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With the increased reliance on medical imaging, Deep convolutional neural
networks (CNNs) have become an essential tool in the medical imaging-based
computer-aided diagnostic pipelines. However, training accurate and reliable
classification models often require large fine-grained annotated datasets. To
alleviate this, weakly-supervised methods can be used to obtain local
information such as region of interest from global labels. This work proposes a
weakly-supervised pipeline to extract Relevance Maps of medical images from
pre-trained 3D classification models using localized perturbations. The
extracted Relevance Map describes a given region’s importance to the
classification model and produces the segmentation for the region.
Furthermore, we propose a novel optimal perturbation generation method that
exploits 3D superpixels to find the most relevant area for a given classification
using U-net architecture. This model is trained with perturbation loss, which
maximizes the difference between unperturbed and perturbed predictions. We
validated the effectiveness of our methodology by applying it to the
segmentation of Glioma brain tumours in MRI scans using only classification
labels for glioma type. The proposed method outperforms existing methods in
both Dice Similarity Coefficient for segmentation and resolution for visualizations.
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1. Introduction

With the increased usage of medical imaging such as Magnetic Resonance Imaging

(MRI) in diagnostic procedures, demand for deep learning-based computer-aided

diagnosis systems has also expanded to alleviate the pressure from radiologists. These

systems have shown great success and can fast-track examinations of potential

malignant cases to provide patients with better care. However, training accurate and

reliable deep convolutional neural networks (CNNs) requires large fine-grain

annotated datasets (e.g., manual tumour annotation). Nevertheless, such datasets are

not widely available mainly because manual annotation is prohibitively expensive.
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This opens the opportunity to explore weakly-supervised

solutions where using weak labels (e.g., global classification),

fine-grain information such as region of interest (ROI)

segmentation can be obtained. Methods such as attention

networks (1) have been proposed as potential solutions. Nie

D. et al. proposed an attention-based, semi-supervised deep

network for medical image segmentation by incorporating a

CNN to produce confidence maps using adversarial learning

(1). The authors then used the trained CNN model to

incorporate unlabeled images to produce segmentations.

However, such solutions require retraining with modified

network architectures. This would not be practical in a

clinically deployed setting where retraining is not feasible due

to limitations such as using models pre-trained on

propitiatory data from external institutions. Another group of

commonly used methodologies is based on Class Activation

Maps (CAM) (2). These methods use the idea of projecting

back the weights of the output layer on the last convolutional

feature map. However, due to obtaining the feature map from

the last convolutional layer, these methods struggle with 3D

CNN architectures as they produce low-resolution outputs.

This highlights the need for a weakly supervised post-hoc

solution to the 3D medical image segmentation problem.

This work proposes the classification Relevance Map, a

model-agnostic weakly-supervised segmentation method that

generates the ROI for an input image based on a novel

optimal perturbation on superpixels. Furthermore, we show

that this method can also be used as an effective post-hoc

visualization tool for 3D CNN architectures to improve

interpretability for clinical usage by generating detailed ROI.

Finally, we apply the proposed method to the brain tumour

segmentation task. Our main contributions are summarized as

follows:

• Relevance Map, a Post-hoc explainability algorithm to

generate segmentations using perturbation.

• Optimal Perturbation: a method that generates the most

effective perturbation given a segmented region of an image.

2. Background

2.1. Brain tumours

Brain tumours are a collection of neoplasms that are

abnormal tissue developed when cells grow and divide in the

brain (3). These neoplasms are also referred to as intracranial

neoplasms as they have their own specific biology, prognosis

and treatment plans. Brain tumours can be benign (not

cancer) or malignant (cancer), and they can have a significant

effect on the patient’s quality of life (4, 5). Issues can be both

general, such as headache, anorexia, nausea, seizures and

insomnia. It can also cause secondary issues due to
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neurological deterioration, such as personality changes,

cognitive deficits and visual field defects (6).

Glioma tumours are the most commonly occurring brain

tumour type (5). World Health Organization (WHO) has

categorized these tumours into four grades (7). Grade I and II

belong to the low grade, and grades III and IV are considered

high grades. Grade I tumours are least likely to be malignant

and possibly curable through surgery. They are also slow-

growing and give long-term survival to the patient. Grade II

tumours are relatively slow-growing but may recur as high

grade, and they are somewhat infiltrative. Grade III is

malignant and infiltrative and may grow to be upgraded to

grade IV. Finally, grade IV is the most malignant and

aggressive. Each type can then be broken down into more

subtypes depending on other factors. These categorizations

help to determine the proper care for the patient.

2.1.1. Imaging for tumours and radiology
pipeline

As the first step, patients will be assigned a type of imaging.

The capabilities of each imaging type vary. However, Magnetic

Renascence Imaging (MRI) has become the go-to approach for

brain tumour evaluation. In this section, we will briefly

introduce a typical workflow for diagnosing a patient with a

brain tumour. Once the images are captured, they are sent to

a neuroradiologist. Neuroradiologists examine and evaluate

the captured images of the spine, head, neck and nervous

system. They usually compare different MRI sequences, decide

on a tumour catagory and recommend further analysis, such

as a biopsy. They also utilize Computer-Aided Diagnostic

(CAD) systems. CAD systems allow for more efficient and

accurate diagnosis. Modern CADs are responsible for image

pre-processing, segmentation, feature extraction and

classification. These systems are powered by traditional

machine learning and deep learning approaches (8). AI for

radiology looks to improve these systems. Segmentation of

tumour regions plays a key role in improving these methods.

For example, radiomics relies on obtaining features within the

tumour. However, the current process of segmentation

generation involves a large amount of human expert

involvement. As most learning methods require expert

annotation, a radiologist would be required to mark the

region of interest for a given MRI scan. This takes valuable

time away from a radiologist and also limits the data available

for training such systems as the process is costly. In this

work, we focus on this problem, can we generate ROI

segmentations without needing expert annotations for deep

learning methods?

2.1.2. Brain tumour classification and
segmentation

Classification and segmentation have been key interests in

the field of AI for medical imaging. Accurate and fast
frontiersin.org
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classification of tumours allows for better care for the patient

(9). Segmentation of the tumour’s region of interest (ROI) is

often performed before the classification. This allows the

model to learn features specifically within the tumour leading

to better classifications. Furthermore, once segmented, these

ROI regions can be used to accomplish much harder

classification tasks such as patient survival predictions or O6-

Methylguanine-DNA Methyltransferase (MGMT) promoter

methylation status classifiers (10, 11).

In this work, we focus on Glioma tumours. With the

introduction of the Multimodal Brain Tumor Segmentation

Challenge (BraTs) (12–15), several successful methods have been

proposed for the classification of HGGs vs. LGGs (16, 17).

However, most of these methods rely on tumour (ROI)

segmentation before classifying or pre-identifying a 2D slice with

tumour ROI present, requiring fine-grain expert annotations.

Rehman A. et al. proposed the use of 3D CNN to segment the

tumour, followed by a VGG19 classification model trained on the

segmented ROI. This method achieved an accuracy of 98.32%,

96.97%, and 92.67% in BraTs 2015, 2017 and 2018 datasets (18),

respectively. Haq E. et al. proposed a 2D CNN classifier on pre-

selected slices utilizing a region proposal network (RPN) (19).

This method achieved an accuracy of 96.5% on the BraTS 2018

dataset. Some direct 3D CNN-based classification approaches

have been proposed to classify tumours using the whole volume,

relying only on global labels. Shahzadi I. et al. proposed a CNN-

LSTM cascade network to classify 3D brain MRI for LGG and

HGG tumours (20). On BraTs 2015 dataset, they achieved a

classification accuracy of 84%. Mzoughi H. et al. proposed using

a Deep CNN model with a pre-processing pipeline and achieved

a classification accuracy of 96.5% on the BraTs 2018 dataset (21).

Most direct 3D volume classifications lag on performance

achieved by pre-segmentation methods and are limited to simple

classifications given missing ROI. This highlights the critical role

pre-segmentation plays in classification tasks. This work applies

our proposed method to generate ROIs from 3D CNN-based

full-volume classification models.
2.2. Weakly supervised models

Weak supervision can be defined as a model trained with

only a subset of information. They can be broken into two

categories, ones that require partial annotations such as seed

points or bounding boxes and ones with only global-level

global classification labels. Weakly supervised methods have

been implemented on various medical imaging-related

problems. Gama P. et al. proposed few-shot semantic

segmentation with sparse labelled images for chest X-ray lung

segmentation (22). Roth H. et al. proposed an inexact

supervision-based method for segmentation of 3D CT scans of

abdominal organs by first generating a point of interest with a

random walker algorithm (23). This method achieved
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comparable DSC scores against a fully supervised deep-learning

approach. On the spleen segmentation task, the best

performing weakly supervised method achieved a 0.948 DSC

score vs 0.958 DSC score for the fully supervised. This

motivates us to achieve comparable results with fully supervised

methods. Weakly supervised methods have also been used in

many tasks within deep learning. Kolenikov et al. proposed

seed expansion as a deep learning technique for image

segmentation (24). This method reduced the need for extensive

human labelling by using only seed labels. It achieved an

average detection precision of 0.47 compared to the 0.50 fully

supervised method. Methods that utilize only global level labels

commonly use Class Activation Map (CAM) based approaches

(25, 26). However the methods are mainly focused on 2D images.
2.3. Occlusion analysis

Occlusion analysis refers to where input is occluded to

observe a change in the model’s output. These changes can

then be used to construct heatmaps to identify regions of

interest. Similarly, in deep learning, perturbation refers to

manipulating inputs to extract information from the model or

mislead them. Eykholt et al. highlighted the effectiveness of

perturbations by manipulating physical objects that are

commonly used for guiding self-driving cars (27). For example,

the authors showed adding black and white stickers to road

stop signs would lead the model to misclassify them as speed

limit signs. Therefore, the model has learned black and white

stripes are associated with speed limit signs. Similarly, Szegedy

C. et al. showed that generalized deep learning models could be

misled by adding hardly any visual perturbation, such as noise,

to the input image (28). These works highlight using

perturbation as a method to extract information. The local

Interpretable Model-Agnostic Explanations (LIME) technique

was proposed to use localized perturbations as a model-

agnostic method for extracting regions of interest to the

classification model (29). It attempts to increase model

interpretability by evaluating the model’s confidence when

images are perturbed. In this method, For n iterations, a set of

superpixels would be selected and perturbed to assess its effect.

Each superpixel group would then be assigned a score

depending on the classification confidence change. Using these

scores, a secondary classification model is trained to determine

if the selected superpixel significantly affects the classification.

This method was applied to a wide array of applications given

its model-agnostic approach (30–32). Most applications are

evaluated using qualitative analysis on its ability to highlight

ROI. Randomized Input Sampling for Explanation (RISE)

further improved this work by introducing randomized, global

masking to calculate region relevancy to a classification by

removing the localized superpixel borders (33). RISE would

generate n random masks to perturb the model and assign
frontiersin.org
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each mask with a score depending on the change in classification

confidence. Once all n masks are summed together, the region of

interest has the highest score. Both of these works showed high

adaptability as they are model-agnostic and can be easily used

on any pre-trained model. Yu L. et al. utilized RISE to generate

explanations for Alzheimer’s disease diagnosis model (34).
2.4. Superpixels

Superpixels are groupings of perceptually similar pixels to

create a meaningful image with fewer primitive elements for

processing. The term coined by Ren and Malik in Learning a

Classification Model for Segmentation set out to solve the

problem that as pixels are not natural entities, they are

meaningless as representations of images (35). Superpixels have

been used to segment medical images as they capture similar

subregions in images such as tumours (36, 37). Simple Linear

Iterative Clustering (SLIC) (38) propose generating superpixels by

clustering pixels based on their colour similarity and proximity in

the image. Using a five-dimensional space consisting of colour,

either LAB or RGB and the x and y coordinates, the authors

propose using a distance measure that accounts for the difference

within the 5D space. The proposed algorithm would then

initialize the cluster centers in the given image and repeat until

all clusters have achieved the best match pixels according to the

distance measure. This method achieved a complexity of O(N)

where N is the number of pixels. This method has been widely

used for its efficient and accurate representation of the groupings.
3. Methods and material

3.1. Dataset

The Multimodal Brain Tumor Segmentation Challenge 2020

dataset was used as our dataset (12–15). 3D volumes of T1-

weighted (T1w), T1-weighted with contrast enhancement

(T1wCE), T2-weighted (T2w) and FLAIR sequences were
FIGURE 1

Proposed method pipeline. We divide our method into three main compon
generation.
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available for each patient, along with tumour segmentation and

type (HGG or LGG) (Figure 3.1). Three hundred sixty-seven

scans were available in the dataset, with 263 being HGG class

and the remaining being LGG. Only 190 3D scans (training: 133,

validation: 19, test: 38) were randomly selected to maintain a

60% HGG and 40% LGG tumour ratio to balance the training

classes. Each sequence was independently normalized using min-

max normalization, and the center cropped to 128� 128� 128

volumes.
3.2. Method

As shown in Figure 1, our method is comprised of three

main components:

1. Generate a superpixel map for a given input.

2. Iterate through the superpixels to create a perturbed input to

the pre-trained CNN model.

3. Measure the trained CNN probability difference for each

perturbed input compared to that of the original image to

generate the Relevance Map.

We have selected a 3D Resnet 50 (39) model as our baseline

classification architecture to evaluate the proposed method. We

selected Resnet 50 as it represents a commonly used

classification model in our field. The model was trained on all

four sequences (T1w, T1wCE, T2w, FLAIR) with a shape of

4� 128� 128� 128 pixels as input with a learning rate of

0.01 and the Adam optimizer (40) for 100 epochs using

binary cross-entropy as the loss function. The trained model

at epoch 81 was selected for evaluation as it achieved the

highest validation AUC with 0.86. The model achieved an

area under the ROC curve of 0.83 on the test set.
3.3. Superpixel segmentation

As shown in Figure 2, for 3D superpixel generation, Simple

Linear Iterative Clustering (SLIC) was used (38, 41). We
ents: 1. Superpixel Generation, 2. Perturbation, and 3. Relevance Map
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FIGURE 2

Superpixel generation step. 3D MRI volumes are processed using SLIC algorithm to generate 3D superpixel groupings.
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conducted a grid search using validation data as part of the

experimentation to determine the best parameters for

sequence type for superpixel generation and the number of

superpixels. Figure 3 shows that the number of superpixels

and the sequence type plays a critical role in selecting a

region of interest. The best set of parameters was selected

based on the Sørensen–Dice coefficient score achieved on

tumour segmentation with the best superpixel grouping,

where we selected the best performing threshold level. Our

grid search for superpixel parameters conducted on the

validation set showed that 100 superpixels generated on the

T2w sequence yielded the best results.
3.4. Perturbation

The perturbation of input is applied to the superpixel map

generated in the first step. As a baseline, we first introduce three

naive perturbation methods:

1. Blank perturbation, turn off all pixels in a given superpixel

by replacing its intensity value with zero.

2. Max perturbation sets a superpixel’s value to the max value

of the given local region.

3. Min perturbation sets the superpixel’s value to the min of

the local region.

3.4.1. Optimal perturbation
We define optimal perturbation as the most effective

perturbation for a given region on the trained model. This is

measured by the change in the prediction probability of the

pre-trained model’s classification output. In other words, the

higher the change in the prediction probability of the pre-

trained model’s classification output, the more influential the

perturbation algorithm is. To determine the optimal

perturbation for a given 3D superpixel, we propose training a

3D U-net model (42) with the individual 3D superpixels as

the input and a perturbed mask for that superpixel as the

output by optimizing the difference between perturbed and

the non-perturbed classification.
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First, the dataset was generated using SLIC parameters

deemed best using the naive perturbation grid search on the

training set. Then, all superpixels generation was done on T2w

sequence with the number of initial superpixels set to 100. For

experimentations, we used six randomly selected MRI samples,

three from LGG class and three from HGG class, to generate

training samples with the parameters mentioned above. After

SLIC iterations, this resulted in a total of 443 samples in the

training set as SLIC combines superpixels with too much

similarity. Each sample was a 128� 128� 128� 4 volume

only containing the selected superpixel (Figure 4).

Then we introduce perturbation loss, which maximizes the

difference between the classification probability (generated by

the pre-trained ResNet) of the perturbed image and the

original image. For each batch, the loss would be calculated

by applying (multiplying) the generated perturbations mask

onto the original MRI and generating a classification using

the pre-trained ResNet. Then we calculate the difference

between the perturbed and non-perturbed predictions to

determine the effectiveness of that generated perturbation.

Lperturbation ¼ 1
n

Xn

i¼1

1
abs(ynpi � y pi )

Where p is perturbed, np is non_perturbed, y is the classification

prediction, and n is the number of samples in a batch.

Finally, we trained a 3D U-net model on the generated

dataset on the Adam optimizer using perturbation loss with a

learning rate of 0.01 for 25 epochs. The last epoch was

selected to carry out the experimentation. Figure 5 displays

an example input/output to the optimal perturbation model.
3.5. Relevance maps

Finally, we define Relevance Maps as a superpixel

segmentation map of the image, each with an associated score

on its importance to the predicted classification. Relevance

maps were generated by assigning each superpixel a score on
frontiersin.org
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FIGURE 3

2D visualization of Relevance Maps generated with 50, 100, 250 as the starting number of superpixels on their respective MRI modality. This
highlights the difference in superpixel generation parameters can affect the Relevance Maps.
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FIGURE 4

Dataset creation using superpixels. For each provided MRI volume, we generate a superpixel segmentation map using the SLIC algorithm. Each
Superpixel is then separated into its own volume as a new training sample.

FIGURE 5

An example of perturbed mask generation using UNet generator. Given a 3D volume containing a segmented superpixel, the generator model
outputs a mask that can be applied to the original MRI volume.

Rajapaksa and Khalvati 10.3389/fradi.2022.1061402
its ability to change the model’s confidence on classification by

calculating the absolute difference between the pre-trained

model’s classification probabilities for perturbed and non-

perturbed images. Relevance maps were then normalized

between 0 and 100, where regions with 0 scores did not affect

the classification, and those with 100 had the highest impact
Frontiers in Radiology 07
on the classification probability. Figure 6 and Algorithm 1

display visualization and the pseudo-code for the Relevance

Map generation. We can then use the ranking system to

generate a segmentation by only selecting a given rank. For

example, we can combine superpixels associated with ranks

one and two to generate the ROI segmentation.
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FIGURE 6

Relevance Map scoring pipeline. For a given superpixel, we compute the difference between the perturbed classification score and the non-
perturbed classification score. Then we assign the superpixel with the difference in the score as the region’s importance. Higher scores indicate
the most important region.
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3.6. Evaluation

We computed the average Dice similarity coefficient (DSC)

against the expert annotations of the brain tumours for all

quantitative evaluations. DSC score of 1 indicates a perfect

match between the predicted and expert ROI and a DSC

score of 0 indicates no overlap.

DSC ¼ 2jX > Y j
jXj þ jY j
Frontiers in Radiology 08
Where jXj represents the predicted set of pixels, and jY j
represents the expert annotated set of pixels.

We conducted the following evaluations:

1. Evaluation with Best Superpixel Grouping: First, we evaluate

the produced Relevance Maps by generating segmentation

with the best superpixel groupings. We iterate through the

superpixels from highest ranked to lowest to find the best

grouping for a given image when compared against the

expert annotation. This evaluation displays the highest
frontiersin.org
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TABLE 2 Average DSC comparison between naive and optimal
perturbation using best superpixel groupings.

Naive perturbation Optimal perturbation

Average DSC score 0.40 0.45

TABLE 3 Average DSC achieved on different ranked superpixels
compared with ranked by optimal perturbation vs blank perturbation.

Rank Avg. DSC with optimal
perturbation

Avg. DSC with blank
perturbation

1 0.31 0.25

2 0.18 0.07

3 0.10 0.06

TABLE 1 DSC scores with best superpixel grouping on Relevance Maps
with naive perturbations. Blank perturbation with superpixels
generated on T2w sequence achieved the highest DSC score.

Blank Min Max

50 100 250 50 100 250 50 100 250

T1w 0.24 0.27 0.29 0.13 0.15 0.17 0.09 0.1 0.1

T1wCE 0.27 0.27 0.29 0.17 0.19 0.21 0.1 0.1 0.1

T2w 0.37 0.4 0.34 0.21 0.22 0.24 0.1 0.1 0.1

FLAIR 0.33 0.33 0.32 0.24 0.22 0.22 0.1 0.1 0.1

TABLE 4 Average DSC evaluation on cumulative top ranking
superpixels compared with ranking with optimal perturbation vs
black perturbation.

Rank Avg. DSC with optimal
perturbation

Avg. DSC with blank
perturbation

1 0.31 0.25

1þ 2 0.34 0.22

1þ � � � þ 3 0.32 0.18

1þ � � � þ 4 0.29 0.16

1þ � � � þ 5 0.25 0.16
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achievable DSC by removing the clustering as a bottleneck, as

the focus of this work is not on superpixel clustering but on

highlighting the ability of ROI extraction.

2. Evaluation with Ranked Relevance: Secondly, we calculate the

average DSC for each ranked superpixel, where rank one means

that the superpixel with the highest value and had the most effect

on the classification of the tumour. The selection of the ranked

superpixels is independent of any human expert annotation.

These are treated as the produced segmentationmasks.

3. Evaluation on Combined Ranked Superpixels: We evaluate the

effectiveness of combining top-ranked superpixels to

generate a better segmentation. For each Relevance Map, we

calculatedDSC score by treating the combination of top ranks

as a single segmentation mask. For example, combing first,

second and third-ranked superpixels. This indicates

whether the lower-ranked superpixels would contribute to

the tumour region. When combined with the top-ranked

ones. The selection of the ranked superpixels is

independent of any human expert annotation.

4. Qualitative Evaluation of Faithfulness Against Validation Loss:

To ensure that the Relevance Map is faithful to the trained

information, we generated a Relevance Map at each epoch

while training and compared it to the validation loss. We

expect a faithful method to vary its confidence in the regions,

similar to the validation loss. It displays the learned knowledge

in the model where a low confidence relevance map will

represent high validation loss, as a model with high validation

loss is most likely to have learned non-generalizable

information. This evaluation will give us the confidence to

ensure Relevance Maps are actual representations of the

model’s knowledge.

5. Comparison to Grad-CAM and LIME: Finally, we compare

tumour segmentation achieved with the proposed method to

other post-hoc methods. We have chosen Grad-CAM and

LIME (29) for their widespread use. For Grad-CAM, we have

generated visualization for each test case and interpolated it to

128� 128� 128 from 6� 6� 6 to calculate DSC using the

best binary threshold for the given image. For LIME, we

adapted the algorithm to process 3D inputs and used SLIC (38)

as the superpixel generation method. The algorithm was run

on the test set with the parameters of hide colour set to zero,

similar to our blank perturbation, and the number of samples

used for classification training was set to 1,000. We then

calculated the DSC of the predicted region for the given class.

4. Results

4.1. Dice similarity coefficient with best
superpixel grouping

Table 1 showsDSCs obtained using the best superpixel grouping

on different perturbations and superpixel generation parameters
Frontiers in Radiology 09
with naive perturbations. We found Blank perturbation (among

trivial methods) with 100 superpixels generated on the T2w

sequence performed the best in the naive perturbations.

AsshowninTable2,usingthesamesuperpixelparameters (T2W,

N ¼ 100) as the best-performing trivial perturbation method from

the previous study, the Relevance Map generated using our

proposed optimal perturbation method achieved aDSC of 0.45.
4.2. Dice similarity coefficient with ranked
superpixels

For the remaining evaluations, we present the comparison

between optimal perturbation and blank perturbation as it
frontiersin.org
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FIGURE 7

Relevance maps for different training epochs visualizing different levels of focus. This visualizes the improvement of Relevance Maps correlated with
the validation loss.
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achieved the highest DSC among the naive perturbations. Table 3

shows the DSC for ranked superpixels where the blank perturbed

superpixels generated on the T2w sequence with 100 superpixels

achieved an average DSC of 0.25. The highest-ranking optimally

perturbed superpixel achieved an average DCS of 0.31.
4.3. Dice similarity coefficient on
combined ranked superpixels

As shown in Table 4, the proposed method outperformed

blank perturbation when combining the first two superpixels

generating an average DSC of 0.34, while combining

superpixels selected by blank perturbations reduced the

average DSC to 0.22. The proposed optimal perturbations are

on average better at picking secondary superpixels that

contain tumour regions.
4.4. Qualitative evaluation of faithfulness
against validation loss

As shown in Figure 7, Relevance Maps follow a similar

pattern to the validation loss when visually inspected. High

loss values indicate more variability in the relevance map, and

low loss values indicate more focused Relevance Maps. This

shows a faithful explanation of the learned features of the

input image where confidence in the relevance also depends

on the validation loss.
4.5. Comparison to Grad-CAM and LIME

When compared against Grad-CAM and LIME methods,

the proposed method outperformed both Grad-CAM and

LIME in visualization quality and the ability to localize the

tumour. As shown in Table 5, with the best thresholding,

Grad-CAM achieved an average DSC of 0.11, while our

method achieved 0.45 with the best superpixel grouping.

Similarly, LIME achieved an average DSC of 0.06 on the

testing set. Figure 8 shows a sample visualization of Grad-

CAM, LIME and Relevance Map compared to expert

annotations. Our Relevance Map generated a higher
TABLE 5 Average DSC score comparison between Grad-CAM, LIME,
Relevance Maps methods using best superpixel groupings.

LIME
(29)

Grad-
CAM
(43)

Relevance
maps (blank
perturbation)

Relevance maps
(optimal local
perturbation)

Average
DSC
score

0.06 0.11 0.40 0.45
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resolution and more meaningful visualization of the ROI than

the other two methods.
5. Discussion

Identifying regions of interest plays a crucial role in model

explainability and improvement. We generated high resolution

and accurate segmentations using the proposed Relevance

Map and optimal perturbation compared with the commonly

used methodology. When compared against Grad-CAM, We

see a clear improvement in our proposed method in the visual

explanation and the DSC score. Furthermore, our results show

that even the trivial perturbation methods could outperform

Grad-CAM in 3D medial images. We attribute the failure of

grad cam to its inability to produce high-resolution output in

the 3D space. Since the original output is only a 6� 6�
volume, it lacks the required information to generate a

meaningful segmentation or visualization when interpolated to

128� 128� 128.

Similarly, our method outperformed LIME, even though

LIME follows a similar perturbation approach. It failed to

classify an appropriate set of superpixels to the given

classification and often would classify background superpixels

as contributors to the classification. This behaviour was

heavily penalized on the DSC calculation and would be of no

benefit to any clinician looking for insight.

Our results also show that the proposed optimal

perturbation method can determine more significant

superpixels when compared to trivial methods. As shown in

Table 2, a Relevance Map generated using optimally

perturbation would detect actual tumour regions and rank

them as most significant more often than the best performing

trivial perturbation. Similarly, Optimal perturbation also

selected more tumour regions as the second-ranked. Due to

this, as shown in Table 3, we can generate a higher DSC by

combing both first and second-ranked superpixels.

Our qualitative evaluation of faithfulness against validation

loss highlighted the method’s ability to represent learned

knowledge. We showed that as the model validation loss

decreased, so is the confidence in our Relevance Map. We see

this as of great importance when our method is to be used as

an explanation. Especially in a clinical setting, our explanation

needs to reflect the knowledge within the classification model.

The ability to highlight low confidence provides us with trust

that visualization can reflect the learned region of interest.
6. Conclusions

In this work, we proposed a novel localized perturbation

method to extract the ROI (tumours) from a 3D CNN trained

only to classify MRI brain glioma tumours. We also showed
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https://doi.org/10.3389/fradi.2022.1061402
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 8

Qualitative segmentation comparison between Grad-CAM,LIME, Relevance Map and Ranked one Superpixel on Relevance Map.
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that our proposed method of superpixels-based perturbation

mask generator (Relevance Map) could also generate

visualization maps to significantly improve the interpretability

of black-box 3D classification models.
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