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A black hole represents a quantum state that saturates three bounds of the
quantum orthogonalization interval. It is a qubit in an equal superposition of its
two energy eigenstates, with a vanishing ground state and a nonvanishing one
equal to the black hole’s energy, where the product of the black hole’s entropy
and temperature amounts to half of its energy. As two black holes frequently
merge into one, it is natural to ask what happens with the qubits they carry. I
consider a binary black hole as a quantum system of two independent qubits
evolving independently under a common Hamiltonian to show that their merger
can be considered in terms of two orthogonal projections of this Hamiltonian
onto a two-dimensional Hilbert subspace, which correspond to the Bell states of
this two-qubit system.
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1 Introduction

I have previously (Łukaszyk, 2023) shown that a black hole (BH) can be considered a
patternless (Chaitin, 1966) bitstring of �NBH� fluctuating Planck triangles (FPT) carrying a
binary potential δφk � −c2 · {0, 1}—where c is the speed of light in a vacuum—and having
the Hamming weight of N1 � �NBH/2� active Planck triangles, where “�x�” is the floor
function yielding the greatest integer less than or equal to its argument x. Therefore, BHs are
ergodic systems in thermodynamic equilibrium that define not only one unit of
thermodynamic entropy (Bekenstein, 1973) (four FPTs) but also maximize Shannon
entropy (Shannon, 1948). I have also previously (Łukaszyk, 2024) demonstrated that a
BH can be modeled as a qubit in an equal superposition of its energy eigenstates, uniquely
achieving three known bounds for the quantum orthogonalization interval (Mandelstam
and Tamm, 1945; Margolus and Levitin, 1998; Levitin and Toffoli, 2009). A BH is thus a
fundamental quantum system.

The consideration of qubits and BHs within a single conceptual framework is known
from the state of the art (see, for example, Borsten et al., 2009; Lévay, 2010; Duff, 2013;
Giddings and Shi, 2013; Verlinde and Verlinde, 2013; Prudêncio et al., 2015; Belhaj et al.,
2016; Osuga and Page, 2018; Broda, 2021).

Interferometric data1 on collisions of celestial objects (called “mergers”) indicate that
the fraction of BH mergers is much higher than might be expected by chance (Gerosa and
Fishbach, 2021; Abbott et al., 2021; Abbott et al., 2023b; Abbott et al., 2023a; Dall’Amico
et al., 2024). While gravitational events are real, labeling them as waves may be

OPEN ACCESS

EDITED BY

Inyong Park,
Philander Smith College, United States

REVIEWED BY

Francesco Giovanni Celiberto,
University of Alcalá, Spain
Varsha Sambhaje,
SRM University AP, India

*CORRESPONDENCE

Szymon Łukaszyk,
szymon@patent.pl

RECEIVED 29 June 2025
ACCEPTED 29 August 2025
PUBLISHED 08 October 2025

CITATION

Łukaszyk S (2025) Black holemerger as an event
converting two qubits into one.
Front. Quantum Sci. Technol. 4:1656200.
doi: 10.3389/frqst.2025.1656200

COPYRIGHT

© 2025 Łukaszyk. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
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misleading—normal modulation of the gravitational potential
caused by merging objects should not be interpreted as a
gravitational wave understood as a carrier of gravity (Szostek
et al., 2019). Furthermore, based on the gravitational event
GW170817, it was experimentally confirmed that mergers are
perfectly spherical (Sneppen et al., 2023). This is also an expected
result as no point of impact can be considered unique on a
patternless, perfectly spherical BH surface. BHs may be different
from their general relativistic counterparts outside Einstein’s
relativity (Li et al., 2023).

In this study, I show that a merger of two BHs, as expected,
converts a separable two-qubit BH state into a single-qubit BH state.

2 Black hole Hamiltonian

Consider a general 2 × 2 Hermitian Hamiltonian,

H2×2 � 1
2
E∑3

k�0
ωkσk � 1

2
E

ω0 + ω3 ω1 − iω2

ω1 + iω2 ω0 − ω3
[ ], (1)

expressed as a linear combination of the Pauli matrices σk with
ωk ∈ R, a coupling energy E/2, and σ0 being the identity matrix. The
Hamiltonian (Equation 1) governs the evolution of any qubit (we
omit the irrelevant global phase in this study):

|ψ〉 � α0|E0〉 + α1e
iφ|E1〉, (2)

where the relative phase φ ∈ R, α20 + α21 � 1, and i2 � −1 by the
Schrödinger equation H2×2|E0/1〉 � E0/1|E0/1〉, where the eigenvalues
of the Hamiltonian (Equation 1) are

E0/1 � 1
2
E ω0 ∓ ω( ), (3)

ω2: � ω2
1 + ω2

2 + ω2
3, and

|E0/1〉 � ω ∓ ω3����������
2ω ω ∓ ω3( )√ 1

∓ ω1 + iω2

ω ∓ ω3

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (4)

are their corresponding normalized eigenstates, which are
commonly referred to as “stationary states” (Nielsen and Chuang,
2010). This is because, under the Hamiltonian’s (Equation 1)
evolution, they only acquire an overall numerical factor,
|Ek〉→ e−iEkδt/Z|Ek〉, where Z is the reduced Planck constant. The
expected value of the Hamiltonian (Equation 1) for the qubit
(Equation 2) and its average energy is

Eavg � 〈ψ|H2×2|ψ〉 � ∑
k

|αk|2Ek � α20E0 + α21E1, (5)

and the variance of the Hamiltonian (Equation 1) for the qubit
(Equation 2) and its variance of energy is

δE( )2 � 〈ψ|H2
2×2|ψ〉 − 〈ψ|H2×2|ψ〉2 � 1

2
∑
k,l

|αk|2|αl|2 Ek − El( )2

� α20α
2
1 E0 − E1( )2,

(6)
where the bra-ket terms 〈ψ|H2×2|ψ〉 and 〈ψ|H2

2×2|ψ〉 implicitly
include the phase factor φ of the qubit (Equation 2).

According to Levitin and Toffoli (2009), the minimum time
needed for any quantum state to evolve into an orthogonal state,
known as the “quantum orthogonalization interval” δt⊥, is achieved
by a qubit (Equation 2) in an equal superposition (α2k � 1/2) of its
energy eigenstates (Equation 4) with the average energy equal to the
standard deviation (Eavg � δE), and the eigenvalues (Equation 3)
equal to E0 � 0 and E1 � Zπ/δt⊥. In this case, the square of the
expected value of the Hamiltonian (Equation 5) can be equated with
its variance in Equation 6, yielding 〈ψ|H2

2×2|ψ〉 � 2〈ψ|H2×2|ψ〉2.
Furthermore, E0 � 0 implies the vanishing determinant of

the Hamiltonian (Equation 1) |H2×2| � ω2
0 − ω2

3 − (ω2
1 + ω2

2) � 0,
yielding ω2 � ω2

0 � ω2
1 + ω2

2 + ω2
3. We note that the eigenstate |E0〉

(Equation 4) would be singular for ω2
1 � ω2

2 � 0 as in the case
ω2 � ω2

0 � ω2
3. Furthermore, ω3 � ∓ω0 implies H2×2 � E|0〉〈0| and

H2×2 � E|1〉〈1|. Therefore, to prevent these singularities, we set
ω3 � 0. Levitin and Toffoli (2009) also showed that
Emax
4 ≤Eavg ≤ Emax

2 , where Emax is the maximum energy eigenvalue of
any quantum system. In the case of a qubit in an equal superposition
and vanishing eigenstate E0, this implies Eavg � E1

2 � Emax
2 . However,

such states are not considered functional qubits, at least in the context of
quantum computing.

I previously found that a BH is the only quantum system having
a vanishing ground-state energy, only two possible states, and
average energy equal to its standard deviation and half of its
total energy (Łukaszyk, 2023; 2024). Thus, a BH’s average energy
is its entropic work, which is the scalar product of the BH (Hawking)
temperature and (Bekenstein) entropy

TBH · SBH � Zc3

8πGMBHkB
· 1
4
kB
4πR2

BH

ℓ
2
P

� TP

2πdBH
· 1
4
kBNBH � 1

2
EBH,

(7)
where G is the gravitational constant, kB is the Boltzmann constant,
ℓP is the Planck length, TP is the Planck temperature, and MBH

and RBH denote the BH mass and radius. Thus,
δE � Eavg � E1/2 � EBH/2, where

EBH � MBHc
2 � Zπ

δt⊥BH

(8)

is the BH energy, and δt⊥BH represents the BH’s orthogonalization
interval—the minimal period required for the BH qubit state to
evolve into an orthogonal one, which is inversely proportional to the
BH’s energy. For example, the orthogonalization interval of
the BH Sagittarius A* (MBH ≈ 8.26 × 1036 kg) is δt⊥BH �
Zπ/MBHc2 ≈ 4.4628 × 10−88 seconds, which is in the order of a
squared Planck time (tP ≈ 5.3911 × 10−44 s), the smallest interval
considered to have a physical significance in theories combining
quantum mechanics and general relativity. The scalar product
also evinces this tendency to orthogonality, where two
nonorthogonal states

lim
m→∞

〈0102 . . . 0m|+1+2/+m〉 � lim
m→∞

1
2m/2

( ) � 0 (9)

tend as shown in the Equation 12 to orthogonality with the
increasing size of the quantum system as shown in Equation 9.
Even toy examples involving just two nonorthogonal states could
shed some light on the foundations of quantum theory
(Fuchs, 2002).
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Expressing the BH energy EBH as the product of temperature
and information capacity (or entropy, as in Equation 7) conceals
the fact that both the quantities TBH � TP/2πdBH,and NBH �
πd2BH can be stated as functions of the BH’s diameter
DBH � dBHℓP, where dBH ∈ R. However, such notation reveals
that the BH’s energy EBH � NBH · 12kBTBH is a product of the
number of FPTs on a BH’s surface and their energies, whereas
these energies are given by the equipartition theorem for one
degree of freedom (DOF). Hence, one DOF corresponds to one
bit of information (Łukaszyk, 2024). The equipartition theorem
was rigorously proven only for one DOF and under the
assumption that the DOF energy depends quadratically on the
generalized coordinate, which holds for a Planck area ℓ

2
P on the

holographic BH surface and the associated quadratic binary
potential δφk � −c2 · {0, 1}.

With E1 � EBH from Equation 3, we conclude thatω0 � 1, which
bounds ω2

1 + ω2
2 � 1, and we define eiθ: � ω1 + iω2.

Correspondingly, the qubit general Hamiltonian (Equation 1) in
the case of a BH becomes a continuum of complex Hamiltonians,
parametrized by the BH energy and the unobservable phase θ

HBH � 1
2
EBH

1 e−iθ

eiθ 1
[ ] � 1

4
kBTBHNBH σ0 +∑2

k�1
ωkσk⎛⎝ ⎞⎠. (10)

The stationary eigenstates of the Hamiltonian (Equation 10) are

|∅〉 � 1�
2

√ 1
−eiθ[ ], |EBH〉 � 1�

2
√ 1

eiθ
[ ], (11)

and the BH qubit (Equation 2) can be expressed as

|ψBH〉 � 1�
2

√ |∅〉 + eiφ|EBH〉( ), (12)

where, in particular, |ψBH〉 � |0〉 for φ � 2kπ, and |ψBH〉 � −eiθ|1〉
for φ � (2k + 1)π. Due to the predefined coupling energy
E/2 � EBH/2, the Hamiltonian expected value (Equation 5) for
the qubit (Equation 12) equals the BH entropic work
(Equation 7) regardless of the relative phase φ. Furthermore, the
Hamiltonian (Equation 10) has the scalar multiple idempotent
property of , given by Equation 13

H2
BH � 1

4
E2
BH

1 e−iθ

eiθ 1
[ ]2

� 1
2
E2
BH

1 e−iθ

eiθ 1
[ ] � EBHHBH, (13)

which cannot be further reduced to HBH � EBHI as it is non-
invertible (but is, in fact, so reduced during a merger of two BHs
described by the relation (Equation 24), as I propose in the
subsequent section).

The unitary evolution operator of the Hamiltonian (Equation
10) is

UBH � e−HBH iδt/Z � e−iη/2
cos

η

2
( ) −i sin η

2
( )e−iθ

−i sin η

2
( )eiθ cos

η

2
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
UBH δt⊥( ) � − 0 e−iθ

eiθ 0
[ ], (14)

where η: � EBHδt/Z. In particular, the operator (Equation 14)
provides the following transformations (Equation 15):

U⊗n
BH|∅〉 � |∅〉∀η,∀n,

U⊗n
BH|EBH〉 � e−inη|EBH〉,

U⊗n
BH δt⊥( )|EBH〉 � −1( )n|EBH〉,

U⊗n
BH|0〉 � 1

2
e−inη + 1

eiθ e−inη − 1( )[ ],

U⊗n
BH δt⊥( )|0〉 � |0〉 if n is even

−eiθ|1〉 if n is odd
{ .

U⊗n
BH|1〉 � 1

2
e−iθ e−inη − 1( )

e−inη + 1
[ ],

U⊗n
BH δt⊥( )|1〉 � −eiθ|0〉 if n is odd

|1〉 if n is even
{ .

U⊗n
BH| − 〉 � 1�

2
√ e−i

nη
2

cos
nη

2
( ) + i sin

nη

2
( )e−iθ

−cos nη

2
( ) − i sin

nη

2
( )eiθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

U⊗n
BH| + 〉 � 1�

2
√ e−i

nη
2

cos
nη

2
( ) − i sin

nη

2
( )e−iθ

cos
nη

2
( ) − i sin

nη

2
( )eiθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (15)

if invoked n times on the states (Equation 11) or the states |0〉, |1〉,
| − 〉: � (|0〉 − |1〉)/ �

2
√

, and | + 〉: � (|0〉 + |1〉)/ �
2

√
.

3 Merging two qubits into one

If the Hamiltonian (Equation 10) governs the evolution of one
BH, then the evolution of two BHs A and B is governed by the
general Hamiltonian of a two-qubit system

HAB � HA ⊗ I + I ⊗ HB +Hint � HA ⊗ I + I ⊗ HB �

� 1
2

EA + EB EBe
−iθB EAe

−iθA 0
EBe

iθB EA + EB 0 EAe
−iθA

EAe
iθA 0 EA + EB EBe

−iθB

0 EAe
iθA EBe

iθB EA + EB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

with HA and HB being the Hamiltonians (Equation 10) of the
individual BHs having energies EA and EB, and Hint being the
vanishing Hamiltonian of their interaction, as they are
independent. Each BH is associated with a unique
orthogonalization interval δt⊥A and δt⊥B (Equation 8). The
continuum hypothesis ensures a unique fractional part of a BH
surface 0<NBH − �NBH�< 1 (too small to carry a single bit of
information), and hence the uniqueness of any conceivable BH,
regardless of the simultaneous existence of the same number of bits
�NBH� on many BHs (Łukaszyk, 2023).

The Hamiltonian (Equation 16) has four eigenvalues
(Equation 17)

E0 � 0, E1 � EB, E2 � EA, E3 � EA + EB, (17)
associated with four eigenstates given by (Equation 18)
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|∅A∅B〉 |∅AEB〉 |EA∅B〉 |EAEB〉[ ] �
� 1
2

1 1 1 1
−eiθB eiθB −eiθB eiθB

−eiθA −eiθA eiθA eiθA

ei θA+θB( ) −ei θA+θB( ) −ei θA+θB( ) ei θA+θB( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
_

(18)

Hence, the BHs A and B form a quantum system (we skip the
BH subscript in this section) of two separable qubits (Equation 12)

|ψAB〉�|ψA〉⊗|ψB〉�
1
2

|∅A∅B〉+eiφB |∅AEB〉(
+eiφA |EA∅B〉+ei φA+φB( )|EAEB〉), (19)

and the evolution operator UAB � exp(−iHABδt/Z) of the
Hamiltonian (Equation 16) is the tensor product of the
individual evolution operators (Equation 14), so their evolution is
independent, preserving their separability. In particular, the state
(Equation 19) has a form given by (Equation 20).

|ψAB〉 � |00〉 for φA � 2kπ ∩ φB � 2lπ,

|ψAB〉 � −eiθB |01〉 for φA � 2kπ ∩ φB � 2l + 1( )π,

|ψAB〉 � −eiθA |10〉 for φA � 2k + 1( )π ∩ φB � 2lπ, and

|ψAB〉 � ei θA+θB( )|11〉 for φA � 2k + 1( )π ∩ φB � 2l + 1( )π.
(20)

The BHmergerMmust convert two separable BH qubits (Equation
19) into one BH qubit (Equation 12) (|ψAB〉→|ψM〉) and the 4 × 4
Hamiltonian (Equation 16) into a 2 × 2 HamiltonianHM (Equation 10).

A merger cannot trace out one qubit from the two-qubit system
(Equation 19), as partial trace applies to mixed states and time
evolution, not directly to a Hamiltonian. Furthermore, partial trace
models a measurement, so that it would be tantamount to asserting that
BH A is “observing” BH B or vice versa. However, BHs are qubits, and
qubits are not observers (Brukner, 2021; Pienaar, 2021). Having no
interior, a BH cannot store any measurement information.

Therefore, the merger must reduce the dimension of the
Hamiltonian from 4 × 4 to 2 × 2 by a projection of the
Hamiltonian (Equation 16) onto a two-dimensional Hilbert subspace
spanned by two orthonormal states in the computational basis to extract
the submatrix ofHAB corresponding to the relevant rows and columns.

Three distinct projections of the Hamiltonian HAB (Equation
16) exist. For the subspaces spanned by {|00〉, |01〉} and {|10〉, |11〉}

HM � 1
2

EA + EB EBe
−iθB

EBe
iθB EA + EB

[ ], (21)

for the subspaces spanned by {|00〉, |10〉} and {|01〉, |11〉}

HM � 1
2

EA + EB EAe
−iθA

EAe
iθA EA + EB

[ ], (22)

and for the subspaces spanned by {|00〉, |11〉} and {|01〉, |10〉}

HM � 1
2

EA + EB 0
0 EA + EB

[ ]. (23)

Wemust reject the nonorthogonal projection (Equations 21, 22) as
they allow the state transitions of one qubit while fixing the state of the

other. For example, the projection (Equation 22) of the Hamiltonian
(Equation 16) onto a two-dimensional Hilbert subspace spanned by
|00〉 and |10〉 allows for the first BH A state transitions (| + 〉), while
the second BH B is fixed (|0〉). This inconsistency is shown in the off-
diagonal term EAe∓ iθA that does not correspond to the coupling energy
(EA + EB)/2 for θA � 0.

On the other hand, the orthogonal projection (Equation 23) seems
not to preserve the form of the BHHamiltonian (Equation 10). However,
wemust not forget that we are crossing the singularity here: wemerge two
independently evolving, quantum systems A and B into a new quantum
system M. Therefore, we should interpret a projection (Equation 23) as
the real part of the BH Hamiltonian (Equation 10), that is as

HM � 1
2

EA + EB( ) 1 0
0 1

[ ]
� Re

1
2

EA + EB( ) 1 e−i θA±θB( )

ei θA±θB( ) 1
[ ]( ) →

→ 1
2

EA + EB( ) 1 e−iθM

eiθM 1
[ ] (24)

for θM: � θA ± θB � π/2 + kπ. It is the phase θM that will modulate
the evolution of the new system after the merger.

Furthermore, the evolution operator of the Hamiltonian
(Equation 16) is the anti-diagonal matrix for EAt⊥A � EBt⊥B � Zπ.
However, only the orthogonal {|00〉, |11〉}, {|01〉, |10〉} projections of
this matrix are unitary (respectively for θM � θA ± θB) ∀θA, θB ∈ R.

4 Conclusion

The qubit (Equation 12) in equal superposition of two energy
eigenstates, attaining the bounds for the quantum orthogonalization
interval (Mandelstam and Tamm, 1945; Margolus and Levitin, 1998;
Levitin and Toffoli, 2009), introduces the Hamiltonian (Equation 10)
that completely describes BH dynamics (Nielsen and Chuang, 2010)
and is parametrized by one observable parameter (e.g., the BH energy)
and the unobservable, relative phase of the qubit.

Considering a binary BH as a quantum system of two
independent qubits (Equation 20) evolving independently under a
common Hamiltonian (Equation 16), I have shown that their merger
can be considered in terms of the orthogonal projection of this
Hamiltonian onto a two-dimensional Hilbert subspace spanned by
{|00〉, |11〉} and/or {|01〉, |10〉} states that correspond to the Bell
states of this two qubit system (Equation 19).

The relation (Equation 24) shows that BH qubits must be
orthogonal to merge. Otherwise, the merger would violate the no-
deleting (Kumar Pati and Braunstein, 2000) and no-hiding
(Braunstein and Pati, 2007) theorems. On the other hand, the
orthogonalization interval (Equation 8) is inversely proportional to
the BH’s energy. This may explain why mergers of massive BHs are
the most frequently registered gravitational events.
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