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Deep neural networks recently showed high performance and gained popularity in

the field of radiology. However, the fact that large amounts of labeled data are

required for training these architectures inhibits practical applications. We take advantage

of an unpaired image-to-image translation approach in combination with a novel

domain specific loss formulation to create an “easier-to-segment” intermediate image

representation without requiring any label data. The requirement here is that the task can

be translated from a hard to a related but simplified task for which unlabeled data are

available. In the experimental evaluation, we investigate fully automated approaches for

segmentation of pathological muscle tissue in T1-weighted magnetic resonance (MR)

images of human thighs. The results show clearly improved performance in case of

supervised segmentation techniques. Even more impressively, we obtain similar results

with a basic completely unsupervised segmentation approach.

Keywords: MRI, muscle, fatty-infiltration, thigh, generative adversarial networks, convolutional neural networks,

segmentation, image processing

1. INTRODUCTION

Within the last few years, deep neural networks showed impressive performance and gained
popularity in the field of radiology. However, the requirement for large amounts of labeled data
for artificial neural network training still inhibits practical applications. Since three-dimensional
(3D) data requires complex models, this is particularly challenging in radiology. In addition, voxel-
based 3D data annotation is highly time consuming. Another challenging aspect is given by an
often high variability within radiological data. Although variability due to the imaging setting can
be compensated by methods such as bias field correction (1) and contrast adjustment (2), semantic
variability caused by pathological modifications is hard to compensate.

Due to emerging techniques, such as fully convolutional neural networks (3) and adversarial
networks (4), image-to-image translation has recently gained popularity (5–7). These methods
enable, for example, a translation from one imaging modality to another (such as MRI to CT
and vice versa) (8). Conventional approaches require image pairs (e.g., pairs consisting of a CT
and an MRI scan of the same subject) for training the translation models (5, 6). To overcome
the restriction of training based on image pairs, unpaired approaches were introduced (7, 9,
10) and also applied to radiology (8, 11, 12). These models only require two data sets, one
for each of the modalities [e.g., computed tomography (CT) and magnetic resonance imaging
(MRI)]. As image pairs are often not achievable or at least very difficult and expensive to
collect, this opens up completely new perspectives for many radiological application scenarios.
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For example, if trained models (and especially manually
annotated training data) are available for one modality only, data
collected based on a different imaging setting can be translated to
this modality and can be subsequently processed without further
annotation effort.

In this paper, we do not consider a translation from one
imaging modality to another using cycle-GAN (7). Instead, we
consider a scenario where a certain domain (i.e., a subset of the
available data; e.g., non-pathological data) is easier to segment
than another domain (13). Image-to-image translation can be
applied here to translate from a hard-to-segment image domain
to an easy-to-segment domain. If translation is performed
appropriately, this approach has the potential to facilitate further
processing (here segmentation) and thereby enhance accuracy
(e.g., segmentation accuracy) to reduce the amount of required
annotated training data or even to facilitate fully unsupervised
segmentation.

1.1. Thigh Muscle Segmentation
Muscular dystrophy is a class of diseases caused by inherited
mutations in genes encoding for proteins that are essential to
the health and function of muscles. They are characterized by a
degeneration of muscle tissue, which in muscle imaging appears
as so-called fatty infiltration (see Figures 1C,D for example MR
images). A relevant disease marker is especially given by the so-
called fat fraction capturing the ratio between fatty-infiltration
and original muscle tissue volume. For computation of the
fat fraction, it is crucial to segment the overall muscle tissue
including fatty infiltrations. Although a segmentation of healthy
muscle tissue (see Figure 1) can be obtained easily based on
thresholding, difficulties arise in case of severely fat-infiltrated
muscle as fatty degeneratedmuscle tissue cannot be distinguished
from subcutaneous fat based on the image’s gray values (14)
(Figure 1D). This problem has been recently addressed in a few
studies. Origiu et al. (15) developed an active contours model
to detect the muscle boundary and a fuzzy c-means method to
distinguish muscle from fat. Gadermayr et al. (14) combined
graph-cuts and level-set approaches with statistical shapemodels.
Yao et al. (18) made use of two neural networks to first detect
the fascia lata and also incorporate region-based information to
finally utilize an active contours method. Although showing best
segmentation performance, the latter approach as well as further
ones (16–18) are optimized and evaluated on an easier scenario,
because all tissue inside the fascia lata is labeled as muscle (apart
from the bone).

1.2. Contributions
In this work, we make use of a new procedure for facilitating
segmentation tasks in order to boost segmentation accuracy.
In our approach, a hard segmentation task is mapped to an
easier (intermediate) segmentation task by means of unpaired
image-to-image translation making use of a cyclic GAN (7).
We consider the segmentation of MR images of human thighs
showing fatty infiltrations, which are translated to easy-to-
segment non-pathological images. For segmentation, we consider
methodologies that proved to be effective in previous works
(14, 15, 18). Even though we were unable to investigate each
individual configuration, we focus on covering a broad range

of techniques, namely a pixel-based unsupervised approach, a
region based method, a region-based method using shape prior,
and a convolutional neural network.

2. MATERIALS AND METHODS

In this work, we first perform image-to-image translation
to convert a hard-to-segment into an easy-to-segment
domain (section 2.1). After conversion to the intermediate
“easy” representation, only the generated fake image is
segmented (section 2.2) and the obtained mask is simply mapped
to the original image without making any changes.

2.1. Image-to-Image Translation
Supposed we have a set of images {hi}

N
j=1 of a “hard” domain (H),

which are difficult to segment, as well as a set of images {ei}
M
j=1

of an “easy” domain (E). Although the underlying distributions
(based on the empirical ones e ∼ pdata(e) and h ∼ pdata(h))
are different, we assume that the underlying distribution of the
corresponding ground-truth segmentations s (se ∼ pdata(s(e))
and sh ∼ pdata(s(h))) is similar. Then it follows that, based
on a segmentation only, the domain of an image (H vs. E)
cannot be predicted with a higher accuracy than chance. Thus,
the translated images could also become indistinguishable even
if the segmentation mask stays the same, which is the crucial
criterion for this approach. Otherwise, in a GAN setting, the
generator would be forced by the discriminator to change the
object’s shape with the implication that the segmentation of the
original H domain image would not be the same as for the
fake E domain image. As we finally directly map the obtained
segmentation mask from the fake E to the real H domain image
without making any changes, the similarity of the object’s shapes
is a strong requirement. Inspecting the considered MRI data,
we notice high variability between patients in general but no
systematic differences in the shapes between the datasets.

Now we focus on a domain adaptation from H to E by
performing image-to-image translation, specifically by means of
a cyclic GAN (7). This method requires only one dataset for each
domain without corresponding pairs. During GAN training, two
mapping functions, F :H → E and G : E → H are trained
optimizing a combination of a cycle consistency loss

Lc = Ee∼pdata(e)[||F(G(e))− e||1]+

Eh∼pdata(h)[||G(F(h))− h||1]
(1)

as well as a discriminator loss

Ld =Eh∼pdata(h)[log(DH(h))+log(1−DE(F(h)))]+

Ee∼pdata(e)[log(1−DH(G(e)))+log(DE(e))]
(2)

encouraging indistinguishable outputs (based on the
discriminators DH and DE). As the underlying distributions
of ground-truth segmentations sh and ee are similar, and as
there is a correlation between image information and the
ground-truth segmentation (which is a natural requirement for
all segmentation applications), it can be expected that during
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FIGURE 1 | Example MRI slices for each of the four considered pathological categories showing (A) healthy muscle only, (B) pathological muscle without visible fatty

infiltrations, (C) moderate infiltrations, and (D) largely affected muscle areas.

image-to-image translation using a cyclic GAN (7), the images
are translated from domain H to E without changing the
semantic structure in the image (i.e., the shape of the muscle).
To account for the specific application scenario, we introduce a
further loss function based on the rectified linear unit (ReLU) r

Lr = Eh∼pdata(h)[r(F(h)− h)]+

Ee∼pdata(e)[r(e− G(e))] ,
(3)

where r(x) = max(0, x). This method is introduced in order
to account for the fact that healthy muscle tissue in MR images
shows a lower voxel value than pathological muscle tissue. For
this purpose, if muscle tissue is translated from H to E , voxel
values should not increase, but only decrease. Vice versa, from
E to H, voxel values should only increase and not decrease. By
adding this further constraint, we expect that the overall structure
and consequently also the segmentation could be maintained
more effectively. This domain specific loss is finally combined
with the identity loss

Li=Ee∼pdata(e)[||F(e)− e||1]+

Eh∼pdata(h)[||G(h)− h||1]
(4)

to focus on maintaining the morphology and to ensure that data
from the easy domain E does not get extremely dark due to Lr .
All utilized losses are summarized in Figure 2.

2.2. Segmentation
For segmentation, we make use of four methods that were
applied to muscle segmentation tasks. Due to the rather small
amount of data for training, we focus on the following methods
that can be effectively trained with a small amount of data.
The first approach is based on the Gaussian Mixture Model

(GMM), which is fitted to the data in order to identify clusters
of three different classes: muscle, fat, and bone/vessels. Initial
cluster centers are fixed to the minimum gray value (smin),
maximum gray value (smax), and finally a value in between
(smin +

smax−smin
6 ). This method is completely unsupervised and

does not require any training data. In order to incorporate
boundary smoothness constraints, we furthermore investigate

a probabilistic Graph-Cut (GC) technique (the initialization is
obtained by the GMM and the probabilistic model is trained
based on ground-truth annotations). To additionally incorporate
a statistical shape model, we make use of the Shape-Prior

Graph-Cut (SPGC) approach (14). In this case, the shape
model (which is optimized for small data sets) is trained by
estimating a probability map for each pixel after an initial
registration (leading to excellent performance for pathological
images). SPGC and GC both require annotated training data
as the probabilistic model need to be trained on ground-truth
data. Details on these approaches are provided in (14). As
reference for a state-of-the-art convolutional neural network
(CNN) approach, we apply a 2D U-Net (3) including a GAN-
Loss, also referred to as Pix2Pix network (5). In this data-driven
approach, a segmentation model (implicitly including a shape
prior) is automatically learned during optimization of the weights
of the convolutional neural networks.

2.3. Experimental Details
The T1-weightedMR images were acquired on a 1.5 Tesla Phillips
device with fixed echo time (17 ms), bandwidth (64 kHz) and
echo train length (6) and a relaxation time between 721 and 901
ms. The sampling interval was fixed to 1 mm in x-y-direction
and 7 mm in z-direction. Bias-field correction was applied to
compensate homogeneity (19). Similar to (14, 18), the data are
separated into the four categories “healthy,” “minor,” “moderate,”
and “severe” corresponding to the degree of fatty infiltration. As
the categories “healthy” and “easy” can be rather easily segmented
with existing approaches (14), they are not considered during
evaluation. Healthy (and easy) scans could also be translated
with the proposed pipeline, but remain almost unchanged. Binary
ground-truth was acquired to cover muscle volume only, also
excluding small fascias (Figure 4a). Due to high correlation of
consecutive slices and to limit manual effort, each forth slice
(transversal plane) was annotated under strong supervision of a
medical expert (Madlaine Müller). For parameter optimization
of the segmentation stage, grid search combined with leave-
one-out cross-validation is applied to determine the best
combination individually for both datasets. The parameters of
the graph-cut approaches consist of curvature weight λs ∈
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FIGURE 2 | An illustration depicting the individual losses Ld ,Lc,Li ,Lr contributing to the overall loss on a high level perspective.

[0.001, 0.002, 0.05, 0.1, 0.2, 0.5], low-pass filtering weight σ ∈

[1, 2], shape prior weight λsp ∈ [0.1, 0.2, 0.5, 0.7, 1], and neutral
probability pn ∈ [0.2, 0.3, 0.4, 0.5]. The CNN segmentation
approach is trained for 200 epochs with learning rate 0.0002
for each setting and each fold. Fourfold cross-validation is
conducted. For data augmentation, random cropping (256× 256
patches from images padded to 300 × 300 pixels), rotations
with multiples of 90◦ and flipping is applied. For further
parameters, we use the defaults from the pytorch reference
implementation.

For image translation, a cyclic GAN (based on a ResNet
with 9 blocks as generator and the proposed patchwise CNN
as discriminator) (7) is trained for 200 epochs with learning
rate 0.0002 based on a “hard” and an “easy” dataset. The “easy”
dataset contains 2D slices showing “healthy” and “minor” data
both showing no visible fatty-infiltrations and the “hard” dataset
contains “moderate” and “severe” images. The individual sets are
merged to maximize the number of training images (overall, we
obtain 649 “hard” (from 19 patients) and 1,124 “easy” 2D images
(20 patients) with a size of 256 × 256 pixels). The losses Ld and
Lc are equally weighted (wd = 1, wc = 1) (7). For wi and wr

(corresponding to Li and Lr), several relevant parameters are
evaluated as shown in Figure 3. The standard GAN setting is
evaluated with wi = 0 and wi = 1 (G0,0, G0,1) and three settings
for wr > 0 are evaluated with wi = 1 (G.5,1, G1,1, G2,1). In the
latter case, the identity loss is required in order to prevent the
GAN from generating extremely dark fake-“healthy” MRI scans.

3. RESULTS

Figure 3 shows the segmentation performance individually for
the four segmentation methods (GMM, GC, SPGC, CNN) and
for the different GAN configurations (Gn,m, with n and m
defining the weights such that wr = n and wi = m). For
completely unsupervised segmentation using GMM, the baseline
relying on original images (OI) is outperformed clearly. The best
median DSCs are obtained with the GAN setting G0.5,1 (DSC:
0.82 compared to 0.67 in case of OI). A similar effect is observed
for GC. The benefit of image translation is clearly smaller in case
of SPGC and CNN. For all configurations, G0.5,1 exhibits the best
DSCs with scores of 0.85/0.82/0.86 compared to 0.83/0.72/0.83 in
case of OI and 0.83/0.82/0.86 in case of the standard cycle-GAN
configuration G0,0 for the approaches SPGC/GC/CNN.

Example image translation output and example segmentations
for GMM and SPGC are provided in Figures 4a–g. Results

show clear improvements for the rather basic methods GMM
and GC, which fail in case of original pathological data.
For the methods that are capable of learning the shape of
the muscles, even with OI median scores above 0.84 are
achieved. Even for SPGC and CNN further improvements are
achieved in case of image translation (CNN: 0.86 compared
to 0.83). The bottom row of Figure 4 additionally shows
the impact of different image translation settings for an
example image.

4. DISCUSSION

Making use of unpaired image-to-image translation, we propose
a methodology to facilitate segmentation tasks for specific
scenarios where a hard problem can be mapped to an easier
task. The most impressive performance gain is observed in
case of fully unsupervised segmentation (GMM) applied to
the “severe” data, which was expected due to the high degree
of fatty infiltrations complicating a pixel-level classification
without contextual knowledge. However, also with probabilistic
graph-cuts with (GC) or without a statistical shape model
(SPGC) and even for the deep learning based approach (CNN),
a slight increase of performance with image translation is
observed. For the latter, this is not completely obvious since
the segmentation network should be capable of learning the
same invariance to pathological data as the translation model.
However, for learning the translation model, all available data
could be used and not only the annotated data (each forth
slice only), which is supposed to be a clear advantage due
to the small training data sets. Related work investigating a
similar application in digital pathology also suggests that two
individual networks performing a task in two steps can be
advantageous (20).

Considering the different GAN configuration, we note that
especially the introduction of the new lossLr leads to best median
DSCs and the configuration G.5,1 is never outperformed by any
other GAN configuration.

By considering the qualitative results (Figure 4), we note
that the converted images (in case of G.5,1) actually exhibit a
high similarity compared to data of healthy subjects and most
importantly they finally lead to improved segmentations. Only in
some severe cases, it can be observed that the muscle’s shape is
slightly changed and that small structures are not reconstructed
perfectly eventually also affecting the overall segmentation
performance. Therefore, we expect that increasing the amount
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FIGURE 3 | Segmentation performance (median, quartiles, min, and max DSCs) for the four segmentation approaches (GMM, GC, SPGC, CNN) and for individual

GAN configurations (Gn,m) compared to a direct segmentation (i.e., segmentation without image translation) of the original image data (OI). The indices of GAN-based

methods define the loss weights wr (first index) and wi (second index).

FIGURE 4 | Example segmentations (c,d) of the original image (a) as well as of the translated images (e–g) in comparison to the ground-truth annotations (b).

Although small structures often cannot be completely reconstructed (especially SPGC leads to over-smoothed masks), overall segmentation robustness increases in

case of the translated image (f,g). The bottom row shows an overlay of an example original image (h) with the corresponding translated images. Although green color

indicates “added” muscle tissue, red color indicates “removed” muscle. Yellow shows unchanged intensities. The configurations without Lr show removed muscle

tissue and also added muscle in wrong areas (i,j). This is not the case when including the novel domain specific loss (k–m).

of unlabeled training data can help to improve the image-
translation process in order to boost the overall performance of
(unsupervised) segmentation even further.

For clinical application, we estimate that a DSC of between
0.85 and 0.90 is required for reliable diagnosis. Visual inspection
can help to quickly identify scans for which segmentation failed.
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After image translation, rates below 0.85 only occurred for
severely affected patients.

To conclude, we proposed a methodology to simplify
segmentation tasks and thereby boost the segmentation accuracy
by mapping a hard segmentation problem to an easier task. For
means of enhancing the image-to-image translation approach,
we introduced a further domain specific loss function included
in GAN training. We considered an application scenario on
segmenting MRI scans of human thighs and showed that the
proposed approach can be effectively applied to either increase
the segmentation performance of supervised segmentation
techniques, or even to obtain highly reasonable outcomes with
completely unsupervised techniques. We assess the latter case
as even more relevant with most significant boosts in DSC (up
to 0.15). We are confident that this approach is not limited to
the considered application but can be effectively applied to other
tasks in radiology as well.
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