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Alzheimer’s disease (AD) affects more than 1 in 9 people age 65 and older and becomes

an urgent public health concern as the global population ages. In clinical practice,

structural magnetic resonance imaging (sMRI) is the most accessible and widely used

diagnostic imaging modality. Additionally, genome-wide association studies (GWAS)

and transcriptomics—the study of gene expression—also play an important role in

understanding AD etiology and progression. Sophisticated imaging genetics systems

have been developed to discover genetic factors that consistently affect brain function

and structure. However, most studies to date focused on the relationships between

brain sMRI and GWAS or brain sMRI and transcriptomics. To our knowledge, few

methods have been developed to discover and infer multimodal relationships among

sMRI, GWAS, and transcriptomics. To address this, we propose a novel federated

model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify genetic and

transcriptomic influences on brain sMRI measures. The relationships between brain

imaging measures and gene expression are allowed to depend on a person’s genotype

at the single-nucleotide polymorphism (SNP) level, making the inferences adaptive and

personalized. We performed extensive experiments on publicly available Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrated our

proposed method outperformed state-of-the-art expression quantitative trait loci (eQTL)

methods for detecting genetic and transcriptomic factors related to AD and has stable

performance when data are integrated from multiple sites. Our GEIDI approach may

offer novel insights into the relationship among image biomarkers, genotypes, and gene

expression and help discover novel genetic targets for potential AD drug treatments.
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INTRODUCTION

Alzheimer’s disease (AD) is a major public health concern, with
the number of affected individuals expected to triple, reaching
13.8 million, by the year 2050 in the U.S. alone (1). Current
therapeutic failures in patients with dementia due to AD may
be due to interventions that are too late or targets that are
secondary effects and less relevant to disease initiation and
early progression (2). Mounting evidence suggests that germline
mutations, e.g., DNA single nucleotide polymorphisms (SNPs),
play an important role in AD etiology and progression (3, 4).
Among various genetic risk factors, Apolipoprotein E (APOE)
has the strongest association to late-onset AD, and the e4
allele is associated with increased risk, whereas the e2 allele is
associated with decreased risk (5). Known genetic risk variants
could be used to identify presymptomatic individuals at risk for
AD and support diagnostic assessment of symptomatic subjects.
By taking into account patients’ genetic risk factors, at-risk
individuals could be more readily identified, diagnostic precision
could be improved, and targetable disease mechanisms for new
drug development may be discovered (6–9). By enabling each
patient to receive earlier diagnoses, risk assessments, and optimal
treatments, personalized or precision medicine holds promise for
improving early AD intervention while also lowering costs (10).

Recent clinical trials targeting single molecular mechanisms
have failed (11, 12). Rather, it might be necessary to tackle the
problem from a holistic or multimodality perspective (13, 14).
Indeed, the NIH and the scientific community realized this
problem a while ago and have already started to produce multi-
omics data. For example, the Alzheimer’s Disease Sequencing
Project (ADSP) data repository contains genomic level data
derived from genome-wide association studies (GWAS) (4,
15), whole-exome sequencing (WES) (16, 17), and whole-
genome sequencing (WGS), and RNA level data including
mRNA, miRNA, and long non-coding RNA profiling from
either microarray or RNA-Seq (18). And transcriptome-wide
association studies (TWASs) provides a way to use eQTLs and
expression data to guide GWAS of AD (19). Brain imaging
has played a significant role in the study of Alzheimer’s disease
(20). Integrating imaging data and omics data is becoming an
emerging data science field known as imaging genomics (21).
The major task of this field is to perform integrated analysis of
imaging and omics data, often combined with other biomarkers,
as well as clinical and environmental data. The ultimate goal is
to gain new insights into the underlying mechanisms of human
health and disease, to better inform the development of new
diagnostic, therapeutic, and preventative approaches.

Various imaging genetics methods have been developed to
integrate imaging and genetic data. However, most studies
have focused on imaging, imaging combined with GWAS
data (22–24), imaging with transcriptomics (25), or GWAS
with transcriptomics (26). For example, imaging genetics
methods have been used to link SNPs with image features
(27), and expression quantitative trait loci (eQTL) have
been used to discover APOE-related genes (28). However,
relatively few methods have been developed to integrate
GWAS/WES/WGS, imaging, and transcriptomic data to infer

multimodal relationships. For instance, Liu et al.(29) use a brain-
wide gene expression profile available in the Allen Human Brain
Atlas (AHBA) as a 2-D prior to guide the brain imaging genetics
association analysis. Their transcriptome-guided SCCA (TG-
SCCA) framework incorporates the gene expression information
into the traditional SCCA model. Such a multimodal approach
may give us a more holistic view of the evidence from
multiple sources to provide novel insights on the molecular
mechanisms of AD pathogenesis and prognosis. Besides, both
gene expression and imaging features are dynamic and change
with time and throughout the disease, whereas germline SNPs
are unchanged over an individual’s lifetime. We need a better
model for studying SNP-image-gene expression relationships
to consider both the dynamic changes in imaging and gene
expression features and understand how they are affected by an
individual’s SNPs. Such knowledge will provide novel insights
into the relationship among image biomarkers, genotypes and
gene expression, and may help discover novel genetic targets for
pharmaceutical interventions.

AD is a complex multifactorial disorder that involves many
biological processes. The launch of the Alzheimer’s Precision
Medicine Initiative (APMI) and its associated cohort program
in 2016—facilitated by the academic core coordinating center
run by the Sorbonne University Clinical Research Group in
Alzheimer’s Precision Medicine—is intended to improve clinical
diagnostics and drug development research in Alzheimer’s
disease (30). Hampel et al. (30) indicate the challenges for
precision medicine, including secure data access accompanied
by rigorous privacy protection and the availability of data to
qualified researchers who may use them to exercise their creative
thinking with an a posteriori approach or to test their a priori
hypotheses. Integrating data from multiple sites and sources is
common practice to achieve larger sample sizes and increase the
statistical power. Unprecedentedly large amounts of biomedical
data now exist across hospitals and research institutions.
However, different institutions may not be readily able to share
biomedical research data due to patient privacy concerns, data
restrictions based on patient consent or institutional review
board (IRB) regulations, and legal complexities; this can present
a major obstacle to pooling large scale datasets to discover
and understand AD-related genetic information. To remedy
this distributed problem, a large-scale collaborative network,
ENIGMA consortium, was built (31). Federated learning is
an important direction of interest in multi-site neuroimaging
research; the use of distributed computing offers an approach to
learn from data spread across multiple sites without having to
share the raw data directly or to centralize it in any one location.
Even so, most ENIGMA and other GWAS studies currently focus
on the influence of genetic variants on human brain structures
(22, 32–34) or functional measures (35) and relatively few have
studied the relationships among image biomarkers, genotypes,
and gene expression.

In this paper, we propose a novel Federated Genotype-
Expression-Image Data Integration model (GEIDI) based on the
Chow test (36). The intuition behind our multi-omics framework
is illustrated in Figure 1. Some important image-expression
relationships (correlations) may be diluted when the population
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is mixed together. Still, when we stratify the population based
on their genotypes (a gene like APOE or a SNP like rs942439),
we can observe strong correlations (AA and BB groups) across
subgroups. Accordingly, as shown in Figure 2, our model is
designed to detect if the relationships between X (imaging
biomarker) and Y (gene expression) are different among the
subgroups. The p-value of the model is then used to prioritize
the trios (genotype-expression-image).

We further design various experiments on publicly available
data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI, adni.loni.usc.edu) to demonstrate that our model may
detect the genetic factors most related to AD better than the state-
of-the-art Matrix eQTL. The overall intent of the work is to detect
relationships that inform the design or repurposing of drugs to
target these subgroups to achieve precision medicine. We first

FIGURE 1 | Schematic view of our multi-omics approach. (A) When patients

are mixed together, image-expression correlation may be low. (B) When a

certain genotype stratifies patients, some subsets (AA, BB) have a high

correlation.

use a hypergeometric analysis and an AD-related gene list from
alzgene.org to evaluate the ability of our federated GEIDI model
to discover AD-related gene expression. To further aid in the
discovery of genes that may be potential AD drug targets, we also
use Pearson correlations analyses to demonstrate the divergence
in stratified populations. Additionally, we design experiments
to show that our model can discover more AD-related SNPs,
based on tests with 1,217 known AD-associated SNPs and 1,217
randomly selected SNPs. Finally, we evaluate the stability of our
model under different multi-site conditions. With the ADNI
dataset, we set off to test our hypothesis that the proposed
federated GEIDI model may be an effective federated model that
can provide novel insights into the relationship among image
biomarkers, genotypes, and gene expressions and the discovery
of novel genes for potential AD drug targets.

DATA AND METHODS

Data Preprocessing
The data in this work are from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI, adni.loni.usc.edu) and the
TADPOLE challenge (tadpole.grand-challenge.org) (37). The
ADNI was launched in 2003 as a public-private partnership
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of MCI
and early AD. The genome-wide association study of ADNI is
designed to provide researchers with the opportunity to combine
genetics with imaging and clinical data to help investigate
the mechanisms of the disease. For up-to-date information,
see adni.loni.usc.edu/data-samples/data-types/genetic-data/.
From the ADNI GWAS, we analyzed data from 697 subjects,
including AD patients, people with mild cognitive impairment

FIGURE 2 | The federated GEIDI model on ADNI data. (A) Stratify samples into subgroups with different genotypes of a gene (e.g., APOE) or at a specific SNP locus

(e.g., rs942439) (B) Federated GEIDI is used to detect if the relationships between X (imaging biomarker) and Y (gene expression) are different among the subgroups.

The p-value of federated GEIDI will then be used to prioritize the trios (genotype-expression-image).
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(MCI), and cognitively unimpaired (CU) subjects, for whom
the demographic information is shown in Table 1. Each sample
has three types of modalities of data: genotypes of known
AD risk genes (e.g., APOE) and SNPs from genome-wide
association studies (GWAS), gene expression measurements (for
20,211 genes) from microarray-based transcriptomic profiling
of samples’ blood, and imaging biomarkers from structural
magnetic resonance imaging (sMRI) data of subjects’ brains.
We use plink to perform a quality check of the genotype data.
The SNPs in the normal group that deviate significantly from
Hardy-Weinberg equilibrium are removed (38). The LINNORM
package (39) was adopted to perform data transformation on
the expression data for normality and homoscedasticity. Recent
evaluations (40, 41) show that LINNORM typically performs
better than current DEG analysis methods for both single-cell
and bulk RNA-Seq, such as Seurat (42) and DESeq2 (43).

Eventually, we get 2,059,586 SNPs, APOE genotype, and
expression data for 20,211 genes for each sample. Besides,
from the TADPOLE challenge, we obtained two brain imaging
biomarkers for each subject calculated using FreeSurfer (44) with
sMRI, including the volume of the hippocampus and middle
temporal gyrus (MidTemp). To adjust for individual differences
in head size, the volume of each region is adjusted by the
intracranial vault volume (ICV) of each subject (volume/ICV).
The difference between the dates for gene expression collection
and MRI scan is <5 months.

Federated Genotype-Expression-Image
Data Integration Framework
Econometrician Gregory Chow first proposed the Chow test in
1960 (36) to determine whether correlation coefficients estimated
in two subgroups are significantly different. In econometrics, it
is most commonly used in time series analysis to test for the
presence of a structural break at a period that can be assumed
to be known as a priori (for instance, a significant historical event
such as a war). For example, we canmodel the data as y = wX+ǫ.
Then, the data can be broken into two groups according to some
event and fitted to the regression model as, y1 = w1x1 + ǫ and
y2 = w2x2 + ǫ. The null hypothesis of the Chow test asserts that
w1 = w2 and the model errors ǫ are independent and identically
distributed from a normal distribution with unknown variance.
Let SC, S1, and S2 be the sum of squared residuals for the three
regression models, respectively, N1 and N2 are the number of
observations in each group, and k is the number of parameters.

The Chow test statistic is F = (SC−(S1+S2))/k
(S1+S2)/(N1+N2−2k)

, which follows

the F-distribution with k and N1 + N2 − 2k degrees of freedom.

TABLE 1 | Demographic information for the subjects we study from the ADNI.

Group Sex (M/F) Age MMSE

AD (n = 96) 59/37 74.8 ± 7.5 21.8 ± 4.1

MCI (n = 366) 209/157 72.0 ± 7.5 28.0 ± 1.7

CU (n = 235) 115/120 74.4 ± 5.8 29.1 ± 1.2

Values are mean ± standard deviation, where applicable.

Although the Chow test is commonly used in the financial
industry, it is seldom used in the biomedical field (45). In
this work, we first generalize the Chow test model to estimate
the multi-subgroup condition and further introduce a federated
learning technique to the model. We apply the proposed
model to the ADNI dataset to detect the significant trios
among genotype, gene expression, and imaging biomarkers and
discover the dominant genetic and transcriptomics factors for
brain structures.

Standardization
We simulate the multi-site condition by separating all the
samples into I hypothetical institutions (I = 5) on Apache Spark
(spark.apache.org), a state-of-the-art distributed computing
platform (Although the ADNI data can be centralized, such a
federated analysis would allow the method to be scaled up to
much larger datasets, including genomic data that is difficult
to centralize for logistic or regulatory reasons). As illustrated
in Figure 2, the samples in each institution can be further
partitioned into at most three subgroups

(

g = 1, 2, 3
)

according
to the subject’s genotype at certain SNP loci (e.g., GG, GA, AA)
or a gene (e.g., stratified by the three APOE genotypes considered
in this study). Accordingly, X

g
i and y

g
i , respectively, represent the

image biomarkers and gene expression values in the gth group of
the ith institution. The data from the gth group in all I institutions
will be fitted into a regression model in a federated strategy.

Federated Chow Test Analysis
Using federated linear regression, we can calculate four linear
models for all the I institutions, including three models for three

subgroups and one for all samples in the three subgroups. w(1),

w(2),w(3) andw(C) are their optimal coefficient vectors. The Chow
test assumes that the errors ǫ are independent and identically
distributed from a normal distribution by an unknown variance.

The null hypothesis of the Chow test asserts that w(1), w(2), and

w(3) are equal. The predictive test suggested by Chow is then:

F =

(

S(C) −
(

S(1) + S(2) + S(3)
))

/
(

2k
)

(

S(1) + S(2) + S(3)
)

/
(

N(1) + N(2) + N(3) − 3k
) , (1)

where S(C) is the sum of squared residuals from the combined
data from the three subgroups, S(1) is the sum of squared residuals
from the first group, and so on for S(2) and S(3). N(1), N(2),
and N(3) are the number of samples in each subgroup, and k is
the number of parameters. Under the null hypothesis, the test
statistic follows the F-distribution with 2k and N(1) + N(2) +

N(3) − 3k degrees of freedom. The global center will calculate F
by gathering all the least square losses and the number of subjects
for each subgroup and combined data from each institution.
For example, for the first subgroup, the global least-square loss

is S(1) =
∑I

i=1 S
(1)
i and the global subject number is N(1) =

∑I
i=1 N

(1)
i . Eventually, the p-value will be calculated at the global

coordinating center and assigned to each institution.
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Federated Linear Regression
Many regression models may be selected for the Chow test
model, such as linear regression (46), polynomial regression
(47), ridge regression (48), and so on. In this study, we
focus on studying the differences in the relationships between
imaging biomarkers and gene expression among different groups.
Complex regression models, like polynomial regression, may
lead to over-fitting and meaningless results. Also, sparse or
penalized regression methods, such as ridge regression, require
an appropriate regularization parameter. Therefore, in this work,
linear regression would be the most rational choice.

Since the federated regression models for each subgroup are
the same, we omit the group superscripts here. For the data
in one subgroup of all the I institutions, we can calculate the
linear regression equation as: y = Xw + ǫ, where X ∈ RN×k

represents the independent variables, y ∈ RN is a vector of the
observations on a dependent variable, w ∈ Rk is a coefficient
vector, and ǫ ∈ RN is the disturbance vector. N is the number
of observations in the group, and k is the number of parameters.
Then, the coefficient vectorw can be estimated byminimizing the

least squared function, S (w) = 1
2

∥

∥Xw− y
∥

∥

2

2
.

To avoid centralizing the data,
(

Xi, yi
)

, from each
institution, we first rewrite the minimization problem as,

min
∑I

i=1 Si
(

w;Xi, yi
)

= 1
2

∑I
i=1

∥

∥Xiw− yi
∥

∥

2

2
. Then, the

global gradient can be calculated as, ∇S (w) = XT
(

Xw− y
)

=
∑I

i=1 X
T
i

(

Xiw− yi
)

=
∑I

i=1 ∇Si (w). Therefore, instead of
centralizing the data, the global center only needs to gather
the partial gradient, ∇Si (w), which is calculated with

(

Xi, yi
)

at each local institution. After computing the global gradient,
∇S (w), the global center will send it back to ith local institution.
Finally, w will be updated at each institution by gradient descent
with the same learning rate, w ← w − η∇S (w). The reason
for not updating w at the global center is to avoid possible
data reconstruction. When w is zero, the local gradient sent
to the center is −XT

i yi. Then, the global center can easily
acquire XT

i Xiw and Xi might be reconstructed if w is known
to the center. Consequently, our optimization strategy is
able to preserve data privacy for all institutions. The whole
framework of our federated Genotype-Expression-Image
Integration model is summarized in Algorithm 1. And the
code can be downloaded at our website, https://github.com/
JianfengWu1993/GEIDI.

Performance Evaluation Protocol
We firstly use our model to identify AD-related gene expression.
From the publicly available database, alzgene.org, and the GWAS
results from International Genomics of Alzheimer’s Project
(IGAP) (6), we select 632 known AD-related genes. When we
fix the genotype and imaging biomarker, we can calculate a p-
value for each of the 20,211 gene expressions. We rank the 20,211
p-values and identify which of the known AD-related genes are
featured in the top N gene expressions. In section Discovering
AD-Related Gene Expressions, the top N gene expressions are
the ones with a p-value < 0.05. In section Discovering AD-
Related SNPs, N is a fixed number (100 and 200). We introduce
hypergeometric analysis (49) to evaluate themodel’s performance

Algorithm 1 Federated Genotype-Expression-Image Data
Integration Model.

Input: Data pairs of the I institutions,
(

X1, y1
)

, ...,
(

Xi, yi
)

, ...,
(

XI , yI
)

and
the sample numbers of each group,
(

N
(1)
1 ,N

(2)
1 ,N

(3)
1

)

, ...,
(

N
(1)
i ,N

(2)
i ,N

(3)
i

)

, ...,
(

N
(1)
I ,N

(2)
I ,N

(3)
I

)

Output: p-value of the studying Genotype-Expression-Image
trio

Initialize: w(1),w(2),w(3),w(C) = 0

1: for g = {1, 2, 3,C} do
2: while convergence andmaximum number of iterations are

not reached do
3: Get an image patch xi from X.
4: Each institution computes the gradient:

∇S
(g)
i

(

w(g)
)

= [X
(g)
i ]

T (

X
(g)
i w(g) − y

g(g)
i

)

.

5: Global center computes and sends global gradient to
each institution:
∇S(g)

(

w(g)
)

=
∑I

i=1 ∇S
(g)
i

(

w(g)
)

.

6: Each institution updates the coefficient with the
global gradient:

w(g)← w(g) − η∇S(g)
(

w(g)
)

.

7: end while

8: Each institution calculates the sum of squared residual:

S
(g)
i

(

w(g);X
(g)
i , y

(g)
i

)

.

9: Global center gathers the global sum of squared residual:

S(g) =
∑I

i=1 S
(g)
i .

10: Global center gathers the global sample numbers: N(g) =
∑I

i=1 N
(g)
i .

11: end for

12: Global center calculates F value with equation (1) and then
computes and sends p-value to all institutions.

to detect the known AD-related genes. The probability mass
function of hypergeometric analysis is defined as,

p(k, M, n, N) =

(

n
k

) (

M − n
N − k

)

(

M
N

) (2)

In our case, the number of population (M) is 20,211, the sample
size (n) is 632, the number of samples drawn from the population
(n) is the selected top N gene expressions, and the number
of the observed successes (k) is the number of overlapping
genes between 632 known AD-related genes and the top N
gene expressions.

Secondly, with different genotypes, the pattern of
hypergeometric enrichment will vary. The AD-related genotypes
should, in general, have a more significant hypergeometric
enrichment. From alzgene.org, we also obtain 1217 known
AD-related SNPs. And we randomly select 1217 SNPs from the
ADNI database as non-AD-related SNPs. After ranking the SNPs
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with the p-value based on hypergeometric analysis, we compute
the number of AD-related SNPs found in the topm SNPs as true
positive rate (TPR) and evaluate the performance of the models
with TPR.

Finally, to prove the stability of our federated GEIDI, we
compare the residuals of the federated linear regression model
under different multi-site conditions. If the residuals are the
same under different conditions, the F value and p-value will
stay unchanged.

RESULTS

Discovering AD-Related Gene Expressions
APOE Related Gene Expressions
APOE genotype is a well-known genetic biomarker for
predicting subjects’ risk for AD. We stratify 697 subjects
into three subgroups based on their APOE genotype status:
non-carriers (e3/e3), heterozygotes (e3/e4), and homozygotes
(e4/e4). Federated GEIDI is then adopted to discover genes
correlated with hippocampus volume differentially across the
three subgroups. We first run federated GEIDI with the volume
of both sides of the hippocampus and the expression measures
for 20,211 genes. Next, 1,625 gene expression measures are
selected with p < 0.05. We evaluate the enrichment of these
genes and the 632 AD-related genes annotated on alzgene.org
and find 73 overlapping genes, yielding a hypergeometric
enrichment p = 0.00039. Among the 73 overlapping genes,
the top ten gene expressions are those measured for CAST,
CST3, GSTO1, LSS, MS4A4A, NPC1, PMVK, PPM1H, PPP2R2B,
and SORCS2. Besides, the top ten genes in the 1,625 gene
expressions are IK, BRPF3, BTN3A2, LOC101929275, TDRG1,
PAFAH1B1, SERINC3, ALKBH6, VPS45, and LGALS1. We also
perform the false discovery rate (FDR) (50) test on the 20,211
p-values but none of the corrected p-values are significant.
The list for these selected gene expressions is attached in
Supplementary Material (table 1.csv).

Additionally, we perform the same experiments on the volume
of the middle temporal gyrus (MidTemp); the results are shown
in Table 2. 2,415 gene expressions are significant and 92 of them
overlap with the 632 AD-related genes - with a hypergeometric
enrichment p = 0.00624. The top ten gene expressions are
those measured for ABCA2, COL11A1, CST3, GNA11, HMOX1,
HSPA1B, MAOA, MS4A4A, PRKAB2, and SORCS2. And the top
ten genes in the 2,415 gene expressions are GLRA3, CAMK2N2,
MCOLN2, BPIFA1, KIT, CST3, SLC20A2, LGALS4, TNFSF8, and
LCOR. After performing FDR on the 20,211 genes, three gene

TABLE 2 | Hypergeometric statistics for APOE.

Structures Selected genes Overlapping genes P-value

Hippocampus 1,625 73 0.00039

MidTemp 2,415 92 0.00624

Linear regression 2,657 98 0.00976

ANOVA 3,234 110 0.02665

expressions are significant, including GLRA3, CAMK2N2, and
BPIFA1. The list for these selected gene expressions is attached
in Supplementary Material (table 2.csv).

Matrix eQTL (51) is a state-of-the-art software to study the
association between genotype and gene expression. We also
leverage the linear model and the ANOVAmodel inMatrix eQTL
to evaluate the APOE genotype and the measured expression
levels of the 20,211 genes. For the linear model, there are 2,657
significant gene expressions and 98 overlapping genes, leading
to a hypergeometric enrichment p = 9.76E − 03. For the
ANOVA model, 3,234 gene expressions are selected, and 110
known genes are found, which leads to a p-value = 2.665E − 02.
The results show that our federated GEIDI can detect the most
gene candidates that are significantly enriched for known AD
genes. As the volume of hippocampus has the best performance
in detecting AD-related genes, we use it as the imaging biomarker
for all the remaining experiments.

SNP Related Gene Expressions
In this experiment, we stratify the subjects into three subgroups
based on their SNP status. We choose rs942439, as this SNP
was reported in alzgene.org, and also one of the top hits in
our experiment of discovering AD-related SNPs (the details
about selecting AD-related SNPs will be introduced in section
Discovering AD-Related SNPs). And we use the volume of
both sides of hippocampus as the imaging biomarker because
of its superior performance in the first experiment. Federated
GEIDI is used to detect any known AD gene whose expression
is differentially associated with hippocampus volume in the
subgroups stratified by the genotype at rs942439 locus.

As shown in Table 3, 1,587 gene expressions are significant
and 60 of them are reported in alzgene.org and IGAP GWAS
results, leading to a hypergeometric enrichment p = 0.017.
Of these 60 gene expression measures, the top ten genes
are ADRB1, ALOX5, ATXN1, CBS, FGF1, FLOT1, HSPA1A,
RFTN1, SORL1, and XRCC1. Besides, the top ten genes in
the 1,587 gene expressions are AIF1L, KRT23, CA2, C2ORF88,
HSPA1A, LRGUK, LGALS3BP, IFT46, DDX23, and FAM166B.
After performing the FDR test on the 20,211 genes, none of the
gene expression is significant. The list for these selected gene
expressions is attached in Supplementary Material (table 3.csv).

We also perform eQTL analysis on the SNP, rs942439. For a
linear regression model, 1,794 gene expressions are selected, and,
of these, 66 genes are reported in alzgene.org and IGAP GWAS
results, yielding a hypergeometric enrichment p = 0.021. For the
ANOVAmodel, 1,347 gene expression values are significant and,

TABLE 3 | Hypergeometric statistics for rs942439.

Structures Selected genes Overlapping genes P-value

Hippocampus 1,587 60 0.017

Linear regression 1,794 66 0.021

ANOVA 1,347 49 0.033
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of these, 49 genes are reported in alzgene.org and IGAP; in this
case, the hypergeometric enrichment was p = 0.033.

In the experiment, one of the most significant gene expression
measures is for XRCC1, for which the p-value is 4.332E −
03. XRCC1 is a gene coding for the X-ray repair cross-
complementing protein; it was previously reported to be weakly
associated with AD in a Turkish population (52).

As shown in Figure 3, we further adopt Pearson’s correlation
to evaluate the relationship between the hippocampal volume (x-
axis) (adjusted for ICV) and XRCC1 gene expression (y-axis) of
each subgroup. Figure 3A illustrates the distribution for all the
samples. Figures 3B–D show the distribution for the samples
with “GG”, “GA” and “AA” genotype, respectively. Above each
subfigure, R and p are the Pearson correlation coefficient and
p-value, and N is the number of subjects. Even so, there is
always some missing information in the genotype data. Hence,
before we run federated GEIDI as well as the Pearson correlation
statistics, we remove the subjects without the specific genotype.
Because of this, the total number N in Figure 3A is 579 instead of
697. We find samples with an “AA” genotype had hippocampal
volume negatively correlated with expression levels of XRCC1

(N = 37, R = 0.37, p = 0.022). In contrast, the analysis in
all samples (Figure 3A) or subjects with either “GG” or “GA”
genotype (Figures 3B,C) showed that the Pearson correlation
coefficients were not significant in the overall, pooled sample.
This result indicates that our method can establish associations
among SNP, imaging, and gene expression data that include
known AD risk factors.

We further apply the above procedure to discover genes
that have never been reported to be associated with AD. As
shown in Figure 4D, SEC14L2 gene expression is negatively
associated with hippocampal volume only in the subpopulation
with “AA” genotype at rs942439 locus (N = 37, R = −0.47,
p = 0.003). Interestingly, the opposite correlation is found in
a subpopulation with “GA” genotype (Figure 4C, N = 208, R
= 0.15, P = 0.03), and when applied to all pooled subjects,
the total population does not show significant correlations
(Figure 4A, N = 579, R = 0.07, p = 0.09) and the subpopulation
with “GG” genotype doesn’t show any significant correlations
(Figure 4B, N = 334, R = 0.062, p = 0.258). The SEC14L2
gene encodes a protein that stimulates squalene monooxygenase,
a downstream enzyme in the cholesterol biosynthesis pathway.

FIGURE 3 | Correlation of image biomarkers and XRCC1 gene expression in subpopulations stratified by the sample’s genotype at rs942439. (A) all samples (B)

individuals with “GG” genotype; (C) those with “GA” genotype (D) those with “AA” genotype.
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FIGURE 4 | Correlation of image biomarkers and SEC14L2 gene expression in subpopulation stratified by the sample’s genotype at rs942439. (A) all samples (B)

those with “GG” genotype; (C) those with “GA” genotype; (D) those with “AA” genotype.

This gene has never been reported to be associated with AD,
but high cholesterol levels have been linked to early-onset
AD (53). This result indicates that our method can detect
strong correlations in specific subpopulations that cannot be
detected in the whole population. We also observe conflicting
directions in different subpopulations, as shown by “GA” and
“AA” subpopulations showing opposite correlations. This also
highlights the importance of individualized medicine in patient
management, as the same drug may have opposing effects in
different groups of samples. Thus, federated GEIDI offers a new
approach to discover novel genes related to AD as potential
drug targets.

Discovering AD-Related SNPs
In the experiments of section Discovering AD-Related Gene
Expressions, we used hypergeometric statistics to evaluate
the ability of our proposed model to discover AD-related
gene expressions that are differentially associated with imaging
measures in populations stratified by APOE haplotype. In this
experiment, we also use hypergeometric statistics to assess
the discovery rate of known AD-related genes, in the set

of genes whose expression shows different correlations with
imaging markers, in samples stratified according to different
genotypes. Sets that are enriched in AD-related SNPs will
have a more significant p-value in the hypergeometric test that
assesses enrichment. Since the hippocampal volume measure
showed superior performance for this task, among all the
imaging biomarkers in section Discovering AD-Related Gene
Expressions, we adopt it as the brain imaging measure in this
experiment. To illustrate the effectiveness of our GEIDI model,
we perform the same experiment with the linear model in Matrix
eQTL, which can evaluate the associations between SNPs and
gene expression. To adjust for multiple comparisons, we will
convert raw p-values to false discovery rate (FDR) and consider
trios with FDR <0.05 as functionally important.

When we analyze each SNP with our federated GEIDI
and Matrix eQTL, we will obtain a p-value for each of the
20,211 expressed genes. Instead of selecting the significant gene
expressions with a p-value < 0.05, we respectively rank
the p-value of all the gene expressions calculated by the two
methods and select the top N (100 and 200) gene expressions
to apply the hypergeometric analysis. With the p-value from this
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hypergeometric analysis (which assesses enrichment for known
AD-associated genes), we may rank the SNPs and obtain the
most AD-related ones. Then, we try to prove that our GEIDI is
able to detect more AD-related SNPs. From alzgene.org, we also
created a list of 1,217 AD-related SNPs, and we randomly selected
another 1,217 SNPs as the non-AD-related ones. After ranking
the SNPs with the p-value computed by the two methods, we
calculate the true positive rate (TPR) for the top m SNPs, which
measures the percentage of AD-related SNPs in the selected
top m SNPs. For example, the last number in Table 4 is 0.57,
which means 57% of the top 500 SNPs are AD-related ones. As
the results in Table 4, our federated GEIDI can always achieve
superior performance than Matrix eQTL.

In Figure 5, we visualize the p-values of these 2,434 SNPs
from hypergeometric analysis in the Manhattan plots. The top
figure is the Manhattan plot for the result with the top 100 gene
expressions and the bottom one is for the result of the top 200
gene expressions. The SNPs, rs4889013 and rs11940059, are the
top-ranked ones for both results. When we select 100 or 200
as the number of samples drawn from the population, three
parameters in Equation (2) are fixed and only the number of
observed successes, k, varies for different SNPs. Therefore, the p-
value from different SNPs might be the same if their numbers
of observed successes are the same. This explains why results of
some SNPs locate at the same horizontal position.

Federated Learning Stability Analysis
In this experiment, we aim to demonstrate that the performance
of our federated GEIDI model is not greatly affected by different
data distribution models across institutions. In practice, it
would be convenient and efficient to run association tests on
data that might be distributed across multiple servers without
transferring it all to a centralized location. We developed
this algorithm with R language and simulated the distributed
condition on a cluster with several conventional x86 nodes, of
which each contains two Intel Xeon E5-2680 v4 CPUs running
at 2.40 GHz. Each institution is assigned one computing node.
We synthesized 1,000 samples and randomly assigned them

TABLE 4 | True Positive Rates of AD-related SNPs in the top m SNPs.

EXP (N)

SNP (m) 10 50 100 200 500

Matrix eQTL: linear regression

100 0.50 0.58 0.52 0.50 0.53

200 0.50 0.60 0.55 0.58 0.54

Matrix eQTL: ANOVA

100 0.60 0.58 0.52 0.49 0.55

200 0.60 0.60 0.57 0.55 0.55

Federated GEIDI

100 0.60 0.60 0.60 0.61 0.60

200 0.60 0.62 0.61 0.58 0.57

The SNPs are ranked with the p-value from hypergeometric analysis with the top. N gene

expressions as the number of samples drawn from the population.

to different independent hypothetical institutions, including
one institution, three institutions, five institutions and seven
institutions. We compared the residuals from each linear
regression model for each condition and found the residuals
remained unchanged, as shown in Table 5. The first column
is the ground truth residual and the rest are the residuals for
our federated linear model under different data distribution
conditions. The residuals are the same, which means that the
results of our Federated GEIDI will remain stable under different
multi-site conditions. Therefore, these results demonstrate the
correctness and stability of our federated GEIDI model.

DISCUSSION

In this work, we propose a novel federated Genotype-Expression-
Imaging Data Integration (GEIDI) model to identify the genetic
and transcriptomic influences on brain sMRI measures. We
performed various experiments with our model on the publicly
available ADNI dataset, and we have two main findings. First,
our federated GEIDI is an effective multimodal approach that
provides novel insights into the relationship among image
biomarkers, genotypes, and gene expression, and may be useful
to discover novel genes as potential AD drug targets. It has
better performance in detecting AD-related gene expressions and
SNPs than the linear regression model and ANOVAmodel in the
state-of-the-art Matrix eQTL approach. In addition, our model
may not only detect known AD-associated genes as potential
drug targets, such as XRCC1, but may also help in discovering
novel genes as potential drug targets, such as SEC14L2. Second,
compared to Matrix eQTL, our federated GEIDI provides a way
to investigate extremely large datasets from different institutions
without violating data privacy. The statistical power of the model
will also be increased with the larger sample size. Our work
may lay down a solid foundation for future multi-site large-scale
imaging genetics research.

Comparison Analysis of Federated GEIDI
and Matrix eQTL
Expression quantitative trait loci (eQTL) analysis (54, 55) is
designed to identify the significant associations between SNPs
and gene expression, which can help understand the biochemical
processes occurring in living systems, discover the genetic factors
that influence the onset and progression of certain diseases,
and determine the pathways affected by them. There are many
eQTL analysis methods, including linear regression, ANOVA
models, Bayesian regression (56), and so on. Matrix eQTL
(51) is the state-of-the-art software for computationally efficient
eQTL analysis, and it supports additive linear and ANOVA
models. It has been widely used in the study of human genetic
traits and diseases. However, it has two main limitations. First,
althoughMatrix eQTL is very computationally efficient, it cannot
work on data that is distributed across different institutions.
Nowadays, unprecedentedly large volumes of biomedical and
genetic data have been collected by different hospitals and
research institutions, and this aggregate of available data may
significantly advance the study of factors influencing disease.
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FIGURE 5 | Manhattan plots for the results of federated GEIDI. The top figure is the Manhattan plot for the results from hypergeometric analysis with the top 100 gene

expressions as the number of samples drawn from the population and the bottom one is for the results with the top 200 gene expressions. The SNPs, rs4889013 and

rs11940059, are the top-ranked ones for both results.

TABLE 5 | Stability analysis of federated GEIDI across different institutional

settings.

Ground

truth

1-institution 3-institution 5-institution 7-institution

Residual 3.9553 3.9553 3.9553 3.9553 3.9553

However, data restrictions, legal complexities, and patient privacy
have all been major obstacles for researchers to obtain or
share these data. Therefore, federated machine learning and
distributed statistical models are becoming advantageous for
current research on medical data (57, 58). Second, the models
in Matrix eQTL cannot jointly consider the information from
images. Changes in brain structures can play a vital role in the

study and diagnosis of Alzheimer’s disease, and many researchers
have attempted to detect associations between genetic factors and
imaging features (21, 59, 60). Therefore, introducing imaging
information may greatly assist the detection of genetic factors
that influence disease as an intermediate phenotype that might
reflect relevant disease processes.

Our proposed federated Genotype-Expression-Imaging Data
Integration model can effectively overcome these two obstacles.
In the Methods section, we detailed how our model maintains
each institutional data private. Additionally, our federated GEIDI
model integrates GWAS data, gene expression, and imaging
data. The experimental results demonstrate that our federated
GEIDI model has better performance in detecting AD-related
genes and SNPs. In detecting AD-related gene expression, our
model achieves the strongest hypergeometric enrichment with
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the volume of the hippocampus. In our tests detecting AD-
related SNPs, our federated GEIDI model generally obtained
a higher TPR than the linear regression model and ANOVA
model. Besides, compared with existing methods, our proposed
model offers novel insights into the relationship among image
biomarkers, genotypes, and gene expression by considering both
imaging and gene expression features—which can vary over
time—and understanding how they are affected by an individual’s
SNPs. Compared with Matrix eQTL, the only caveat of our
model is the computation time on a single computing node. Our
proposed model may require more computation time compared
to Matrix eQTL. For each trio, our framework has to solve
four linear regression models. But Matrix eQTL only needs
to calculate one correlation matrix to evaluate all the trios.
Therefore, our model may require more computation time.
We perform the experiments of section APOE Related Gene
Expressions on a single computing node. Matrix eQTL only takes
1.4 s, while our model may require 265 s. However, due to the
federated learning nature, our work may be applied to different
computation nodes parallelly. It may make our work scalable to
large datasets and result in comparable computation times with
Matrix eQTL.

Drug Target for Precision Medicine of AD
Increasingly, a major challenge in healthcare is that many
drugs are adequate for only small subgroups of patients (61).
Some patients may not only suffer from adverse side effects
but also waste money on ineffective drugs. Precision medicine
has the potential to tailor therapy based on the best expected
response and highest safety margin to ensure better patient
care. By enabling each patient to receive earlier diagnoses,
risk assessments, and optimal treatments, personalized medicine
holds promise for improving health care while also potentially
lowering costs (10). In this work, ourmulti-omics approach offers
potential in genome-guided drug discovery. Compared to state-
of-the-art methods, our model performs better in detecting AD-
related genes and SNPs. Moreover, our model not only detects
known genes for target drugs, like XRCC1, but also discovers
novel potential gene expressions, like SEC14L2. Meanwhile, our
federated framework may integrate data from multiple sources
without violating the data privacy and the obtained larger sample
size may help discover and understand more AD-related genetic
information. Therefore, we believe our federated GEIDI model
will play an important role in the study of precision medicine for
AD in the future.

Limitations and Future Work
Despite the promising results of our federated GEIDI model,
there are four caveats. Firstly, we only evaluated our model on
data from 697 subjects from the publicly available ADNI dataset.
In the future, we will add other datasets to make results more
robust and reliable. For example, the Arizona APOE cohort
(AZ APOE cohort) recruited 450 actively followed participants
matched by age, sex, and education—including homozygous
APOE-e4 carriers and non-e4 carriers since 1994 (62). The UK
Biobank project (63) collects both large-scale genetic-genomic
and phenotypic data as well as health-related information from

around 500,000 volunteer participants in the UK. Assessments
include biological measures, blood- and urine-based biomarkers,
body, and brain imaging scans, and lifestyle parameters (64, 65).
Second, the volumes of specific subcortical structures may not be
ideal imaging measurements for the multiple biological processes
involved in Alzheimer’s disease. Surface-based morphometry
analyses have achieved excellent performance for early AD
detection (66–68). In recent work (69, 70), the authors created
tools to generate a univariate morphometry index (UMI) for
surface morphometry features on regions of interest (ROIs) that
are related to beta-amyloid deposition. This induced UMI may
reflect intrinsic morphological changes induced by processes of
amyloid accumulation in AD and has greater signal-to-noise
ratio and strong generalizability to new subjects. If we were to use
such brain pathology induced UMI measures instead of volumes,
our federated GEIDI model may detect additional AD-related
genes whose expression is influenced by SNPs. Thirdly, all the
three methods (our GEIDI model, linear regression model, and
ANOVA model) can only get several significant corrected p-
values on this dataset with the FDR test since only about 10
percent of the 20,211 gene expressions can get significant raw
p-values. Therefore, we use hypergeometric analysis to evaluate
the top findings of these methods. The hypergeometric analysis
is also a classical approach to evaluate the discovery significance
in genetics research (71–73). It may justify our model. In the
future, we will try to apply our work to larger datasets and
apply themultiple test correctionmodels for justification. Finally,
in ongoing work on blood-based biomarkers (74, 75), plasma
levels of amyloid-beta (plasma Aβ) may provide an alternative
but highly accurate estimate of brain amyloid positivity. In
(75), plasma P-Tau181 accurately discriminated AD dementia
from non-AD neurodegenerative diseases with an excellent
AUC (0.94). Similarly, such plasma measures might be used
in conjunction with our federated GEIDI model to better
understand the effects of AD-related genotypes. We plan to
analyze such datasets to further evaluate our model in the future.

CONCLUSION

We propose a novel federated Genotype-Expression-Image
Data Integration model. Compared to similar studies, this
work achieves state-of-the-art performance in discovering
downstream effects of AD-related genes and SNPs. Besides,
the model provides novel insights into the relationship among
image biomarkers, genotypes, and gene expression and could
discover novel drug targets for precision medicine. In the
future, we will further validate our model with more datasets
and more advanced imaging biomarkers. Specifically, we will
introduce blood-based biomarkers into our model when such
data are available.
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