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Artificial intelligence (AI) as an emerging technology is gaining momentum in medical

imaging. Recently, deep learning-based AI techniques have been actively investigated in

medical imaging, and its potential applications range from data acquisition and image

reconstruction to image analysis and understanding. In this review, we focus on the

use of deep learning in image reconstruction for advanced medical imaging modalities

including magnetic resonance imaging (MRI), computed tomography (CT), and positron

emission tomography (PET). Particularly, recent deep learning-based methods for image

reconstruction will be emphasized, in accordance with their methodology designs and

performances in handling volumetric imaging data. It is expected that this review can

help relevant researchers understand how to adapt AI for medical imaging and which

advantages can be achieved with the assistance of AI.

Keywords: deep learning, magnetic resonance imaging, computed tomography, positron emission tomography,

medical imaging reconstruction

INTRODUCTION

Of all the advances in modern medicine, medical imaging is among the most remarkable
developments. It allows us to see anatomical structures, organs, and biological processes
unreachable by unaided eyes, providing tremendous opportunities for scientific research as well as
disease diagnosis and treatment (1, 2). Different modalities such as magnetic resonance imaging
(MRI) (3), computational tomography (CT) (4), and positron emission tomography (PET) (5)
can provide versatile information, ranging from structure, morphology to physiological function.
Specifically, MRI uses powerful magnetic fields, radio waves, and computers to produce details of
anatomical structures and functions (6, 7). CT measures the linear attenuation coefficient of tissues
inside each voxel element as an X-ray beam transmits through the body. PET measures changes in
metabolic processes as well as other physiological activities by counting radioactive emissions of a
biochemical metabolite labeled with radioactive material.

To better serve the clinical end-users, abundant studies have been conducted to optimize the
scanning process, improve the imaging efficiency, and enhance the image quality of MRI/CT/PET
(8, 9). Image reconstruction plays a significant role in this aspect. For MRI, its slow imaging
speed has been a long-lasting bottleneck that seriously limits its wider applications in the clinic
(10). Among different possible solutions, k-space undersampling has been identified as a highly
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effective approach to accelerate the scan (11, 12). Nevertheless,
images generated from undersampled k-space data are subject
to the low-quality issue, with possible loss of the important
information related to disease diagnosis or treatment (13).
Thus, high-quality image reconstruction from incomplete k-
space data is critical. As for CT and PET, the main focus is
to reconstruct high-quality images from deteriorated raw data
caused by low-dose imaging demands (14, 15). Many efforts have
been devoted to developing image reconstruction methods for
MRI/CT/PET, among which deep learning-based methods have
shown unprecedented successes (9, 14–16).

During the last decade, deep learning has been extensively
applied to medical imaging to handle different problems, such
as image reconstruction (17), image registration (18–20), image
classification (21, 22), and lesion segmentation (23). Among
these applications, image reconstruction is a primary step in the
clinical workflow that has a huge impact on the downstream
tasks of imaging-based analysis and decision making. Notice
that different medical imaging modalities (MRI, CT, and PET)
have their own unique imaging physics and principles, and thus
numerous deep learning-based methods have been proposed to
accomplish respective reconstruction tasks (9, 11, 14, 15). For
MRI, existing works have achieved impressive achievement to
balance imaging efficiency and imaging quality (9, 11). Similarly,
promising results have also been achieved for CT and PET
image reconstruction (14, 15). However, current progress is still
preliminary for deep learning-based image reconstruction in real
applications, andmore efforts are needed tomake this technology
mature enough for wide real-world clinical applications. Thus, it
is the right time to review existing works to help beginners as well
as non-specialists better understand this relatively new technique
and promote more follow-up investigations and applications.

The remainder of this review paper is organized as
follows. In section Overall Workflow of Deep Learning-
Based Reconstruction, we demonstrate the overall workflow
of deep learning-based reconstruction, by briefly introducing
the basics of deep learning relevant to the reconstruction
task, the purpose of image reconstruction, and the workflow
of deep learning-based reconstruction. Detailed technical
developments of deep learning-based reconstruction are
introduced in section Technical Developments of Deep
Learning-Based Reconstruction. Section Clinical Applications
and Current Achievements reviews current clinical applications
and achievements, followed by descriptions of key challenges and
opportunities in section Challenges and Opportunities. Finally,
section Conclusion concludes the paper.

OVERALL WORKFLOW OF DEEP
LEARNING-BASED RECONSTRUCTION

Basics of Deep Learning
Artificial intelligence (AI) refers to the ability of a machine to
simulate human intelligence by thinking and acting like humans
(24). Deep learning is a sub-discipline of AI, which specifically
addresses various tasks through building deep neural networks
(DNNs) (25). Different abstract levels of representations are

extracted with multi-layer networks which enable the learning
of complex functions. When inputs are images, the low-level
features usually represent edges and contours in the images,
whereas the high-level features are commonly semantic features
(26). One key characteristic for deep learning is that all the
parameters for feature extraction are learned automatically with
the provided data samples, which can be better self-optimized
to specific problems compared to the use of manual feature
engineering approaches (26, 27).

Supervised learning, unsupervised learning, and
reinforcement learning are the three major paradigms for
deep learning (28–31). Supervised learning requires paired data
samples for the inputs and the expected outputs (28). Model
optimization is performed by minimizing loss functions that
are calculated to measure the difference between model outputs
and ground truth. In unsupervised learning, only input data
samples are provided, and certain assumptions of the data have
to be made and then the corresponding model constraints are
enforced to facilitate the model learning (29). In reinforcement
learning, an algorithm is referred to as an agent. Then, the
agent takes an action to change its state, and, at the same time,
a reward or penalty is assigned. Different from supervised
learning, the training data of reinforcement learning provide
only an indication of whether an action is correct or not. The
overall goal of reinforcement learning is to achieve the maximum
reward over time by learning a policy for the agent to choose
proper actions for any given states (31). Most medical image
reconstruction models are based on supervised learning or
unsupervised learning, while reinforcement learning is less
frequently utilized.

Deep Learning-Based Image
Reconstruction
MRI
MRI reconstruction aims to generate high-quality images from
sampled k-space data. Conventional reconstruction methods
(i.e., Fourier transform) require the scanning process to
follow the Nyquist sampling theory. Thus, to obtain high-
quality images, the sampling frequency should be high enough,
which unfortunately makes the scanning process very time-
consuming. On the other hand, undersampling, which breaks
the Nyquist sampling theory, leads to imperfect MR image
reconstruction if using conventional reconstruction methods.
To this end, compressed sensing (CS) MRI (CS-MRI) has been
proposed by introducing CS theory to reconstruct MR images
with significantly fewer measurements than those required by
traditional Nyquist sampling theory (32). CS-MRI accomplishes
the reconstruction task mainly by exploiting the sparsity of MRI,
since most MR images are sparse after transformed into an
appropriate domain (32), such as using total variation (33) and
wavelet transformation (34).

Despite the successes achieved, CS-MRI still has limited
performance because of using manually-designed methods to
exploit the sparsity in MRI. By contrast, deep learning-based
image reconstruction for MRI can automatically and fully exploit
the available data information and recover the lost information
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under the guidance of certain prior knowledge. Deep learning
was first introduced to MR image reconstruction in 2016 by
Wang et al. (35). In their work, a three-layer neural network
was built to automatically learn the mapping between low-quality
and high-quality images (35). Following this work, a series of
studies have been published, aiming to build more sophisticated,
robust, and optimized deep learning models for MR image
reconstruction (36–39).

Existing deep learning-based MR image reconstruction
methods can be classified into two major categories, (1) model-
based methods and (2) data-driven methods. Model-based
methods reconstruct high-quality MR images via solving certain
optimization algorithms and utilizing neural network modules
to represent the reconstruction steps of the solution. Typical
optimization algorithms include alternating direction method
of multipliers (ADMM) algorithm (40), iterative shrinkage-
thresholding algorithm (ISTA) (41), and primal-dual hybrid
gradient (PDHG) algorithm (42). Data-driven methods are
the end-to-end approaches that rely on DNNs with large
capacities to learn non-linear reconstruction processes. Example
models include U-Net (36), residual network (ResNet) (43),
and generative adversarial networks (GAN) (44). Model-based
methods are more interpretable as the network blocks can
correspond to the algorithm solutions, and data-driven methods
are more effective in data exploitation. Overall, deep learning-
based MR image reconstruction methods have dominated the
current research field, with promising performance.

CT
In CT, image reconstruction aims to transform the sensor data,
which basically reflects line integrals of the object, to an image
representing the object. Until recently, most CT reconstruction
methods can be classified as either analytic reconstruction or
iterative reconstruction. Analytic reconstruction is based on
the mathematical inverse of the forward model of an imaging
process, which could either be mathematically derived or
numerically modeled after the design of the CT imaging device
and the knowledge about how it generates sensor data. A
typical example of analytic reconstruction in CT is filtered
back-projection (FBP) (45). Iterative reconstruction is based
on a numerical forward model combined with a feedback
loop (46–51). In the feedback loop, the error between the
calculated sensor dataset and the measured sensor dataset
is back-transformed to the image domain to update the
current image estimation. This process is repeated until the
error reaches a small threshold and the optimum image
solution is obtained. Iterative reconstruction has been widely
used in CT because the measurements are typically noisy
or a mathematical inverse is unknown or computationally
challenging. Examples of iterative reconstruction in CT include
the algebraic reconstruction technique (ART) (52) and the
simultaneous algebraic reconstruction technique (SART)
(46). Iterative reconstruction usually outperforms analytic
reconstruction in terms of the quality of reconstructed images,
because iterative reconstruction relies on a more improved
forward model and has the ability to bring in various types of

external prior information to expand the information available
during reconstruction.

Very recently, a third type of CT reconstruction method
– deep learning based reconstruction – was introduced. Deep
learning reconstruction was first introduced to CT in 2016, when
Kang et al. used a deep learning reconstruction approach at
the 2016 Low-Dose X-ray CT Grand Challenge [organized by
the American Association of Physicists in Medicine (AAPM)]
(53), and, in parallel, when Chen et al. introduced a similar
convolutional neural network (CNN) for low-dose CT denoising
(54). The successful demonstration of CNN reconstruction
in low-dose CT has inspired many other deep learning
reconstruction research. For example, a combination of a
CNN with the Normalized Metal Artifact Reduction (NMAR)
algorithm for CT metal artifact reduction (55), a combination
of DenseNet and Deconvolution Network (DD-Net) for sparse-
view CT (56), Super-Resolution Convolutional Neural Network
(SRCNN) for CT super-resolution (57), and so on.

Deep learning reconstruction does not require an explicit
physical imaging model. Instead, deep learning reconstruction
can build its own model from a large amount of training
data, which becomes more and more readily available due to
the wide use of medical imaging in modern healthcare. With
larger and more representative training datasets, deep learning
reconstruction has the potential to outperform both analytic
reconstruction and iterative reconstruction. With unsupervised
learning or self-supervised learning, it has been hypothesized that
the integration of imaging physics within the machine learning
pipeline may further improve the reconstruction quality. For
example, a self-supervised and hybrid CT super-resolutionmodel
that integrates the advantages of both deep learning network and
imaging physics has been just published very recently (51).

PET
Similarly, PET reconstruction aims to generate diagnostic
quality images from measurement data. The conventional
PET reconstruction methods can be broadly classified into
two categories, i.e., (1) analytic (58, 59) and (2) iterative
PET reconstruction methods (60, 61). The analytic PET
reconstruction methods provide a straightforward mathematical
solution for image formation, a typical example of which is
the filtered-back projection (FBP). In contrast, based on a
more accurate description of the imaging process, iterative
methods produce a more complex mathematical solution that
requires multiple steps to reach an image. Since it can take
into account the noise patterns in the observations and use
more realistic models of the system, the iterative methods
provide improvements over the analytical methods. The classical
iterative methods include Maximum Likelihood-Expectation
Maximization (ML-EM) (60) and Ordered Subsets Expectation
Maximization (OSEM) (61).

Recently, numerous learning-based methods have also
been developed for PET reconstruction, such as random
forest (62), sparse representation (SR) (63), and multi-level
Canonical Correlation Analysis (mCCA) scheme (64). Yet, these
traditional machine learning methods often require complex
feature engineering, which largely limits the practicability and
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also results in suboptimal reconstruction quality. To address
this limitation, deep learning was first introduced to PET
reconstruction in 2017 by Xiang et al. (65). The authors
proposed a deep CNN model, followed by an auto-context
strategy, to estimate standard-dose PET images directly from
both the low-dose PET and the corresponding MR images,
without the need for handcrafted features. Encouraged by the
great success of this work, a series of deep learning-based
methods have been developed and successfully applied to various
scenarios of PET reconstruction (58–61, 66, 67). In addition,
the combination of the conventional iterative reconstruction
framework and the deep learning-based method has provided
some new approaches for PET reconstruction (14, 68, 69).
For instance, Gong et al. (14) used the existing inter-patient
information via a deep neural network to further improve the
quality of the reconstructed PET image. Furthermore, with the
introduction and development of new deep learning models
such as GAN, more efforts applying new techniques have
been continuously conducted for superior PET reconstruction
performance (70–72).

Training and Testing Workflow
The image reconstruction framework typically includes an
input, a reconstruction model, and an output. Traditionally,
the input is a sensor-domain raw data, i.e., sinogram in CT.
With deep learning-based reconstruction, the sensor data can
be first reconstructed using an analytic reconstruction model to
provide a low-quality image, and then this low-quality image
is fed into the DNN model to generate the corresponding
high-quality image. For MRI, the input and output data pair
can be either in k-space or image space. Note, to build
a deep learning-based reconstruction framework, two steps,
namely model training and model testing, are included, as
detailed below.

Model training is performed on the provided training samples
to optimize the model parameters. During the model training,
the loss between the model-generated outputs and the provided
training samples is calculated and back-propagated to optimize
the model parameters. The model parameters are updated to
minimize this loss. Model training proceeds in a data batchmode.
Training is stopped after the model is converged to a certain
point, or after reaching a pre-selected number of epochs. To avoid
the overfitting issue, data augmentation is commonly utilized.
Frequently utilized data augmentation methods include affine
transformations and Gaussian noise addition. In a deep learning
model, there are usually some hyper-parameters (such as batch
size, learning rate, etc.) that need to be adjusted manually or
automatically, i.e., using an additional validation set, to improve
the model performance.

With the optimized model, testing can be performed. To
comprehensively evaluate the model performance, testing with
data different from the training/validation data should be
conducted. For example, validating and testing data from
different centers collected with different machines are often
considered to make the model robust enough in real-
world applications.

TECHNICAL DEVELOPMENTS OF DEEP
LEARNING-BASED RECONSTRUCTION

This section will review various deep learning reconstruction
methods developed for MRI, CT, and PET, with typical
methods summarized in Table 1. We will present technical
aspects and performance characterization of deep learning
reconstruction. Technical aspects will include data preparation,
network architecture design, loss function, and settings or
requirements for training.

Data Preparation
When applying deep learning to medical imaging, normally three
datasets are in need, namely training, validation, and testing
datasets. The training dataset is used to train a neural network
that is monitored by the validation dataset to avoid overfitting
or underfitting. The testing dataset is to evaluate whether the
deep learning models can perform well for the real application
scenarios. The datasets should include ground-truth images
for supervised learning. While for unsupervised learning, no
ground-truth information is needed.

For MRI, different types of datasets have been collected and
experimented with for various applications. According to the
target region dynamic characteristics, there are static MRI and
dynamic MRI. Static MRI is applicable when the imaging target
changes slowly with time, such as the knee (36, 38) and the brain
(37). Dynamic MRI is often required when the target moves
fast, such as cardiac MRI (74, 91). Based on the number of coils
utilized to collect the data, MRI datasets can be classified into
single-channel MRI (92) and multi-channel MRI (43, 76, 93).
When different imaging parameters are used, multi-parametric
MRI data are collected to better characterize the physical and
physiological properties of the imaging object (94). Besides,
quantitative MRI is also available, which can measure tissue-
specific parameters (95)1.

For CT, depending on the goal of network training, various
public datasets are available for DNN model training when
developing deep learning reconstruction methods. Some datasets
are curated for image noise reduction. For example, the Mayo
Clinic Low-Dose X-ray CT datasets for the Low Dose CT Grand
Challenge organized by the AAPM (54) have clinical CT images
acquired at the full-dose level and the corresponding simulated
CT images at the quarter-dose level. This Mayo Clinic dataset
can be useful for training deep learning models to reduce CT
image noise and hence optimize the dose efficiency. Other
datasets are curated toward specific diseases or conditions. For
example, The Cancer Imaging Archive (TCIA) hosts a large
archive of medical CT images of cancer accessible for public
download. Noticeably, in the last year, because CT has been
successfully proven to be a rapid triaging tool in patients
with moderate to severe COVID symptoms in a resource-
constrained environment where COVID-19 is highly prevalent
(96), we now have abundant publicly-available COVID CT
datasets available today. Two particular COVID CT datasets

1Popular datasets in MRI include fastMRI https://fastmri.org/dataset/ and
brainweb https://brainweb.bic.mni.mcgill.ca/.
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TABLE 1 | Representative works on deep learning-based MRI/CT/PET image reconstruction.

Modality Task description Network architecture Loss function Dataset Evaluation

metrics

Reference

MRI Directly learning the

transformation from

sensor-space data to image

MLP Simple squared loss and

additional L1-norm penalty

ImageNet database,

MGH-USC HCP public

database

SNR, RMSE (37)

MRI k-space to k-space

reconstruction

UNet L2 loss Knee k-space dataset,

MGH-USC HCP public

database

NMSE, PSNR,

SSIM

(36)

MRI Reconstruction with

proposed complex

convolution operations

ResNet Mean absolute error (MAE) Brain dataset, Knee dataset PSNR, SSIM (43)

MRI Reconstructing real-valued

and complex-valued MRI

data

GAN Cyclic data consistency loss IXI database, Data Science

Bowl challenge, Knee

dataset

PSNR, SSIM,

NRMSE

(44)

MRI Fast and high-quality

reconstruction by combining

various loss functions

GAN Content loss, Image domain

and frequency domain

MSE loss, Perceptual

VGG loss

MICCAI 2013 grand

challenge dataset,

Pathological MRI images

NMSE, PSNR,

SSIM

(52)

MRI Infusing motion information

into the modeling process

with deep neural networks

for enhanced dynamic MRI

reconstruction quality

Recurrent neural network

(MODRN, Motion-guided

Dynamic Reconstruction

Network)

L1 loss Private short-axis cardiac

data (21 normal subjects

and 3 dyssynchrony disease

patients)

NMSE, PSNR,

SSIM

(73)

MRI Reconstruction with both

k-space and spatial prior

knowledge integrated via

multi-supervised network

training

CNN L2 loss Private cardiac MR data MSE, PSNR,

SSIM

(74)

MRI Improving MRI

reconstruction accuracy

and computational speed

with a CS-based model

Model-based (Alternating

direction method of

multipliers algorithm)

NMSE Brain and chest MR images NMSE, PSNR,

Test time

(40)

MRI Fast and high-quality

reconstruction of clinical

accelerated multi-coil MR

data

Model-based (Variational

network, unrolling iteration)

MSE Clinical knee dataset SSIM, NRMSE (38)

MRI Deriving deep architectures

for inverse problems with

the arbitrary structure

Model-based (recursive

framework alternating

between denoising block

and data-consistency layer)

MSE Brain MR dataset from five

volunteers

PSNR, Time (75)

MRI Fast parallel MR imaging by

exploring both spatial

redundancy and multi-coil

correlations

Model-based (split Bregman

iterative algorithm)

MSE Private 2D multichannel MR

brain dataset

NMSE, PSNR,

SSIM

(76)

MRI Self-supervised deep

learning MRI reconstruction

by dividing sub-sampled

data points into two sets

with one for data

consistency and another for

loss calculation

Model-based (regularized

iterative algorithm between

data consistency and a

regularizer solved by the

variable-splitting and

quadratic relaxation method)

Normalized L1-L2 loss Knee MR data from fastMRI

initiative database

NMSE, SSIM (77)

MRI Accelerate and improve

multishot diffusion-weighted

MRI reconstruction by

combining unrolled network

with deep CNNs

Model-based and UNet

(recurrences of

model-based gradient

updates (shotlocally

low-rank) and neural

networks

L1 loss Private brain (14 scans from

8 volunteers) and breast (6

scans from 6 volunteers)

MR data

NMSE, PSNR,

SSIM

(78)

CT Using U-Net and its variants

for recovery of

high-frequency edges in

sparse-view CT in the image

domain

Dual frame and tight frame

U-Nets

Pixel-wise soft-max

combined with cross

entropy function (the original

U-net loss function)

10 patient CT scan data

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset

NMSE, PSNR,

SSIM

(56)

(Continued)
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TABLE 1 | Continued

Modality Task description Network architecture Loss function Dataset Evaluation

metrics

Reference

CT General sparse-view CT

image reconstruction

DenseNet combined with

deconvolution

Weighted loss between

MSE and MS-SSIM

3,059 clinical CT images

from the TCIA database

MSE, SSIM,

Haralick texture

features

(15)

CT CT super-resolution Modified U-net L2 loss 7,670 CT slices NRMSE, PSNR (57)

CT Low-dose CT for mapping

low-dose images to

normal-dose images; CT

image denoising

Residual encoder-decoder

CNN (RED-CNN)

MSE loss 7,015 normal-dose CT

images from the NBIA

dataset and simulated

low-dose CT images

RMSE, PSNR,

SSIM

(54)

CT CT image denoising Framelet-based wavelet

residual network

Pixel-wise soft-max

combined with cross

entropy function (the original

U-net loss function)

10 patient CT scan data

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset

RMSE, PSNR,

SSIM

(79)

CT Sparse-view CT image

reconstruction

U-net with skip connection

for residual learning

Pixel-wise soft-max

combined with cross

entropy function (the original

U-net loss function)

The 2016 AAPM Low Dose

CT Grand Challenge

Dataset, plus 500 simulated

images and 377

experimental sinograms

SNR (80)

CT CT image denoising in

low-dose CT

GAN network, consisting of

a Generator CNN and a

Discriminator CNN

binary cross-entropy, L2

loss

5 low-dose and 5

corresponding routine-dose

CT scans of a phantom,

and 28 cardiac CT scans

from patients

SNR, PSNR (81)

CT CT image denoising in

low-dose CT

GAN network with

Wasserstein distance and

perceptual loss (WGAN)

Wasserstein distance based

adversarial loss, VGG

perceptual loss

10 patient CT scan data

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset

PSNR, SSIM (82)

CT CT super-resolution GAN-CIRCLE Adversarial loss, cycle

consistency loss, identity

loss, joint sparsifying

transform loss

Micro-CT dataset from 25

tibia specimen, and the

2016 AAPM Low Dose CT

Grand Challenge Dataset

PSNR, SSIM,

IFC

(83)

CT To ensure data consistency

even in worst-case

scenario, and to guarantee

the convergence of a

non-convex CT

reconstruction problem

Specially designed method

that replaces the projector

in a projected gradient

descent with a CNN, and

uses the CNN in the

feedback loop to recursively

project the result onto the

sensor domain

Data consistency loss 500 lower-lung CT images

from the 2016 AAPM Low

Dose CT Grand Challenge

Dataset, and 377 micro-CT

slice images of a rat brain

SNR, SSIM (84)

CT CT Super-resolution Self-supervised SADIR-net

(super-resolution and deblur

based iterative

reconstruction), which is a

hybrid between deep

learning network and

imaging physics

Joint loss function

combining L2-norm with

SSIM

47 clinical CT scans from

TCIA database;

custom-acquired

Catphan700 phantom CT

sensor data

MTF, RMSE,

SSIM, IFC

(51)

PET Incorporating the neural

network into the iterative

PET reconstruction

framework for PET

denoising

UNet with residual learning Augmented Lagrangian

format, L2 loss

19 XCAT phantoms;

6 lung patient data

CR, STD (14)

PET Standard-dose PET

reconstruction from

low-dose PET

Noise-Aware Dual Res-UNet Dice loss, Binary cross

entropy loss, General and

adaptive robust loss, SSIM

loss

10 subjects referred for

whole-body FDG-18

PET/CT scan on a GE

Discovery 710 scanner

PSNR, SSIM (85)

PET Using patients’ own prior

information for PET

reconstruction

3D UNet MSE Phantom and real brain data CRC, STD (69)

PET PET reconstruction from

projections data

ANN MSE Simulated data NMSE (86)

(Continued)
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TABLE 1 | Continued

Modality Task description Network architecture Loss function Dataset Evaluation

metrics

Reference

PET Using multilayer perceptron

(MLP) to enhance MAP

reconstructed PET images

MLP with backpropagation Least squares loss PET phantom images, two

patient PET imaging

datasets

NMSE, NSD,

Contrast

(87)

PET Ultra-low-dose PET

reconstruction

ResNet L1 loss, SSIM, MS-SSIM 9 PET/MRI images from

patients with glioblastoma

(GBM)

PSNR, SSIM,

NRMSE

(66)

PET Using dilated convolutions

for recovering full-count PET

images from low-count PET

images

UNet with dilated

convolution

L1 loss 35 PET data extracted from

an IRB approved psychiatric

study

MAPE, PSNR,

SSIM

(88)

PET Reconstruction of PET

image from sinogram data

CNN VGG, MAE, MS-SSIM Whole-body PET studies:40

patients for training, 4 for

validation, and 10 for testing

SNR, Bias, MAE,

MS-SSIM

(89)

PET Anatomy-aided PET image

reconstruction

3D CNN L2 loss Simulation study: 20

XCAT51 phantoms real

patients studies: 6 hybrid

lesion patients, 6 lung

cancer patients

CR, STD (90)

PET Using a deep learning prior

for iterative PET

reconstruction

DnCNN + local linear fitting

(LLF)

L2 loss 27 control subjects and

clinical patients

Bias and

standard deviation;

NRMSE; SSIM

(68)

PET Reconstruction of PET

image from sinogram data

GAN Adversarial loss, L1 loss Simulated data of the three

phantoms using Monte

Carlo simulations, including

Zubal thorax phantom with

64Cu-ATSM, Hoffman brain

phantom with 18F-FDG and

Zubal brain phantom with

11C-Acet ate

Bias, Variance (71)

PET Reconstruction of PET

images from sinogram data

GAN MSE, Relativistic Average

LS adversarial loss

Human brain PET dataset

with nine subjects

Bias, Variance,

PSNR, SSIM

(70)

PET Low-dose PET image

denoising

CycleWGAN Adversarial loss,

Cycle-consistency loss,

Identity loss

Eighteen patients with

biopsy-proven primary lung

cancer or patients with

suspicious radiological

abnormalities

NRMSE, PSNR,

SSIM, SUVmean
and SUVmax

(72)

could be useful for training deep learning models. One is the
BIMCV-COVID-19+ (97), a large dataset from the Valencian
Region Medical Image Bank earlier in the pandemic period, and
another is the RSNA International COVID-19 Open Radiology
Database (RICORD), which is an ongoing international effort
in curating potentially the largest international COVID-19
CT dataset.

For PET, the datasets mainly include static PET (98–100)
and dynamic PET (101–104) based on data types. On the other
hand, according to the number of tracers imaged in a single
scan, the datasets can be classified as single-tracer PET (105),
dual-tracer PET (106, 107), and multi-tracer PET (108). When
it comes to the injected tracer dose level, the datasets can also
be broadly categorized as low-dose PET (L-PET) and full-dose
PET (F-PET) (65, 67, 88). Although the use of real PET data
in studies is more clinically relevant, these real data are often
difficult to obtain due to various factors. Therefore, simulated
phantom data is becoming a popular alternative in research
works (68, 88, 109, 110).

Network Architecture
The neural network architectures employed for different
tomographic imaging tasks share some similar properties. The
most frequently used architectures include multilayer perceptron
(MLP), U-Net, generative adversarial networks (GAN), ResNet,
etc. Here, we introduce these typical network architectures.

MLP
The MLP, which is an artificial neural network (ANN) with all
layers fully-connected, can map sets of input data into a set of
desired outputs. In the past decades, researchers have worked
on exploiting MLP in medical image analysis. For example,
a multilayer perceptron was proposed for accelerated parallel
MRI (111). Zhu et al. (37) proposed an MLP-based manifold
learning framework to emulate the fast-Fourier transform and
learn an end-to-end mapping between k-space data and image
domains and achieve the purpose of acceleration. For PET, MLP
was also employed for simple low-resolution PET reconstruction
(86). Furthermore, Yang et al. (87) developed an MLP-based
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framework to enhance the maximum a posteriori (MAP)
reconstructed PET images, which constructs a highly non-linear
and spatial-varying mapping between the MAP reconstructed
image patches and the corresponding enhanced image patches.

U-Net
U-net consists of an encoder structure and a decoder
structure, which was originally designed for biomedical image
segmentation (112, 113). The encoder gradually down samples
the input images to extract image features with different levels
of semantic information. The decoder receives the features from
the encoder and recovers the feature map resolution step-by-step
to generate the outputs, which are often the same size as the
inputs and can then be treated as the reconstructed images. Skip
connections between the encoder and the decoder are introduced
to improve the localization accuracy during decoding.

For MRI, Ye et al. (114) used deep residual learning to
accelerate MRI. The proposed deep residual learning network
is composed of two separately trained amplitude and phase
difference networks, which can successfully learn and remove
aliasing artifacts. Furthermore, Ye et al. also proposed a U-
Net-based domain adaptation architecture for radial k-space
undersampled MR (115), and a fully data-driven deep learning
algorithm for k-space interpolation (36). These methods have
been successfully applied to MR image reconstruction, and have
achieved better results than the classic CS method. Duan et al.
(116) proposed a fast and accurate deep learning reconstruction
method for human lung gas MRI, which consists of coarse-to-
fine nets (C-net and F-net) based on U-Net. The proposed deep
learning method can better reconstruct the human lung gas MR
images acquired from highly undersampled k-space compared
with the traditional CS-MRI. Hyun et al. (117) proposed an under
sampling MRI reconstruction method using U-Net, which shows
excellent performance and can generate high-quality MR images
with a small amount of data.

For CT, U-net and its variants have also been successfully
applied to solve various problems in CT reconstruction,
including sparse-view CT reconstruction, artifact reduction,
noise suppression, and CT super-resolution, etc. For sparse-
view CT reconstruction, which can reduce radiation dose
and accelerate scanning speed, Han et al. (56) achieved
better reconstruction performance by framing U-Net via deep
convolutional framelets. Also, for sparse-view CT reconstruction,
Kofler et al. (118) proposed a cascade of U-nets and data
consistency layers, and Zhang et al. (15) developed DD-Net by
combining DenseNet and deconvolution and arranging them in a
network topology similar to U-Net. For the purpose of CT artifact
reduction, Zhang et al. (55) tried U-net and found promising
results of U-net in reducing global and local CT artifacts. To
reduce noise in low-dose CT images, Liu et al. (119) adopted
stacked denoising autoencoders to suppress noise and recover
structure details. For CT super-resolution, Park et al. (57) used
a modified U-net to learn an end-to-end mapping between low-
resolution and high-resolution CT images.

For PET, U-net is also a commonly used framework in many
PET reconstruction works (14, 69, 86, 120–122). Gong et al. (14)
designed an iterative reconstruction framework that combines

the U-net structure and the residual network for PET denoising
by utilizing dynamic data of prior patients. Taking the noise level
of low-count PET into account, Xiang et al. (85) developed a
noise-aware dual Res-UNet (NADRU) framework for low-dose
PET reconstruction. The proposed method first identified an
attention map indicating the location of high-intensity noise
in the low-dose PET images. Then, the noise attention map
was incorporated with the original image for high-quality PET
reconstruction. In addition to reconstructing high-quality images
within PET, many efforts have also beenmade to reconstruct PET
from other modalities. For example, Sikka et al. (121) adopted
a 3D U-Net architecture to estimate PET from MRI images. By
considering non-local and non-linear correlations, the proposed
method showed a significant improvement in the diagnostic
accuracy of Alzheimer’s disease. Employing a modified 3D U-net
as the network structure, Gong et al. (69) designed an iterative
reconstruction framework that incorporates the personalized
deep neural network to generate PET data from a patient’s
own MRI prior image(s). Furthermore, Cui et al. (122) utilized
CT/MR prior information to perform PET denoising based on a
modified 3D U-net structure in an unsupervised manner.

ResNet
ResNet is proposed to solve the difficulty of training very deep
CNNs and avoid model performance degradation (123). The core
idea of ResNet lies in residual learning, which is based on the
assumption that it is easier to optimize the residual mapping than
to optimize the original and unreferenced mapping (123). With
the success of residual learning, the ResNet has also been widely
used in medical image reconstruction.

For MRI, Shi et al. (124, 125) proposed a residual-learning-
based MR image super-resolution reconstruction network. The
network can improve image reconstruction performance using
both global residual learning (GRL) and local residual learning
(LRL). Wang et al. (43) proposed a new framework Deepcomplex
MRI using a deep residual CNN for parallel imaging. It considers
the correlation between the real and imaginary parts of MR
complex images and achieved better results than real-value
networks. Li et al. (126) designed a deep ResNet using variable
density spiral trajectory to accelerate fMRI reconstruction. The
proposed deep ResNet consists of various residual blocks.
Du et al. (127) proposed a residual CNN for reconstructing
single anisotropic 3D MR images based on residual learning.
The residual CNN with long and short skip connections
can effectively recover uncollected high-frequency details of
MR images.

For CT, ResNet or more generally residual learning has
also been demonstrated its effectiveness in CT reconstruction,
particularly in noise suppression and artifact reduction. Chen
et al. (128) developed a residual encoder-decoder CNN (RED-
CNN) for low-dose CT. RED-CNN combines autoencoder,
deconvolution network, and shortcut connections. It can
effectively suppress noise, preserve structure details, and
enhance lesion detection. For CT image denoising, Kang
et al. (79) proposed a wavelet residual network based on a
deep convolutional framelet and achieved better performance
compared to their earlier algorithm using directional deep
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convolutional-wavelet neural network (53). To reduce the sparse-
view CT artifact, Dong et al. (129) proposed a residual deep
learning CNN to interpolate the sinogram of sparse-view micro-
CT, and the deep learning interpolated sinogram was FBP-
reconstructed into high-quality images. Also for sparse-view CT,
Jin et al. (81) proposed FBPConvNet, which first reconstructs
sparse-view CT sinogram with FBP and then improves the FBP-
reconstructed image using a modified U-net with the addition of
residual learning.

For PET, residual learning is also employed in the
reconstruction task. In order to effectively restore the low-
dose PET images to the standard-dose quality, Xu et al. (66)
proposed an encoder-decoder residual deep network, in which
residual learning and skip connections were adopted for learning
the difference between standard-dose and low-dose PET images.
Similarly, Spuhler et al. (88) designed a novel multiscale dilated
CNN approach to predict full-count PET images from low-count
images. The proposed method integrated the residual learning to
capture the difference of low-count and full-count PET images
and enhance the convergence of the network. The experiments
of these studies showed that residual learning was beneficial
for high-quality PET reconstruction. Moreover, in Chen et al.
(54), a deep learning-based framework with low-count PET and
multimodal MRI as inputs was presented for diagnostic-quality
PET image synthesis through residual learning.

GAN
GAN (130), as one of the most popular generative models in deep
learning, has demonstrated its superior performance in many
computer vision tasks and attracted growing interest in medical
image reconstruction.

For MRI, Yang et al. (52) proposed De-Aliasing GAN
(DAGAN) for fast compressed sensing MRI reconstruction. The
authors designed a refinement learningmethod to stabilize the U-
Net-based generator. In order to better preserve texture and edge
information, DAGAN combines adversarial loss and innovative
content loss in the image reconstruction process and takes
into account the frequency information at the same time. The
reconstruction result of DAGAN is better than the traditional CS-
MRI algorithm. Quan et al. (44) proposed an improved model,
RefineGAN, based on fully residual convolutional autoencoder
and GANs for fast and accurate CS-MRI reconstruction. It
can perform faithful interpolation for a given undersampled k-
space data by employing a deeper generator and discriminator
with cyclic data consistency loss. RefineGAN outperforms the
state-of-the-art CS-MRI reconstruction algorithms in terms of
both image quality and running time. Mardani et al. (131)
proposed a novel CS framework based on LSGAN and pixel-
wised l1/l2 loss forMRI reconstruction, namely GANCS. GANCS
can reconstruct higher quality images with improved fine texture
details compared to existing methods.

For CT, Wolterink et al. (81) used a GAN network that
consists of a Generator CNN and a Discriminator CNN to
reduce the noise level in CT images. They produced better
images for more accurate coronary calcium quantification.
Similarly, for the purpose of image denoising in low-dose CT,
Yang et al. (82) modified the original GAN network by using

the Wasserstein distance, instead of the Jensen-Shannon (JS)
divergence, to compare data distributions. The Wasserstein
distance is combined with the well-known pre-trained VGG-19
network (132) to build a joint loss function. This modified GAN
network also achieved promising results in image denoising.
For the purpose of CT super-resolution, You et al. (83)
developed a GAN network constrained by the identical, residual,
and cycle learning ensemble (GAN-CIRCLE). GAN-CIRCLE
incorporates deep CNN, residual learning, and network-in-
network techniques for feature extraction and restoration, and
employed a cycle Wasserstein regression adversarial training
framework. It is noted that many GAN networks also employed
the technique of residual learning in their architectures.

For PET, Liu et al. (71) employed a conditional GAN
(cGAN) framework to learn the mapping from sinogram data
to reconstructed PET images directly. Inspired by the promising
results achieved by cGAN, the authors further presented an
end-to-end model for PET reconstruction, which adopts two
coupled networks to sequentially denoise low dose sinogram and
reconstruct activity map (70). Zhou et al. (72) designed a cycle
Wasserstein regression adversarial model (CycleWGAN) using
Wasserstein distance, instead of JS divergence and cycle-loss, to
boost the low-dose PET image quality, which shows the superior
performance of Wasserstein distance in effectively preserving the
edge information. To reduce the loss of contextual information,
Wang et al. (133) developed a concatenated 3D cGAN for high-
quality PET image estimation from low count PET. Considering
the various contributions of different image locations and the
complementary information in different modalities, they further
proposed an auto-context-based locality adaptive GANs (LA-
GANs) (67) model to reconstruct the full count PET image from
both the low count PET and the accompanying multimodal
MRI images. Besides, many other works also attempted to
reconstruct PET images from other modality information in
consideration of the expensive cost of PET imaging and the
hazards of radiation exposure. Ben-Cohen et al. (134) proposed
to generate simulated PET images from given CT data without
manually annotated labels. They first adopted FCN to generate
an initial PET-like image and then employed cGAN to refine
the FCN output so that the synthesized image could be more
realistic. Based on 3D GAN, Yaakub et al. (135) designed a two-
stage approach to predict accurate PET images from T1-weighted
MRI scans. It is worth noting that many GAN-based models
have also introduced residual learning to further improve the
reconstruction performance (136, 137).

Modality-Specific Module Design
To improve the reconstruction accuracy or enhance the reliability
of the reconstruction results, special network modules are usually
designed taking the specific properties of different imaging
modalities into consideration.

For MRI, in addition to modules utilized by every model,
including the convolutional layers, the normalization layers, and
the activation layers, there is commonly a data consistency layer
to guarantee that the data on scanned points are correct (138).
According to the data acquisition process of MRI, undersampling
happens in the k-space by neglecting a certain portion of data
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points. Therefore, theoretically, on the scanned data points, the
reconstruction results should be consistent with the acquisitions.
With the data consistency layer, the reconstruction is forced to
be correct on these sampling points and the reconstruction of
unscanned data points is accordingly improved. Besides, because
the data acquisition of MRI proceeds in a different domain (k-
space) from the image domain, reconstruction can be performed
in individual domains (38, 139) or cross-domains (74, 140).
Furthermore, complex-valued neural networks are proposed to
specifically process the complex-valued MR data (43, 141, 142).

For CT, although the reconstruction results from most
reported deep learning algorithms are so far remarkable in
terms of image quality, there is still some concern about
whether those reconstruction results can be trusted, especially
in real-world applications of diagnostic imaging. One main
limitation of those deep learning algorithms is that they seldom
provide guarantees in the worst-case scenario. To address this
limitation, Gupta et al. (84) proposed a specially designed CT
image reconstruction method that replaces the projector in a
projected gradient descent with a CNN and uses the CNN
in the feedback loop to recursively project the result onto
the sensor domain. This reconstruction method can enforce
measurement consistency, is guaranteed to converge, and, under
certain conditions, converges to a local minimum of a non-
convex inverse problem. On the other hand, while iterative
CT reconstruction can yield high-quality images, careful tuning
of hyper-parameters in these iterative reconstruction problems
is inevitable. To achieve automatic parameter tuning, Shen
et al. (143) employed deep reinforcement learning to train a
system that can automatically adjust parameters in a human-
like manner, and demonstrated that CT images reconstructed
from their approach attain quality similar or better than those
reconstructed with manually tuned parameters.

For PET, some studies have incorporated specially designed
modules to improve the PET image quality. For instance,
taking the location-varying contributions from different imaging
modalities into account, Wang et al. (67) proposed a locality
adaptive fusion module to automatically fuse local patches
from multimodal MRI for high-quality PET image synthesis. In
Samuel Matej et al. (58), the authors devised a novel Radon
inversion layer to address the computational challenges in
multi-slice PET image reconstruction. This specially designed
layer was demonstrated to be efficient in performing domain
transformation from sinogram to image space. Moreover, to
encourage feature reuse and prevent resolution degradation, Du
et al. (144) designed residual dense connections followed with
pixel shuffle operations (RDPS blocks) in the generator network,
achieving promising reconstruction results.

Loss Function
As the task is to restore the quality of the output images in all
locations, for the fully supervised learning, the most frequently
used loss for the network training is the mean squared error
(MSE) between the network prediction and the ground truth.
MSE is also known as the L2 loss. Based on MSE, there are
also some extended loss functions such as root mean squared

errors (RMSE), normalized mean squared errors (NMSE), and
normalized root mean squared errors (NRMSE).

There are alternative losses, such as the mean-absolute-error
cost function (MAE), which is also known as the L1 loss.
Compared with MSE, MAE is used relatively less, but there are
still studies showing that using MAE can preserve better results
than MSE.

One common choice of loss function for reconstruction
problem is L2, but the reconstructed image obtained is of low
quality and lacks high-frequency detail. Therefore, in order to
offset the shortcoming of L2 loss, structural similarity index
(SSIM), signal to noise ratio (SNR), peak SNR (PSNR), or
perceptual loss is used as an additional loss to constrain the
prediction results in some literatures. These additional loss
functions or the combined loss between them have been shown
to improve the reconstruction performance of the model.

Modality-Specific Loss
In MRI, there are also specially designed losses. In Quan
et al. (44), the authors proposed a cyclic data consistency loss,
which combines the undersampled frequency loss and the fully
reconstructed image loss. In practice, MSE, MAE or other
functions can be used as the basic function to achieve cyclic loss.
Some studies (52) combine MSE and perceptual loss to form a
novel content loss to achieve better reconstruction details. There
are also studies that combine MAE with perceptual loss (145), or
MSE with TV loss (146), for MR image reconstruction.

In CT, Yang et al. (84) employed for their modified GAN
network a joint loss function that combines the Wasserstein
distance-based adversarial loss with the well-known pre-trained
VGG−19 loss (134). Those two loss terms in the joint loss
function are balanced with a hyperparameter to control the trade-
off between the GAN adversarial loss and the VGG perceptual
loss. When comparing the performance of a modularized deep
neural network to commercial algorithms for low-dose CT image
reconstruction, Shan et al. (147) chose a composite loss function
that includes three components: adversarial loss, MSE, and edge
incoherence. The adversarial loss is used to train the generator in
their GAN network to produce images as close to the reference
high-dose images as possible, the MSE is used to reduce image
noise, and the edge incoherence is used to enhance the edge
information in the denoised image.

In PET, Kim et al. (68) proposed a novel 3D local linear
fitting (LLF) function and incorporated it into the cost function,
combining the input image with the DnCNN correcting the
unwanted bias and finally enhance the image quality. Similarly,
Ouyang et al. (105) designed a GANmodel with feature matching
technique and task-specific perceptual loss to ensure that the
synthesized standard-dose amyloid PET images include the
correct features.

Requirement for Network Training
The fundamental parameter learning schemes are back-
propagation algorithms. Adam optimization with variable
parameter momentum is often used in neural network
optimization. As for hardware, the graphics card for deep
learning network training is essential. According to the literature
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we searched and referenced, the types of graphics cards generally
used are NVIDIA K80, NVIDIA K40c, GTX 1080Ti, RTX 2080,
RTX 2080Ti, Titan X, Titan Xp, Titan V, etc. As for software,
TensorFlow, PyTorch, Keras, Caffe, etc. are several commonly-
used DNN training frameworks. In addition, Matlab is also used
to process data or perform tests in some studies. The system used
is generally a Linux system.

CLINICAL APPLICATIONS AND CURRENT
ACHIEVEMENTS

Deep learning-based medical imaging techniques have played
more and more important roles in today’s clinical applications,
and have achieved significant progress in solving various major
pain points in different imaging modalities.

MRI
For MRI, it has superior soft-tissue contrast and it is radiation-
free. However, the major limitation of MRI is its slow acquisition
speed. Although lots of acceleration strategies were proposed
in the literature, such as parallel imaging and compressed
sensing, they have their own limitations such as amplification
of Gibbs artifacts and long iterative reconstruction time. Deep
learning-based techniques offer a feasible solution to robustly
and efficiently reconstruct the MRI images from subsampled K-
space data even under high down sampling factors. Moreover,
deep learning-based reconstruction techniques can be integrated
with conventional acceleration techniques to reach even
higher reconstruction quality. For instance, the AI-assisted
compressed sensing (ACS) technique developed by United
Imaging Intelligence (UII) and United Imaging Healthcare
(UIH) integrates the advantages of four acceleration techniques,
i.e., (1) deep learning-based reconstruction, (2) partial Fourier
transform, (3) parallel imaging, and (4) compressed sensing, into
a unified framework, and achieves great success in real-world
clinical applications for fast MRI imaging. ACS is able to reduce
around 80% scan time on average for most of the FSE sequences,
and it supports the scan of different body parts such as head,
cervical spine, lumbar spine, hip, pelvis, ankle, and knee. For each
body part, ACS normally can achieve a scan time of fewer than
100 s for all the sequences as shown in Figure 1.

ACS has received FDA 510K clearance and has also been
deployed in different hospitals. Another example is the SubtleMR
techniques developed by Subtle Medical, which also adopts deep
learning-based techniques for fast MR imaging and received FDA
510K clearance. SubtleMR is able to reduce around 60% scan
time and has also been deployed in many hospitals and applied
in real-world clinical workflow in the US.

CT
For modalities of CT (as well as PET as introduced below), the
radiation dose delivered to the patient must be strictly controlled,
because radiation is harmful to the patient and an excessive dose
may lead to the result of secondary cancer. However, a lower dose
normally leads to inferior image quality, and it may affect the
diagnosis accuracy. Therefore, how to obtain high-quality images

under the low-dose condition for CT is essential in real world
clinical applications.

Deep learning-based denoising techniques provide a good
solution to obtain high-quality CT images under low-dose
conditions. The basic principle is to train a deep learning network
that learns the mapping between the low dose CT image and
the corresponding standard-dose CT image. Once the network
is trained, the image quality can be significantly improved by
passing the low dose CT image through the network. This
strategy has been adopted by many industries and turned into
products in real world applications. For instance, the DELTA
(i.e., DEep Learning Trained Algorithms), a deep learning-based
denoising technique developed by UII and UIH, can reduce the
dose up to 80% while the low contrast detectability (LCD) of CT
images can be improved up to 157%; some typical examples are
shown in Figure 2. Canon developed the Advanced intelligent
Clear-IQ Engine (AiCE) which can reduce the noise and boost
signal in CT images based on deep learning. GE developed the
TrueFidelity CT imaging platform, which adopts deep learning-
based techniques to improve the image quality of low-dose
CT images. DELTA, AiCE, and TrueFidelity all received FDA
510K clearance.

PET
For PET, besides the concern of dose, another pain point is the
relatively longer imaging time than other image modalities such
as CT and DR, and some patients such as children and patients
with bone cancer may not be able to hold their positions during
the imaging process. Therefore, how to obtain high-quality
images under low-dose conditions and how to accelerate the
imaging is essential for real-world clinical applications of PET.

So far, various deep learning-based techniques have been
applied to accelerate the acquisition speed of PET imaging and
also maintain the high quality of PET images. For instance,
the HYPER DLR (Deep-Learning Reconstruction) product
developed by UII and UIH can significantly reduce the scanning
time of PET imaging from 3min/bed to< 1min/bed. In addition,
it can effectively reduce the noise level of PET images under low
count rate conditions and significantly improve image quality.
Specifically, the SNR (Signal-to-Noise Ratios) of PET images
can be improved by 42% with an accelerated imaging speed.
Figure 3 shows some typical examples of HYPERDLR. Similarly,
Subtle Medical developed the SubtlePET product which also
adopts deep learning-based techniques and can denoise the low-
count PET images obtained in 25% of the original scan duration,
improving patient comfort during PET scans. Both HYPER DLR
and SubtlePET received FDA 510K clearance.

PET-MRI
In some applications, cross-modality synthesis techniques are
also required. For instance, the PET-MR imaging equipment
normally needs to synthesize the CT image from the acquired
MR image in order to perform attenuation correction (AC) for
the PET image (148). This process is illustrated in Figure 4.

There are lots of synthesis strategies. The most simple and
straightforward strategy is to segment the MR image into several
tissue types and fill the corresponding regions with fixed CT HU
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FIGURE 1 | (A) The principle of ACS. It integrates the advantages of different acceleration techniques such as deep learning-based reconstruction, parallel imaging,

and compressed sensing. (B) ACS normally can achieve great scan speed (i.e., <100 s) for different body parts and sequences.

FIGURE 2 | (A) The low dose abdominal CT image. (B) The resulting image after applying DELTA to the low dose image in (A). (C) The corresponding standard dose

abdominal CT image.

FIGURE 3 | Typical examples of the HYPER DLR PET denoising product

developed by UII and UIH. The first row shows PET images obtained by using

different acquisition times per bed without HYPER DLR, where the image

quality degrades significantly when fast acquisition time. The second row

shows the resulting images by applying the HYPER DLR technique, where

obvious image quality improvement can be observed.

values. This strategy has been widely adopted in many companies
such as Siemens and GE. With the aid of deep learning-based
cross-modality synthesis techniques, it is possible to obtain
more precise synthesized CT images from the MR images with
unsupervised learning techniques and therefore to produce more
accurate AC operation. For instance, UII and UIH proposed
an unsupervised deep learning-based technique (149) that can
effectively synthesize the CT images from the MR sequences.
Typical examples are shown in Figure 5.

CHALLENGES AND OPPORTUNITIES

The success of deep learning-based methods on image
reconstruction for medical imaging has been extensively
validated. However, the wide applications in clinical practices
are not yet realized. One key limiting issue is the model
interpretability. Due to the nature of DNN, the entire non-linear
mapping process is a “black box,” meaning that no direct physical
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FIGURE 4 | The process of PET-MR attenuation correction, where a synthetic CT image is obtained from the MR image to help the attenuation correction of PET

image.

FIGURE 5 | Typical examples of synthesizing CT images from a whole body MR image with deep learning-based techniques. For more details, please refer to Ge

et al. (149).

or theoretical mechanism is provided to explain how the inputs
are transformed to the outputs (150). Consequently, deep
learning reconstruction models find difficulties to get accepted
by clinicians. Recently, enhancing model interpretability
through building interpretable neural networks or utilizing
various visualization techniques becomes a hot topic in deep
learning-based natural image analysis (151–154). Similarly, more
efforts should be devoted to building both interpretable and
high-performance deep learning reconstruction models.

Another challenge is the generalization capability of deep
learning-based methods. It is known that deep learning is a
data-driven method, and the performance of deep learning
models depends heavily on the training data (25, 26, 155).
Thus, constructing a comprehensive training dataset is critical.
Different from natural images, the distributions of medical

images can be quite different if different scanning protocols or
scanning machines are utilized. Moreover, due to ethical issues,
building large medical image datasets by collecting images from
different resources is difficult. As a result, the performance of
most existing deep learning models might be over-claimed, and
a performance drop can be observed when applying the reported
models to the data of end-users. Building robust models that can
maintain performance during implementation is important to
promote wide applications.

At the same time, the increasing demand for automated
image analysis in the clinic to help achieve efficient and accurate
imaging-based diagnosis and decision making is providing
various opportunities for the introduction of deep learning-based
methods. With the rapid development of computing power and
optimization of deep learning models, deep learning is expected
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to play a significant role in achieving fast, portable, safe, and
cheap medical imaging. For instance, the transformer (156)
framework proposed in 2017 for NLP has demonstrated inspiring
performance in capturing global information and has also shown
great potential for applications in many image processing tasks
recently. The development of the transformer also provides
opportunities for the enhancement of current medical imaging
models. Besides, multi-modal imaging and autonomous imaging
are also promising directions for future studies.

CONCLUSION

Deep learning has presented inspiring performances in image
reconstruction for different medical imaging modalities,
including MRI, CT, and PET. In this review paper, we focus
on the applications in MRI, CT, and PET. A detailed survey is
conducted in the following aspects and sequence: the overall
deep learning reconstruction workflow, the technological
development of deep learning reconstruction, the clinical
applications and current achievements, and a discussion of the
challenges and opportunities. In summary, deep learning-based
medical image reconstruction presents a great potential to
promote a wide spectrum of applications in the clinic, if the
remaining issues, such as interpretability and generalizability,
can be properly addressed in the future.
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