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A black hole represents a quantum state that saturates three bounds of the quantum orthogonalization interval. It is a qubit in an equal superposition of its two energy eigenstates, with a vanishing ground state and a nonvanishing one equal to the black hole’s energy, where the product of the black hole’s entropy and temperature amounts to half of its energy. As two black holes frequently merge into one, it is natural to ask what happens with the qubits they carry. I consider a binary black hole as a quantum system of two independent qubits evolving independently under a common Hamiltonian to show that their merger can be considered in terms of two orthogonal projections of this Hamiltonian onto a two-dimensional Hilbert subspace, which correspond to the Bell states of this two-qubit system.
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1 INTRODUCTION
I have previously (Łukaszyk, 2023) shown that a black hole (BH) can be considered a patternless (Chaitin, 1966) bitstring of NBH fluctuating Planck triangles (FPT) carrying a binary potential δφk=−c2⋅{0,1}—where c is the speed of light in a vacuum—and having the Hamming weight of N1=⌊NBH/2⌋ active Planck triangles, where “x” is the floor function yielding the greatest integer less than or equal to its argument x. Therefore, BHs are ergodic systems in thermodynamic equilibrium that define not only one unit of thermodynamic entropy (Bekenstein, 1973) (four FPTs) but also maximize Shannon entropy (Shannon, 1948). I have also previously (Łukaszyk, 2024) demonstrated that a BH can be modeled as a qubit in an equal superposition of its energy eigenstates, uniquely achieving three known bounds for the quantum orthogonalization interval (Mandelstam and Tamm, 1945; Margolus and Levitin, 1998; Levitin and Toffoli, 2009). A BH is thus a fundamental quantum system.
The consideration of qubits and BHs within a single conceptual framework is known from the state of the art (see, for example, Borsten et al., 2009; Lévay, 2010; Duff, 2013; Giddings and Shi, 2013; Verlinde and Verlinde, 2013; Prudêncio et al., 2015; Belhaj et al., 2016; Osuga and Page, 2018; Broda, 2021).
Interferometric data1 on collisions of celestial objects (called “mergers”) indicate that the fraction of BH mergers is much higher than might be expected by chance (Gerosa and Fishbach, 2021; Abbott et al., 2021; Abbott et al., 2023b; Abbott et al., 2023a; Dall’Amico et al., 2024). While gravitational events are real, labeling them as waves may be misleading—normal modulation of the gravitational potential caused by merging objects should not be interpreted as a gravitational wave understood as a carrier of gravity (Szostek et al., 2019). Furthermore, based on the gravitational event GW170817, it was experimentally confirmed that mergers are perfectly spherical (Sneppen et al., 2023). This is also an expected result as no point of impact can be considered unique on a patternless, perfectly spherical BH surface. BHs may be different from their general relativistic counterparts outside Einstein’s relativity (Li et al., 2023).
In this study, I show that a merger of two BHs, as expected, converts a separable two-qubit BH state into a single-qubit BH state.
2 BLACK HOLE HAMILTONIAN
Consider a general 2×2 Hermitian Hamiltonian,
H2×2=12E∑k=03ωkσk=12Eω0+ω3ω1−iω2ω1+iω2ω0−ω3,(1)
expressed as a linear combination of the Pauli matrices σk with ωk∈R, a coupling energy E/2, and σ0 being the identity matrix. The Hamiltonian (Equation 1) governs the evolution of any qubit (we omit the irrelevant global phase in this study):
|ψ〉=α0|E0〉+α1eiφ|E1〉,(2)
where the relative phase φ∈R, α02+α12=1, and i2=−1 by the Schrödinger equation H2×2|E0/1〉=E0/1|E0/1〉, where the eigenvalues of the Hamiltonian (Equation 1) are
E0/1=12Eω0∓ω,(3)
ω2:=ω12+ω22+ω32, and
|E0/1〉=ω∓ω32ωω∓ω31∓ω1+iω2ω∓ω3,(4)
are their corresponding normalized eigenstates, which are commonly referred to as “stationary states” (Nielsen and Chuang, 2010). This is because, under the Hamiltonian’s (Equation 1) evolution, they only acquire an overall numerical factor, |Ek〉→e−iEkδt/ℏ|Ek〉, where ℏ is the reduced Planck constant. The expected value of the Hamiltonian (Equation 1) for the qubit (Equation 2) and its average energy is
Eavg=〈ψ|H2×2|ψ〉=∑k|αk|2Ek=α02E0+α12E1,(5)
and the variance of the Hamiltonian (Equation 1) for the qubit (Equation 2) and its variance of energy is
δE2=〈ψ|H2×22|ψ〉−〈ψ|H2×2|ψ〉2=12∑k,l|αk|2|αl|2Ek−El2=α02α12E0−E12,(6)
where the bra-ket terms 〈ψ|H2×2|ψ〉 and 〈ψ|H2×22|ψ〉 implicitly include the phase factor φ of the qubit (Equation 2).
According to Levitin and Toffoli (2009), the minimum time needed for any quantum state to evolve into an orthogonal state, known as the “quantum orthogonalization interval” δt⊥, is achieved by a qubit (Equation 2) in an equal superposition (αk2=1/2) of its energy eigenstates (Equation 4) with the average energy equal to the standard deviation (Eavg=δE), and the eigenvalues (Equation 3) equal to E0=0 and E1=ℏπ/δt⊥. In this case, the square of the expected value of the Hamiltonian (Equation 5) can be equated with its variance in Equation 6, yielding 〈ψ|H2×22|ψ〉=2〈ψ|H2×2|ψ〉2.
Furthermore, E0=0 implies the vanishing determinant of the Hamiltonian (Equation 1) |H2×2|=ω02−ω32−ω12+ω22=0, yielding ω2=ω02=ω12+ω22+ω32. We note that the eigenstate |E0〉 (Equation 4) would be singular for ω12=ω22=0 as in the case ω2=ω02=ω32. Furthermore, ω3=∓ω0 implies H2×2=E|0〉〈0| and H2×2=E|1〉〈1|. Therefore, to prevent these singularities, we set ω3=0. Levitin and Toffoli (2009) also showed that Emax4≤Eavg≤Emax2, where Emax is the maximum energy eigenvalue of any quantum system. In the case of a qubit in an equal superposition and vanishing eigenstate E0, this implies Eavg=E12=Emax2. However, such states are not considered functional qubits, at least in the context of quantum computing.
I previously found that a BH is the only quantum system having a vanishing ground-state energy, only two possible states, and average energy equal to its standard deviation and half of its total energy (Łukaszyk, 2023; 2024). Thus, a BH’s average energy is its entropic work, which is the scalar product of the BH (Hawking) temperature and (Bekenstein) entropy
TBH⋅SBH=ℏc38πGMBHkB⋅14kB4πRBH2ℓP2=TP2πdBH⋅14kBNBH=12EBH,(7)
where G is the gravitational constant, kB is the Boltzmann constant, ℓP is the Planck length, TP is the Planck temperature, and MBH and RBH denote the BH mass and radius. Thus, δE=Eavg=E1/2=EBH/2, where
EBH=MBHc2=ℏπδt⊥BH(8)
is the BH energy, and δt⊥BH represents the BH’s orthogonalization interval—the minimal period required for the BH qubit state to evolve into an orthogonal one, which is inversely proportional to the BH’s energy. For example, the orthogonalization interval of the BH Sagittarius A* (MBH≈8.26×1036 kg) is δt⊥BH=ℏπ/MBHc2≈4.4628×10−88 seconds, which is in the order of a squared Planck time (tP≈5.3911×10−44 s), the smallest interval considered to have a physical significance in theories combining quantum mechanics and general relativity. The scalar product also evinces this tendency to orthogonality, where two nonorthogonal states
limm→∞⟨0102…0m|+1+2⋯+m⟩=limm→∞12m/2=0(9)
tend as shown in the Equation 12 to orthogonality with the increasing size of the quantum system as shown in Equation 9. Even toy examples involving just two nonorthogonal states could shed some light on the foundations of quantum theory (Fuchs, 2002).
Expressing the BH energy EBH as the product of temperature and information capacity (or entropy, as in Equation 7) conceals the fact that both the quantities TBH=TP/2πdBH,and NBH=πdBH2 can be stated as functions of the BH’s diameter DBH=dBHℓP, where dBH∈R. However, such notation reveals that the BH’s energy EBH=NBH⋅12kBTBH is a product of the number of FPTs on a BH’s surface and their energies, whereas these energies are given by the equipartition theorem for one degree of freedom (DOF). Hence, one DOF corresponds to one bit of information (Łukaszyk, 2024). The equipartition theorem was rigorously proven only for one DOF and under the assumption that the DOF energy depends quadratically on the generalized coordinate, which holds for a Planck area ℓP2 on the holographic BH surface and the associated quadratic binary potential δφk=−c2⋅{0,1}.
With E1=EBH from Equation 3, we conclude that ω0=1, which bounds ω12+ω22=1, and we define eiθ:=ω1+iω2. Correspondingly, the qubit general Hamiltonian (Equation 1) in the case of a BH becomes a continuum of complex Hamiltonians, parametrized by the BH energy and the unobservable phase θ
HBH=12EBH1e−iθeiθ1=14kBTBHNBHσ0+∑k=12ωkσk.(10)
The stationary eigenstates of the Hamiltonian (Equation 10) are
|∅〉=121−eiθ,|EBH〉=121eiθ,(11)
and the BH qubit (Equation 2) can be expressed as
|ψBH〉=12|∅〉+eiφ|EBH〉,(12)
where, in particular, |ψBH〉=|0〉 for φ=2kπ, and |ψBH〉=−eiθ|1〉 for φ=(2k+1)π. Due to the predefined coupling energy E/2=EBH/2, the Hamiltonian expected value (Equation 5) for the qubit (Equation 12) equals the BH entropic work (Equation 7) regardless of the relative phase φ. Furthermore, the Hamiltonian (Equation 10) has the scalar multiple idempotent property of , given by Equation 13
HBH2=14EBH21e−iθeiθ12=12EBH21e−iθeiθ1=EBHHBH,(13)
which cannot be further reduced to HBH=EBHI as it is non-invertible (but is, in fact, so reduced during a merger of two BHs described by the relation (Equation 24), as I propose in the subsequent section).
The unitary evolution operator of the Hamiltonian (Equation 10) is
UBH=e−HBHiδt/ℏ=e−iη/2cosη2−i⁡sinη2e−iθ−i⁡sinη2eiθcosη2,UBHδt⊥=−0e−iθeiθ0,(14)
where η:=EBHδt/ℏ. In particular, the operator (Equation 14) provides the following transformations (Equation 15):
UBH⊗n|∅〉=|∅〉 ∀η,∀n,UBH⊗n|EBH〉=e−inη|EBH〉,UBH⊗nδt⊥|EBH〉=−1n|EBH〉,UBH⊗n|0〉=12e−inη+1eiθe−inη−1,UBH⊗nδt⊥|0〉=|0〉ifnis even−eiθ|1〉ifnis odd.UBH⊗n|1〉=12e−iθe−inη−1e−inη+1,UBH⊗nδt⊥|1〉=−eiθ|0〉ifnis odd|1〉ifnis even.UBH⊗n|−〉=12e−inη2cosnη2+i⁡sinnη2e−iθ−cosnη2−i⁡sinnη2eiθ,UBH⊗n|+〉=12e−inη2cosnη2−i⁡sinnη2e−iθcosnη2−i⁡sinnη2eiθ,(15)
if invoked n times on the states (Equation 11) or the states |0〉, |1〉, |−〉:=(|0〉−|1〉)/2, and |+〉:=(|0〉+|1〉)/2.
3 MERGING TWO QUBITS INTO ONE
If the Hamiltonian (Equation 10) governs the evolution of one BH, then the evolution of two BHs A and B is governed by the general Hamiltonian of a two-qubit system
HAB=HA⊗I+I⊗HB+Hint=HA⊗I+I⊗HB==12EA+EBEBe−iθBEAe−iθA0EBeiθBEA+EB0EAe−iθAEAeiθA0EA+EBEBe−iθB0EAeiθAEBeiθBEA+EB(16)
with HA and HB being the Hamiltonians (Equation 10) of the individual BHs having energies EA and EB, and Hint being the vanishing Hamiltonian of their interaction, as they are independent. Each BH is associated with a unique orthogonalization interval δt⊥A and δt⊥B (Equation 8). The continuum hypothesis ensures a unique fractional part of a BH surface 0<NBH−⌊NBH⌋<1 (too small to carry a single bit of information), and hence the uniqueness of any conceivable BH, regardless of the simultaneous existence of the same number of bits ⌊NBH⌋ on many BHs (Łukaszyk, 2023).
The Hamiltonian (Equation 16) has four eigenvalues (Equation 17)
E0=0,E1=EB,E2=EA,E3=EA+EB,(17)
associated with four eigenstates given by (Equation 18)
|∅A∅B〉|∅AEB〉|EA∅B〉|EAEB〉==121111−eiθBeiθB−eiθBeiθB−eiθA−eiθAeiθAeiθAeiθA+θB−eiθA+θB−eiθA+θBeiθA+θB˙(18)
Hence, the BHs A and B form a quantum system (we skip the BH subscript in this section) of two separable qubits (Equation 12)
|ψAB〉=|ψA〉⊗|ψB〉=12|∅A∅B〉+eiφB|∅AEB〉+eiφA|EA∅B〉+eiφA+φB|EAEB〉,(19)
and the evolution operator UAB=exp−iHABδt/ℏ of the Hamiltonian (Equation 16) is the tensor product of the individual evolution operators (Equation 14), so their evolution is independent, preserving their separability. In particular, the state (Equation 19) has a form given by (Equation 20).
|ψAB〉=|00〉forφA=2kπ∩φB=2lπ,|ψAB〉=−eiθB|01〉forφA=2kπ∩φB=2l+1π,|ψAB〉=−eiθA|10〉forφA=2k+1π∩φB=2lπ,and|ψAB〉=eiθA+θB|11〉forφA=2k+1π∩φB=2l+1π.(20)
The BH merger M must convert two separable BH qubits (Equation 19) into one BH qubit (Equation 12) (|ψAB〉→|ψM〉) and the 4×4 Hamiltonian (Equation 16) into a 2×2 Hamiltonian HM (Equation 10).
A merger cannot trace out one qubit from the two-qubit system (Equation 19), as partial trace applies to mixed states and time evolution, not directly to a Hamiltonian. Furthermore, partial trace models a measurement, so that it would be tantamount to asserting that BH A is “observing” BH B or vice versa. However, BHs are qubits, and qubits are not observers (Brukner, 2021; Pienaar, 2021). Having no interior, a BH cannot store any measurement information.
Therefore, the merger must reduce the dimension of the Hamiltonian from 4×4 to 2×2 by a projection of the Hamiltonian (Equation 16) onto a two-dimensional Hilbert subspace spanned by two orthonormal states in the computational basis to extract the submatrix of HAB corresponding to the relevant rows and columns.
Three distinct projections of the Hamiltonian HAB (Equation 16) exist. For the subspaces spanned by {|00〉,|01〉} and {|10〉,|11〉}
HM=12EA+EBEBe−iθBEBeiθBEA+EB,(21)
for the subspaces spanned by {|00〉,|10〉} and {|01〉,|11〉}
HM=12EA+EBEAe−iθAEAeiθAEA+EB,(22)
and for the subspaces spanned by {|00〉,|11〉} and {|01〉,|10〉}
HM=12EA+EB00EA+EB.(23)
We must reject the nonorthogonal projection (Equations 21, 22) as they allow the state transitions of one qubit while fixing the state of the other. For example, the projection (Equation 22) of the Hamiltonian (Equation 16) onto a two-dimensional Hilbert subspace spanned by |00〉 and |10〉 allows for the first BH A state transitions (|+〉), while the second BH B is fixed (|0〉). This inconsistency is shown in the off-diagonal term EAe∓iθA that does not correspond to the coupling energy (EA+EB)/2 for θA=0.
On the other hand, the orthogonal projection (Equation 23) seems not to preserve the form of the BH Hamiltonian (Equation 10). However, we must not forget that we are crossing the singularity here: we merge two independently evolving, quantum systems A and B into a new quantum system M. Therefore, we should interpret a projection (Equation 23) as the real part of the BH Hamiltonian (Equation 10), that is as
HM=12EA+EB1001=Re12EA+EB1e−iθA±θBeiθA±θB1→→12EA+EB1e−iθMeiθM1(24)
for θM:=θA±θB=π/2+kπ. It is the phase θM that will modulate the evolution of the new system after the merger.
Furthermore, the evolution operator of the Hamiltonian (Equation 16) is the anti-diagonal matrix for EAt⊥A=EBt⊥B=ℏπ. However, only the orthogonal {|00〉,|11〉},{|01〉,|10〉} projections of this matrix are unitary (respectively for θM=θA±θB) ∀θA,θB∈R.
4 CONCLUSION
The qubit (Equation 12) in equal superposition of two energy eigenstates, attaining the bounds for the quantum orthogonalization interval (Mandelstam and Tamm, 1945; Margolus and Levitin, 1998; Levitin and Toffoli, 2009), introduces the Hamiltonian (Equation 10) that completely describes BH dynamics (Nielsen and Chuang, 2010) and is parametrized by one observable parameter (e.g., the BH energy) and the unobservable, relative phase of the qubit.
Considering a binary BH as a quantum system of two independent qubits (Equation 20) evolving independently under a common Hamiltonian (Equation 16), I have shown that their merger can be considered in terms of the orthogonal projection of this Hamiltonian onto a two-dimensional Hilbert subspace spanned by {|00〉,|11〉} and/or {|01〉,|10〉} states that correspond to the Bell states of this two qubit system (Equation 19).
The relation (Equation 24) shows that BH qubits must be orthogonal to merge. Otherwise, the merger would violate the no-deleting (Kumar Pati and Braunstein, 2000) and no-hiding (Braunstein and Pati, 2007) theorems. On the other hand, the orthogonalization interval (Equation 8) is inversely proportional to the BH’s energy. This may explain why mergers of massive BHs are the most frequently registered gravitational events.
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