. In Equation 2.30, the interchange of the σ̂(i)α

with the σ̂(n)z will be needed. For i ≠ n, they commute, while for i � n,

σ̂ n( )
α σ̂ n( ) k

z � σ̂(n)z − ασ̂(n)0( )kσ̂ n( )
α ,

σ̂(n) k
z σ̂ n( )

α � σ̂ n( )
α σ̂(n)z + ασ̂(n)0( )k. (5.9)

Valid for k � 1, induction yields this for higher k. For functions
of the {σ̂(i)z }, (i � 1, . . . , N), that can be expanded in a power series, it
follows that

σ̂ n( )
α f σ̂(i)z{ }( ) ≡ f n,α( ) σ̂(i)z{ }( )σ̂ n( )

α ,

f n,α( ) σ̂(i)z{ }( ) � f σ̂(i)z − δi,nασ̂
(n)
0{ }( ). (5.10)

Now the σ̂± can be eliminated using Equation 5.6, which leaves
functions of only the σ̂(i)z , with the shifts in their arguments arising as
the cost for this. As before, we can assume that R̂s�s(t) � Rs�s({σ̂(i)z }, t),
where Rs�s({σ i}, t) is a scalar function of the eigenvalues σ i � 0,± 1 of
the σ̂(i)z . Valid at ti, this holds for (dR̂s~s/dt)(ti), so it remains valid in
time. Hence, it is possible to go from the matrix equations to scalar
equations. With the equality in Equation 5.6 applied for spin n, we
end up with the scalar expressions

C(n,α)
s�s,+ u( ) � δσn ,−α + δσn,0( )e−iuHs eiuH

(n,α)
s R(n,α)

s�s t( )
− δσn,α + δσn,0( )e−iuH(n,−α)

s eiuHsRs�s t( ),
C(n,α)

s�s,− u( ) � C(n,α)
s�s,+ −u( ),

(5.11)

where for any function Rs�s expandable in powers of the σ i �
0,± 1 (i � 1, . . . , N), it holds that

R(n,α)
s�s � Rs�s σ i → σ i + αδi,n{ }( ), (5.12)

Now that all terms are scalar functions of the σ̂(i)z , it is seen that
C(n,α)
s�s,− (u) � C(n,α)

s�s,+ (−u;Hs → H�s). We no longer need to track the
operator structure and can work with scalar functions of the
eigenvalues.

4.1 Off-diagonal sector: truncation of
Schrödinger cat terms

In the spin 1
2 Curie–Weiss model, it was found that the

Schrödinger cat terms disappear by two mechanisms: dephasing
of the magnet, possibly followed by decoherence due to the thermal
bath. Similar behavior is now investigated for spin-1.
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4.1.1 Initial regime: dephasing
Truncation of the density matrix (disappearance of the cat states)

is a collective effect that takes place within an initial time window, in
which the magnet stays in the paramagnetic phase, so that the mutual
spin couplings J2,4 and the coupling to the bath can be neglected. The
spins of M act individually by their coupling to the tested spin S and
do not get correlated yet. In the sector where the eigenvalue of the
operator ŝz is s, the Hamiltonian of the magnet is

ĤSA � ∑
n

Ĥ
sn

SA,

Ĥ
sn

SA � −g 1 − 3
2
s2( ) σ̂(n)0 − 3

2
σ̂(n) 2z( ) + 3

4
sσ̂(n)z[ ]. (5.13)

At a given s, this is a trace-free diagonal matrix with elements 1
2g

(twice) and −g,
Hsn

SA( )σ ~σ � g

2
δσ,~σ 1 − 3δσ,s( ),

δσ,s � 1
3
+ 2

3
− s2( ) 1 − 3

2
σ2( ) + 1

2
sσ,

(5.14)

for (s, σ, ~σ � 0,± 1). In this approximation, the 3N × 3N density
matrix of the magnet in each sector s�s maintains the product structure
(Equation 5.4) of uncorrelated spins at t � ti,

R̂s�s t( ) � rs�s ti( )ρ̂(1)s�s t( )/⊗ ρ̂ 2( )
s�s t( )/⊗ ρ̂(N)

s�s t( ), (5.15)
where, setting ti � 0, for each n,

ρ̂(n)s�s t( ) � e−itĤ
s,n
SA
σ̂(n)0

3
eitĤ

�s,n
SA � ρ̂(n)�ss t( )( )†,

ρ(n)s�s t( )( )
σ ~σ

� 1
3
δσ,~σ exp

3
2
igt δσ,s − δσ,�s( )[ ]. (5.16)

Diagonal elements s � �s thus essentially do not evolve in this
short-time window. The off-diagonal ones imply for s ≠ �s

rs�s t( ) � TrMR̂s�s t( ) � rs�s 0( ) 1
3
+ 2
3
cos

3
2
gt( )N

. (5.17)

For small t, this decays as rs�s(0) exp(−t2/τ2dph) with the dephasing
time τdph � 2/g

���
3N

√
, very short for large N. The undesired

recurrences at tn � 4πn/3g, where the cosine equals 1 again, can
be suppressed by assuming that the g → gn � �g + δgn values in
Equation 5.16 have a small spread δgn (see Opus, Section 6.1.1). If
the thermal oscillator bath has proper parameters, it will cause
decoherence, as seen next.

4.1.2 Second step: decoherence
To include the bath in Equation 5.16, we now make the

generalized Ansatz:

ρ̂(n)s�s t( )( )
σ ~σ

� δσ,~σ
1
3
exp −Bσ t( )[ ] × exp −itH s,n( )

SA σ( ) + itH �s,n( )
SA σ( )[ ].

(5.18)
In the commutators (Equation 5.11),Hs now reduces to theHs,n

SA

of Equation 5.14, and the terms are identical for all n. We can neglect
B ~ γ in the exponents of Equation 2.29 and find, putting −α → α in
the minus terms,

_Bσ � γ

2
∑

α
Kt> Δσ

αHs( ) +Kt< Δσ
αH�s( )[ ]{

− Kt> −Δσ
αHs( ) + Kt< −Δσ

αH�s( )[ ]eασs�s t( )}, (5.19)

with

Kt> ω( ) � ∫t

0
du K u( )e−iωu,

Kt< ω( ) � ∫0

−tdu K u( )e−iωu. (5.20)

Here, Kt>(ω) � Kt>* (ω) because the kernel ~K(ω) is real valued;
see the example in Equation 2.27, and

Δσ
αHs � Hs σ + α( ) −Hs σ( )

� 3g
2

1 − 3
2
s2( ) 1 + 2ασ( ) − 1

2
sα[ ], (5.21)

with a similar expression for Δσ
αH�s, and finally

eασs�s t( ) � exp −it Δσ
αHs − Δσ

αH�s( )[ ]. (5.22)

For �s � s, one has eασs�s (t) � 1. For t≫ 1/2πT, one gets,
using ~K(−ω) � eβω ~K(ω),

_Bσ � γ

2
∑

α
~K Δσ

αHs( ) − ~K −Δσ
αHs( )

� γ

2
∑

α
Δσ
αHs( )e−|Δσ

αHs |/Γ ~
γ

N
,

(5.23)

because Hs ~ N, Δσ
αHs ~ N0, and ∑αΔσ

αHs ~ 1/N. Therefore,
for s � �s, this confirms that hardly any dynamics take place in this
time window. In the next subsection, we show that they occur on a
longer time scale τreg � 1/γT.

For off-diagonal elements �s ≠ s, it is seen that eασs�s (t) has terms
e±3igt/2 and e±3igt, so that

eασs�s t( ) � ∑
j�−2,−1,1,2

cje
3ijgt/2,

∫t

0
du eαs�s σ; u( ) � ∑

j�−2,−1,1,2
cj
e3ijgt/2 − 1
3ijg/2 .

(5.24)

The exponentials are equal to unity, making Eα
s�s � 1, at the times

tn � 4πn/3g, n � 1, 2,/ , encountered below Equation 5.17, when
appearing in the dephasing process, and thus also as times where
_Bσ(t) � 0. To suppress recurrences like in the dephasing, we again
set in each n-term g → gn � �g + δgn with small Gaussian
distributed δgn. For times well exceeding the coherence time
1/2πT of the bath, the Kt> and Kt< reach their finite limits, so
that we have

∫t

0
dt′ Kt′> ω( )Eα

s�s σ; t′( ) � ∫t

0
dt′ Kt′> ω( ) − K∞> ω( )[ ]Eα

s�s σ; t′( )
+ K∞> ω( )∫t

0
du Eασ

s�s u( ), (5.25)

The first part is small, and the second is given in Equation 5.24.
After canceling out its exponents by the δgn, an imaginary part
remains. Hence, for t≫ 1/2πT, the Eασ

s�s terms can be neglected in
RB. We keep

RBσ t( ) ≈ R _Bσ × t,

R _Bσ ≈
γ

2
∑

α
~K Δσ

αHs( ) + ~K Δσ
αH�s( )[ ], (5.26)

which is positive, so that | exp(−NBσ)| � exp(−NRBσ) with
NRBσ ~ γNgt leads for large enough values of N to a
decoherence of the off-diagonal elements rs�s(t) of the density
matrix at the characteristic decoherence time tdec � 1/γgN and
γNgτreg ~ Ng/T.

Frontiers in Quantum Science and Technology frontiersin.org10

Nieuwenhuizen 10.3389/frqst.2025.1603372

https://www.frontiersin.org/journals/quantum-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frqst.2025.1603372


Decoherence is a combined effect of the N apparatus spins;
despite it, the individual elements of R̂s�s hardly decay in this time
window, behaving as exp(−γgt) � exp(−t/N tdec) ≈ 1.

4.2 Registration dynamics for spin-1

In Section 3, a difference equation was derived for the distribution
of the magnetization of the magnet for any numberN of spins-12. Our
aim here is to derive an analogous equation for the spin-1 case.

In the paramagnet, one has the form Rss({σ i}) � rss(ti)/3N. Let
Ps(m) with m � (m1, m2) be the probability for a state of the
magnet M characterized by the moments m1,2. It gathers the
value Rss(m)/rss(ti) for all sequences {σ i} compatible with m1,2,
the number of which is the degeneracy factor GN � exp SN,

Ps m; t( ) � GN m( )Rss m; t( )
rss ti( ) ,

GN m( ) � N!

N−1( )! N0( )! N1( )!, Nσ � xσN,
(5.27)

with the x±1 � 1
2 (m2 ± m1) and x0 � 1 −m2 from Equation

2.14. The normalizations are

∑1
σ(1)�−1

/ ∑1
σ(N)�−1

Rss σ(i){ }; t( ) � rss ti( ),

∑1
m2�0

∑m2

m1�−m2

Ps m1, m2; t( ) � 1.

(5.28)

Due to the relations described by Equations 2.13 and 2.14
between the spin moments m0,±1 and the spin fractions x0,±1, the
shifts in m1,2 induce the shifts Nσ′ � Nσ + δNσ and
xσ′ � xσ + ]δNσ , with

δN±1 � 1 ± α

2
+ ασn, δN0 � −1 − 2ασn, (5.29)

which are integers, as they should be. The degeneracies for σn �
−α, 0, α lead to the respective factors

GN

GN( )′ �
N−1′ !N0′!N1′!
N−1!N0!N1!

� x0 + ]
x−α

δσn ,−α

+xα + ]
x0

δσn,0 +
x−1 + ]( ) x1 + ]( ) + xα + 2]( )

x0 x0 − ]( ) x0 − 2]( ) δσn,α,
(5.30)

where Nσ � Nxσ is used. The complicated last term is fortunately
not needed, while the denominators of the first two will factor out.

Going to the functions Ps of the momentsm1,2, we proceed as for
the spin 1

2 situation. The C± terms of Equation 5.11 can again be
combined and performing the u-integrals in Equation 4.2 leads for
t≫ 1/T to the kernel ~K(ω) at the frequencies

Ωβ
α m( ) � Hs m1α − ], m2 − β]( ) −Hs m( ), (5.31)

for α, β � ± 1. Multiplying Equation 4.2 by GN and summing
over α, there results an evolution equation for the distribution Ps at
each discrete value of m1,2,

_Ps m1, m2; t( ) � γN ∑
α�±1

x0 + ]( ) ~K −Ω+
s,−α( )P−

sα m1, m2; t( ){
+ xα + ]( ) ~K −Ω −

s,−α( )P+
sα m1, m2; t( )

− xα
~K Ω+

sα( ) + x0
~K Ω−

sα( )[ ]Ps m1, m2; t( )}.
(5.32)

Let us condense notation and introduce the shift operators Eβ
α

and Δβ
α � Eβ

α − 1 by their action

Eβ
αf m( ) � f m1 + α], m2 + β]( ),

Δβ
αf m( ) � f m1 + α], m2 + β]( ) − f m( ). (5.33)

on any f(m). They have the properties

Eβ
αΔ−β

−α � −Δβ
α, Ωβ

s α � Δ−β
−αHs,

Eβ
αΩβ

sα � −Δβ
αHs � −Ω−β

s,−α.

Eβ
αxα � xα + 1 + β

2
], Eβ

αx0 � x0 − β].
(5.34)

Hence, Equation 5.32 can be expressed as

_Ps m1, m2; t( ) � γN ∑
α�±1

Δ+
α xα

~K Ω+
sα( )Ps[ ] + Δ−

α x0
~K Ω−

sα( )Ps[ ]( ),
(5.35)

which has a remarkable analogy to Equation 4.9 and Equation 4.16
of Opus for the spin-12 case. By denoting x

+
α � xα above and x−

α � x0,
this is condensed further,

_Ps m1, m2; t( ) � γN ∑
α,β�±1

Δβ
α xβ

α
~K Ωβ

sα( )Ps[ ]. (5.36)

4.3 H-theorem and relaxation to equilibrium

We now exhibit a H theorem that assures the relaxation of the
magnet towards its Gibbs equilibrium state and, thus, a successful
measurement. The dynamical entropy of the distribution Ps(m; t) �
GN(m)Rss({σ i})/rss(ti) is defined as

Ss t( ) � −Tr R̂ss t( )
rss ti( ) log

R̂ss t( )
rss ti( )

� −∑
m

Ps m; t( )logPs m; t( )
GN m( ) .

(5.37)

Following Opus and Equation 4.12 above, we consider the
dynamical free energy

Fs
dyn t( ) � Us t( ) − TSs t( ) � ∑

m

Ps m; t( ) Hs m( ) + T log
Ps m; t( )
GN m( )[ ].

(5.38)
It appears to depend on s. The simultaneous change s → − s,

m1 → −m1 implies that F1
dyn(t) � F−1

dyn(t) at all t, as happened for
s � ± 1

2 in the spin 1
2 case, but the F

±1
dyn(t) differ from F 0

dyn(t), except
in the thermal situations at t � 0 and t → ∞.

With β � 1/T, not to be confused with the index β � ± 1,
Equation 5.36 yields

_F
s

dyn � T∑
m

_Ps m( )logPs m( )eβHs m( )

GN m( )
� γNT∑α,β�±1∑mΔβ

α xβ
α
~K Ωβ

sα( )Ps[ ]logPse
βHs

GN
.

(5.39)

For general functions f1,2(m) with vanishing boundary terms,
partial summation yields

∑
m

Δβ
αf1( )f2 � ∑

m

f1 Δ−β
−αf2( ) � ∑

m

Eβ
α f1 Δ−β

−αf2( )[ ]
� −∑

m

Eβ
αf1( ) Δβ

αf2( ). (5.40)
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For α � +1, we use the last expression, and for α � −1, we use the
second one, while taking β → − β, and also using Equation 5.34 and
the property ~K(−ω) � ~K(ω)eβω satisfied generally in Equation 2.26,
which yields the result

_F
s

dyn � −γNT∑
m

∑
β�±1

~K Δβ
+Hs( )

× eΔ
β
+βHs Eβ

+x
β
+( ) Eβ

+Ps( ) − x−β
−1Ps{ }Δβ

+ log
Pse

βHs

GN
. (5.41)

The various parts are such that a term GN(m)x−β
−1 can be

factored out, to express this as

_F
s

dyn � γNT∑
m

∑
β�±1

GNx
−β
−1 ~K Δβ

+Hs( )
× eΔ

β
+βHs Eβ

+
Ps

GN
( )[ ] − Ps

GN
{ }Δβ

+ log
Pse

βHs

GN
. (5.42)

With Δβ
+Hs � Eβ

+Hs −Hs, GN � exp(SN), and Fs(m) �
Hs(m) − TSN(m), this is equal to

FIGURE 4
Snapshots of the distribution Ps of the magnetization moments m1,2 for registration of the spin-1 measurement. Upper: Ps ≥ 10−3 data in the s � 0
sector at times t � (0, 1,2,3) × 2/γT from right to left. Lower: the s � 1 sector at t � (0, 1, 2, 3) × 5/γT from left to right; it evolves more slowly. The
parameters are listed in Equation 5.46.
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_F
s

dyn t( ) � −γNT∑
m

∑
β�±1

x−β
−1 ~K Δβ

+Hs( )e−βFs

× Δβ
+
Ps

e−βFs
( ) Δβ

+ log
Ps

e−βFs
( ). (5.43)

The last factors have the form (x′ − x)log(x′/x), which is
nonnegative, implying that Fs

dyn is a decreasing function of time.
Dynamic equilibrium occurs when these factors vanish, which
happens when the magnet has reached thermodynamic equilibrium,
that is, the Gibbs state Ps � e−βFs /Zs and R̂ss � e−βĤs /Zs, with Zs �∑m exp(−βFs) � ∑mGN(m) exp(−βHs) � Tr exp(−βĤs), as usual.
The dynamical free energy (Equation 5.38) then ends up at the
thermodynamic free energy,

Fs
dyn ∞( ) � −T logZs, (5.44)

which actually does not depend on s due to the invariance map
of the static state, reflecting that the measurement is unbiased. This
constitutes an explicit example of the apparatus going dynamically
to its lowest thermodynamic state, the pointer state registering the
measurement outcome.

Although the statics are identical for s � 0,± 1, this does not
hold for the dynamics. While it is similar for s � ± 1 (to change the
sign of s � ± 1, also change the sign of m1), this deviates from the
s � 0 dynamics. For s � 0, allΩβ

α(m) are finite, but for s � ± 1, there
are cases where Ωβ

α(m) vanishes, which leads to a slower dynamics;
see Figure 5.

4.4 Numerical analysis

The initial spin-1 Hamiltonian leads to a 3N × 3N matrix
problem, which is numerically hard. For the considered mean-
field-type model, the formulation in terms of the order parameters
m1,2 is exact; it lowers the dimensionality considerably. The variable
m2 � (1/N)∑N

i�1σ
2
i can takeN + 1 values between 0 and 1. The value

ofM2 � Nm2 indicates thatN −M2 of the σ i take the value 0, while

the otherM2 of the σ i are ± 1. Given this number,m1 � (1/N)∑N
i�1σ i

can take M2 + 1 values between −m2 and m2. Accounting for
conservation of total probability, this leads to N(N + 3)/2
dynamical variables, a polynomial problem.

(Concerning higher spin: For spin 3
2, one separates terms with

si � ± 3
2 from those with si � ± 1

2; for spin-2, one selects terms with
si � 0, ± 1, or ± 2, etc.)

Equation 5.32 can be solved numerically as a set of linear
differential equations. Programming it is straightforward; the
vanishing of boundary terms and conservation of the total
probability must be verified as a check on the code.

The magnet starts in the paramagnetic initial state

Ps m; 0( ) � 1

3N
GN m( ) ≈

33/2

2πN
exp −N 3

4
m2

1 +
3
2
m2 − 1( )2[ ]{ }.

(5.45)
The sum of Ps over m1,2 equals unity and, with the mesh

Δm1Δm2 � 2]2, so does its integral.
The dynamics (Equation 5.32) can be solved numerically, and

the results are presented in upcoming figures. We consider the
parameters, with g large enough,

N � 100, J2 � 0, J4 � 1, g � 0.15, T � 0.2, Γ � 10.

(5.46)
We plot in Figures 4A,B snapshots of Ps/(2]2) at four times, for

s � 0 and s � 1. The case s � −1 follows from the case s � 1 by
setting m1 → −m1.

Figure 5 shows the evolution of the dynamical free energy
Fs
dyn(t).

4.5 Decoupling of the apparatus

Near the end of the measurement, the interaction between the
system and the apparatus is cut off by setting g � 0; in doing so, at

FIGURE 5
The spin-1 dynamical free energy Fsdyn of Equation 5.38 relaxes from its t � 0 value to its thermodynamic value. Fs(g) of Equation 5.44, thereby
registering the measurement. Parameters are as in Figures 4A,B, and time is expressed in units of 1/γT . The relaxation for s � ± 1 is slower than for s � 0
due to the occurrence of zero frequencies. The initial “shoulders” describe the initial broadenings in Figures 4A,B.
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decoupling time tdc, Equation 5.13 expresses that an amount
of energy

Udc � −∑
m

Ps m; tdc( )HSA m( )

� +gN ×∑
m

Ps m; tdc( ) 1 − 3
2
s2( ) 1 − 3

2
m2( ) + 3

4
sm1[ ], (5.47)

must be supplied to the magnet, leaving it with the post-
decoupling free energy

Fdc � ∑
m

Ps m; tdc( ) HM − T logGN( ). (5.48)

This post-decoupling state is not an equilibrium state; the
magnet will now relax to the nearby minimum of the g � 0 case.
There follows a relaxation driven by bath, with the magnet evolving
under the g � 0 Hamiltonian HM(m) to its Gibbs state
PG(m) � GN exp[−HM(m)/T]/ZG, with free energy FG �∑mPG(m)[HM(m) − TSN(m)].

When the decoupling time tdc is large enough, the magnet M lies
in its Gibbs state at coupling g, Ps(tdc) ~ exp[−βHs(m)]. Due to the
invariance of the g � 0 situation, the approach to it is identical for
starting in any of the sectors s � 0,± 1.

To compare with the dynamics that end up in one of the
minima, one must restrict the Gibbs state, which has three
degenerate minima, to the nearby minimum. This is achieved
numerically even at moderate N by discarding exp(−βHs) well
away from the peak of Ps(tdc), also in ZG. For s � 0, it suffices to
keep exp(−βHs) for m2 < 1

3; for s � ± 1 by doing that for m1s> 1
3.

The change of the state is also seen in 〈m2〉(t) � ∑mm2Ps(m; t).
Let us consider the sector s � 0, where 〈m1〉 � 0 at all t. Here, the
coupling HSA � gN(32m2 − 1) has the tendency to suppress m2, so
after decoupling,m2 will relax to a larger value. ForN → ∞, we get
from the Gibbs states at g and at g � 0, respectively,

〈m2 0( )〉 � 3.63 10−4, 〈m2 ∞( )〉 � 11.5 10−4. (5.49)

The full-time behavior forN � 100 and couplings as in Equation
5.46 is presented in Figure 6, with the finite-N values increasing
from 〈m2(0)〉 � 9.975 10−4 to 〈m2(∞)〉 � 12.69 10−4.

The relaxation in the sectors s � ± 1 follows immediately from
this. The map (Equation 5.50) yields. The maps (4.11) and (4.13) of
Models lead to

〈m1〉s�±1 � ± 1 − 3
2
〈m2〉s�0( ),

〈m2〉s�±1 � 1 − 1
2
〈m2〉s�0.

(5.50)

4.6 Energy cost of quantum measurement

The Copenhagen postulates obscure one of the facts of life in a
laboratory: a firm cost for the energy needed to keep the setup
running. In this work, we consider two intrinsic costs. In the
previous subsection, we established the cost of decoupling the
apparatus from the system. Here, we consider resetting the
magnet for another run. It must be set from its stable state back
to its metastable state. Being related to the magnet, both costs are
macroscopic.

Our initial state, the paramagnet (pm), has zero magnetic energy
and maximal entropy

Fpm � −NT log 3, (5.51)

The energy needed to reset the Gibbs state of the magnet to the
paramagnetic one is

Ureset � Fpm − FG � −∑mPG m( ) HM − T log GN/3N( )[ ].
(5.52)

It is evidently macroscopic. The condition that Ureset is positive
was identified in Opus and in Models as the condition that the initial
paramagnetic state is metastable but not stable.

FIGURE 6
After decoupling the apparatus from the system, the magnet relaxes to its nearby g � 0 equilibrium. If this happens at a time tdc where finite-g
equilibrium has been reached, this goes identical in the sectors s � 0,± 1. The dynamical free energy is plotted with parameters as in Figures 4, 5, relaxing
from its decoupled value (indicated by the dot) to its g � 0 thermodynamic limit F (lower line). Compared to Figure 5, this macroscopic energy cost is a
permille effect.
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5 Conclusion

This article dealt with the dynamics of an ideal quantum
measurement of the z-component of a spin-1. The statics for this
task were worked out recently in our “Models” article
(Nieuwenhuizen, 2022); it generalized to any spin l> 1

2 the
Curie–Weiss model to measure a spin 1

2; the latter was considered
in great detail in “Opus” (Allahverdyan et al., 2013). Here, we first
reformulated the dynamics of the known case for spin 1

2 and worked
out some further properties. The resulting formalism is suitable as a
basis for models to measure any higher spin.

The dynamics of measurement in the spin-1 case were
analyzed in detail. Off-diagonal elements of the density matrix
(“cat states”) were shown to decay very fast (“truncation of the
density matrix”) due to dephasing, possibly followed by
decoherence.

The evolution of the diagonal elements of the density matrix was
expressed as coupled first-order differential equations for the
distribution of two magnetization-type-order parameters, m1,2.
The approach to a Gibbs equilibrium was certified by
demonstrating a H-theorem. The resulting scheme was found to
be numerically a polynomial problem. These are easily solved with
the present power of laptops for an apparatus consisting of a few
hundred spins. The evolution of the probability density was
evaluated, and the H-theorem was verified. The macroscopic
energy costs for decoupling the apparatus from the spin and for
resetting it from its stable state to its metastable state for use in the
next run of the measurement were quantified.

For general spin l, this method simplified the numerically hard
problem of dimension (2l + 1)2N − 1 by a polynomial problem of
orderN2l for its 2l-order parameters. For more complicated models
of the apparatus, it will likewise pay off to focus on the order
parameter of the dynamical phase transition of the pointer that
achieves the registration of the measurement. The fact that the phase
transition in the magnet is of first order underlines that our mean-
field-type models, although of mathematical convenience, are not
essential for the fundamental description of quantum
measurements.
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