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Malignant tumors is a serious public health threat. Among them, lung cancer, which has

the highest fatality rate globally, has significantly endangered human health. With the

development of artificial intelligence (AI) and its integration with medicine, AI research

in malignant lung tumors has become critical. This article reviews the value of CAD,

computer neural network deep learning, radiomics, molecular biomarkers, and digital

pathology for the diagnosis, treatment, and prognosis of malignant lung tumors.
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INTRODUCTION

The GLOBOCAN2020 cancer report released by the International Agency for Research on Cancer
(IARC) of the World Health Organization shows that lung cancer has become the leading cause
of death from cancer in men, and the death rate among women is second only to breast cancer
(1), illustrating its serious effect on human health. The rise of AI has changed traditional tumor
diagnosis, treatment and prognosis strategies. AI is the process of using computers to simulate
human thinking and behavior. With the introduction of machine learning algorithms and deep
learning algorithms along with the rise of big data, AI is playing an increasingly important role in
the medical field. The application of AI in medicine not only reduces the workload of doctors and
makes the allocation of medical resources more effective but also improves the accuracy of disease
diagnosis and the prognosis of patients. This article reviews the application of AI in lung cancer.

BASIC CONCEPTS OF AI

In 1959, the scholar Ledley and others put forward the mathematical model of computer-aided
diagnosis for the first time, and diagnosed a group of lung cancer cases, which pioneered the
computer-aided diagnosis. In 1966, the concept of “Computer Aided Diagnosis” (CAD) was first
put forward by Ledley. Before the concept of machine learning and deep learning was put forward,
CAD mainly used computer technology combined with mathematical models to build models (2).
Some scholars use Gaussian scale space and multi-scale Gaussian filterbank to establish a model to
detect pulmonary nodules on chest radiographs, and it is concluded that the model can detect 67%
of nodules, which is close to the result of manual detection of 70% (3).This result shows that CAD
has a great development prospect in the field of lung cancer. Deep learning is a machine learning
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technology based on computer neural networks, and computer
neural networks are the study of human brain morphology,
neural network structure, and letter processing, using computers
to build intelligent computer models similar to human brain
processing information to enhance human cognitive ability.With
the advent of big data, neural network learning has evolved
from traditional shallow neural networks to deep neural network
learning. The concept of deep learning was proposed in the paper
“Reducing the dimensionality of data with neural networks” by
Hinton and Salakhutdinov (4). With the development of artificial
intelligence, machine learning, a branch of artificial intelligence,
and deep learning, a branch of machine learning, have played
an important role. The combination of machine learning and
deep learning with computer-aided detection/computer-aided
diagnosis (CADe/CADx) makes it not only specific to the
detection of nodules but also plays an essential role in the
differentiation of benign and malignant lung nodules and the
classification and staging of lung cancer. At the same time, the
structured report (SR) of radiology department also plays a great
guiding role in the treatment decision of lung cancer, and can
strengthen the communication between imaging doctors and
clinicians, while quality, Data quantification and accessibility are
three important factors that transform from the current format
of free-text reporting (FTR) to SR (5, 6). These three factors are
closely related to AI. Some scholars have tried to use machine
learning or neural network model to build a model to extract
complete structure from FTR, and verified its feasibility (7, 8).

IMAGE PROCESSING

Medical Image Segmentation
Medical image segmentation is an important foundation of
clinical research. There are two kinds of medical image
segmentation: segmentation based on local spatial features,
such as information such as gray level and texture, and
segmentation based on edge information (9). Some scholars
segment 20 Brain, 50 Breast, 50 Lung cancer patients and 20
Spleen scans based on adaptive geographic distance (AGD)
and interactive machine learning (IML) integrated by SVMs,
and get better results than manual annotation (10). Besides
machine learning, the research on medical image segmentation
by deep learning is also very popular. Based on the Maximum
Intensity Projection (MIP), some researches have improved the
U-net architecture, and put forward a network named deep
residual separable neural network (DRS-CNN) to segment lung
tumors. After comparing it with U-net, it is concluded that
DRS-CNN has higher efficiency and fewer parameters than FCN
FCN, SegNet (11). These deep learning networks all face the
same problem: they need a lot of manually labeled data for
training. The Cycle-consistent Generative Adversarial Network
(GAN) network, which consists of two networks, Generator
and Discriminator, belongs to the unsupervised learning mode.
The results show that the improved CycleGAN does not need
manual labeling, and can overcome the noise and reach the
level of manual labeling (12). In addition, LGAN based on
GAN is also proved to have better performance than U-net
(13). Based on deep learning, some scholars have established

a model called U-Net-Generative Adversarial Network (U-Net-
GAN) by using Gan strategy, using U-Net as the Generator
and FCNS as discriminators, and the experimental results show
that the segmentation results in chest CT are reliable. All
these studies show that GAN-based segmentation model has
great potential to build a higher performance segmentation
model (14).

Image Reconstruction and Fusion
PET is mainly a radioactive tracer that decays and emits
positrons, and the positrons generate annihilation radiation
to generate photons. Using detectors to detect photon shapes
successfully makes metabolic energy imaging, so as to diagnose
diseases. Imaging to meet diagnostic requirements requires a
full dose of radioactive tracer, which increases the risk of
radiation exposure (15), while too low a dose will increase
noise and reduce image quality. Therefore, some scholars began
to consider whether low-dose PET images can be used to
reconstruct images that meet the diagnostic requirements. Some
scholars have used Cycliw Gans to improve the image quality
on PET images of low-dose lung cancer, and compared it with
traditional noise reduction methods and RED-CNN and 3D-
cgan, and concluded that Cycliw Gans can effectively keep the
edge and SUV value (16). Other scholars have used sparse view
data acquisition to realize low-dose and high-quality imaging
(17). In addition, the resolution of PET is far lower than that
of CT, so it needs to be fused with the anatomical structure
of CT, which is beneficial to diagnosis. Some scholars try to
use CNN to improve PET/CT image fusion, and the result
of foreground detection accuracy is 99.29%, which shows that
CNN can significantly improve image fusion (18). Some scholars
put forward the recurrent fusion network (rfn), and compared
it with early fusion, late fusion and high fusion, and three
tumor segmentation methods, namely resnet, densenet and 3d-
unet. The results show that rfn can provide more accurate
segmentation (19).

APPLICATION OF AI TO DIAGNOSIS

CAD, CNN and GAN Based Diagnosis
The early detection of lung cancer and early treatment
are essential and related to prognostic outcomes. Facing
the considerable workload associated with pulmonary nodule
screening, the combination of CADe/CADx with manual
diagnosis dramatically improves the efficiency of clinical work
and reduces the missed diagnosis rate. At present, the detection
rate of CAD for nodules is higher than that of manual diagnosis.
The sensitivity is high, but the specificity of detecting nodules
needs to be improved to reduce the false-positive rate (20).
A schematic representation of CAD workflow is shown in
Figure 1.

The combination of deep learning and lung tumor diagnosis
has promoted the development of lung tumor diagnosis. AI is
mainly used in lung cancer image recognition, medical image
segmentation, lung nodule extraction and recognition, lung
cancer pathological diagnosis, and tumor marker search in lung
cancer diagnosis.
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FIGURE 1 | CAD workflow.

Regarding lung cancer image recognition, some scholars
have used a deep convolutional neural network (CNN) to
develop an automatic tumor region recognition system for lung
cancer pathological images (21). Some scholars have used the
Mask Regional Convolutional Neural Network (Mask R-CNN)
architecture to develop a deep learning algorithm to classify
cells in the lung cancer tumor microenvironment (TME) and
simultaneously extract cell characteristics to predict prognosis.
The results prove that the spatial organization of different cell
types is predictive of patient survival and related to the gene
expression of biological pathways (22), showing that AI can
be used to identify tumor regions on lung cancer pathological
images and to segment various cells in the lung cancer tumor
microenvironment. In terms of image segmentation, medical
images have a low resolution and low contrast compared with
natural images. In addition, the shape of lung cancer images
is irregular and can include speculation, lobulation, pleural
indentation, and other shapes with unclear edges. There may
also be calcified cavities and pleural effusions, increasing the
difficulty of lung cancer image segmentation. The application of
deep learning can improve the accuracy of image recognition
and classification. In terms of lung nodule detection, compared
with traditional machine learning methods, deep learning can
quickly learn features of different dimensions, shorten the feature
selection and calculation time, and significantly improve the
efficiency of nodule detection. CNN is still being optimized.
Previous studies have shown that two doctors who lack diagnostic
experience could diagnose lung cancer nodules in 120 suspected
lung cancer cases with nodule diameters larger than 3mm
using a CAD-aided diagnosis system based on the deep learning
Faster R-CNN as the framework and not using a CAD-aided
diagnosis system, respectively. The results show that after
doctors use the CAD-assisted diagnosis system based on deep
learning, the diagnostic sensitivity of lung cancer nodules is
significantly improved, and the positive predictive value is
significantly reduced. The reading time is shortened, especially
for suspicious nodules with diameters of 3–6 and 6–10mm (23),
which can effectively alleviate the burden of clinical work. In
terms of lung nodule detection, compared with the traditional
machine learning method, deep learning can quickly learn the
features of different dimensions, shorten the feature selection
and calculation time, and significantly improve the efficiency
of nodule detection. Among them, the convolutional neural

network is a commonly used deep network. The deeper the depth
of the convolutional neural network is, the richer the features of
the extracted lung nodules; however, it also has shortcomings.
Increasing the depth will prolong the training time of the model.
In subsequent work, researchers should focus on extracting more
nodule features while shortening the training time. GAN is also
more and more used in the detection of lung nodules. GAN
plays a very important role when only a small amount of data
can’t be used for deep learning model training. Studies have
shown that a large number of images can be generated by GAN,
and then the model can be built and trained by deep learning.
The results show that this method can improve the classification
accuracy by about 20% (24). This kind of transfer learning can
generate a large amount of data, which solves the problems
of manual annotation in deep learning and insufficient data
samples (25). During the COVID-19 epidemic, many researches
based on GAN achieved good results, which proved the above
conclusions (26–28).

Differentiation of Benign and Malignant
Pulmonary Disease
In addition, the differentiation of benign and malignant
pulmonary nodules is an essential part of computer-aided
diagnosis. Figures 2, 3 shows that on PET/CT, it is not easy to
distinguish between benign and malignant nodules with the
naked eye (Figure 2: Non-metabolic invasive adenocarcinoma
on PET/CT, Figure 3: Non-metabolized granulomatous
inflammation on PET/CT). For the diagnosis of benign and
malignant pulmonary nodules, artificial intelligence is still
dedicated to extracting certain image features, such as image
size, shape, texture features, and semantic features. In machine
learning, some scholars have used SVM to classify texture
features, achieving an AUC of 0.9270 (29). Some scholars have
used SVM to classify shape features and texture features, and
the resulting AUC value was 0.9337 (30). In addition to machine
learning, deep learning has also been used to identify lung
nodules. Some scholars have used deep belief networks (DBNs)
and CNNs to classify benign and malignant lung nodules for the
first time in the classification of lung nodules. The sensitivity
rates were 73.40 and 73.30%, respectively. Some scholars used
a deep belief network (DBN) and CNN to classify benign
and malignant lung nodules for the first time in patients with
lung nodules, and the sensitivity rates were 73.40 and 73.30%,
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FIGURE 2 | Non-metabolic invasive adenocarcinoma on PET/CT.

respectively (31). After that, an end-to-end framework for
deep learning based on CNN was constructed, such as the
multicrop convolutional neural network (MC-CNN), achieving
an AUC value of 0.93 (32) and 3D CNN (33). In addition, some
scholars have used CNN to establish a hierarchical semantic
convolutional neural network (HSCNN) based on semantic
features to detect nodules and identify nodules, and its AUC
value was 0.8780 (34). Compared with machine learning, the
end-to-end model of deep learning reduces the workload of
data annotation. While deep learning requires much training
data, to solve this problem, some scholars have proposed the
transferable multimodel ensemble (TMME) algorithm (35)
and Fuse-TSD algorithm (36), yielding AUC values of 0.9778
and 0.9665, respectively. According to the above research
results, artificial intelligence in lung nodule identification has a
good effect.

Methods to Improve Diagnosis Accuracy
While improving the diagnostic sensitivity, reducing the false-
positive rate is also an important research direction. The reason
for the false-positive rate is the complex structure of the lung.
In addition to lung issue and large blood vessels, it is difficult to
distinguish between benign and malignant nodules because the
density of inflammatory tissue is similar to the that of tumor
tissue, and both show a high level of glucose metabolism. In
addition, complications such as pleural adhesions and pleural
effusion make it difficult to distinguish tumor tissue from
normal lung tissue. The rise of radiomics has been devoted
to the reduction in the false-positive rate. Some scholars have
used machine learning algorithms to construct a nomogram
based on the features extracted by radiomics. In the training

FIGURE 3 | Non-metabolized granulomatous inflammation on PET/CT.

set and validation set, the false-positive rate dropped from
30.9 to 30.4% based solely on the doctor’s diagnosis to 9.1
and 5.4%, respectively (37). Some scholars used a multipath
3D CNN to build a model based on the suspicious nodules’
size, shape, and background information, which significantly
reduced the false-positive rate (38). Their research shows that
the false-positive rate can be reduced when AI is combined with
medical imaging.

Trying to Detect Histological Types
The results of pathological diagnosis are critical to the final
treatment decision and prognosis. It takes considerable time
and energy for doctors to make a pathological diagnosis. Some
scholars use CNN based on the EfficientNet-B3 architecture to
establish a model to predict whether pathological images indicate
lung cancer (39). In addition, since 80% of lung adenocarcinomas
have multiple histological types, identifying histological types
is very important for guiding the treatment choice. Therefore,
some scholars have used deep learning convolutional nerves
to classify lung adenocarcinoma types for the first (40). The
above studies have achieved good results, indicating that AI
can be combined with pathological diagnosis, reducing the
burden on doctors and improving the accuracy of diagnosis.
In terms of finding tumor markers, liquid biopsy has the
advantages of noninvasiveness, real-time dynamic detection, and
repeatability. However, the content of detected substances in
the liquid biopsy is not high, so the detection sensitivity is
not high. The use of machine learning algorithms to develop
models that interpret the signals in the samples can effectively
improve the detection sensitivity. The application of AI in
liquid detection includes Foundation One based on cancer
genomics (41).
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FIGURE 4 | PET/CT manifestations of lung adenocarcinoma patients with

EGFR mutation.

FIGURE 5 | PET/CT manifestations of EGFR wild-type patients with lung

adenocarcinoma.

THE ROLE OF ARTIFICIAL INTELLIGENCE
IN THERAPY

Targeted Therapy
The histological classification of lung cancer is mainly divided
into small-cell lung cancer (SCLC) and non-small-cell lung

cancer (NSCLC). Among them, non-small-cell lung cancer
accounts for 85% and is further divided into squamous cell
carcinoma, adenocarcinoma, squamous adenocarcinoma, and
large cell lung cancer (42). For lung cancer treatment, the
conventional treatment methods include surgical resection,
radiotherapy, and chemotherapy. Targeted therapy also plays an
increasingly important role due to its individualized treatment,
excellent curative effect, and relatively few adverse reactions.
Targeted therapy refers to targeting drugs that act on receptor
proteins, enzymes, and genes during tumor cell proliferation
to disrupt cell growth. Among the current targeted therapies,
non-small-cell lung cancer targets include EGFR (epidermal
growth factor receptor), EML4-ALK fusion gene (43), ROS1
fusion gene, RAS mutation, and C-MET amplification. In
the process of targeted therapy, the most critical step is to
determine the corresponding target. The primary traditional
detection method is sequencing. However, heterogeneity within
the tumor may cause inaccurate results for sampling and
sequencing (44).

At the same time, surgery is invasive and may cause tumor
metastasis, so it is not conducive to the repeated detection of
targeted genes during the later stage of disease development.
In addition to the fact that biopsy cannot be performed in all
clinical cases (45), some patients may lose the opportunity for
targeted therapy because they cannot undergo biopsy. In recent
years, to achieve noninvasive, simple, and rapid detection, some
scholars have studied the combination of radiomics and deep
learning in artificial intelligence with CT and PET images to
predict gene mutations. Figures 4, 5 show that it is not easy
to distinguish between EGFR mutant type and wild type on
PET/CT (Figure 4: EGFR mutant, Figure 5: EGFR wild type). In
terms of radiomics, some scholars have used radiomics to extract
the features of PET/CT images and used logistic regression to
establish a model to predict EGFR mutations. The AUC values of
the training set and validation set were 0.79 and 0.85, respectively.
At the same time, scholars also established a clinical model based
on sex and smoking history, with AUC values of 0.75 and 0.69
obtained for the training set and the validation set, respectively.
The AUC values of the training set and the validation set of
the combination of radiomics and clinical models were 0.86
and 0.87, respectively (45). In addition, some scholars have used
a multivariate random forest algorithm and logistic regression
model to screen out the image features most relevant to EGFR
mutations on segmented PET/CT images and then employed the
supervised XGBoost machine learning algorithm to establish a
prediction model of EGFR mutation subtypes. The results were
as follows: AUC value for exon 19 deletion was 0.77, the AUC
value for exon 21 L858R point mutation was 0.92, and the overall
model AUG for EGFR mutation was 0.87 (46). Scholars have
also compared the performance of the gradient tree boosting
algorithm and random forest algorithm (RF) to predict lung
cancer subtypes and EGFR mutations. Combining the above two
algorithms, the gradient tree boosting algorithm was obtained
by comparing the AUC values. The conclusion was that the
gradient tree boosting predictive algorithm ability is better than
the random forest algorithm (47). In addition, machine learning
algorithms such as SVM are used to predict target mutations
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FIGURE 6 | Radiomics workflow.

(48). Because the use of machine learning to build a model
requires precise manual segmentation steps, to simplify the
delineation step, some scholars have proposed applying the end-
to-end learning of deep learning to the prediction of EGFR
mutation status. Deep learning models such as 2D small residual
convolutional network (SResCNN) models and the use of 3D
CNNs to develop 3D DenseNets have been established with the
development of deep learning. However, the current research
generally has certain problems, such as insufficient experimental
samples (49, 50).

Immune Therapy
In addition, an immune checkpoint inhibitor (ICI) is also an
effective method for treating lung cancer. Immunotherapy uses
ICIs to restore the immune response toward tumor cells in
order to slow the growth of tumors. At present, ICIs mainly
act on the PD-1/PDL-1 pathway in lung cancer. Although
immunotherapy has made significant progress in the treatment
of lung cancer, ICIs are not practical for all patients and are
effective in <30% of lung cancer patients (51). Therefore, it is
similar to targeted therapy in that it is also necessary to detect
the amount of PD-L1 protein in tumor tissue through biopsy and

immunohistochemistry before immunotherapy. Unfortunately,
biopsy in this case has the same problems as the targeted therapy
biopsy above. Some scholars have used gene sequencing to
detect the abundance of CD8 cells combined with enhanced
CT generation to evaluate the imaging characteristics of CD8
cell tumor invasion and then used linear ElasticNet regression
in machine learning to develop CD8 cell expression signature
markers based on radiomics. In a study aiming to predict
the tumor immunophenotype in order to determine whether
ICI is effective and to predict the treatment response after
receiving ICI treatment, the AUC value was found to be 0.74
for the expression classification of CD8 (high abundance vs. low
abundance) and gene expression in CD8 cells. The characteristic
AUC was 0.67 (52). Some scholars have combined CT imaging
radiomics and clinical information to predict the expression
of PD-L1, and the AUC in the prediction verification set
was 0.848 (53). In addition, some scholars have used clinical
data and radiomics of PET/CT images in combination with
SResCNN of deep learning to establish a PD-L1 prediction
model. They also used this model to predict the prognosis of
patients for immunotherapy and achieved good results, with
an AUC of 0.82 (54). In addition to radiomics, some scholars
have also tested the RNA expression level of patients with
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relapsed NSCLC who received PD1/PD-L1 treatment and used
the obtained genome to use machine learning to perform feature
selection and establish a prediction model to accurately predict
whether the patient is suitable for anti-PDL-1 treatment (55).
Some scholars believe that clinical characteristics such as PD-
1 cannot independently and accurately predict whether ICIs
are beneficial to patients. Therefore, after comparing various
machine learning algorithms, such as GBM and XGBoost,
they chose the LighGBM algorithm to build a comprehensive
prediction model for multiple clinical features, including patient
characteristics, laboratory results, tumor size, genetic mutation
status, metastatic location, treatment route, and PD-1 inhibitor
type and response, yielding an AUC value of 0.788, which
was better than the prediction model established by a single
clinical feature (56). The above experimental results show that
the combination of artificial intelligence and immunotherapy
can help to establish a better predictive model to make clinical
treatment decisions that are most beneficial to patients. The
schematic diagram of the radiomics workflow is shown in
Figure 6 (52).

Radiotheraphy
In the treatment of early lung cancer, especially in patients who
cannot be operated on, stereotactic ablative radiotherapy (SABR)
plays an important role, which the 3-year survival rate of patients
with inoperable non-small cell lung cancer who received SABR
was 55.8% (57). With the in-depth study of artificial intelligence
in image segmentation, some scholars have tried to develop an
automatic lung segmentation model in ablation radiotherapy
through deep learning. Through the author’s research, they
found that although the current segmentation results are not
comparable to the manual segmentation results, their research
Proved that this is feasible (58). At the same time, some
scholars used Deep Profiler in the deep learning neural network
to predict the image fingerprint of CT images based on the
purpose of precision treatment, and found that the failure rate of
radiotherapy for patients with low scores was significantly lower
than that for patients with high scores (59). While SABR brings
benefits to patients, it also has corresponding side effects, such
as Radiation-induced lung injury (RILI) (60), Chest wall pain
and rib fractures, etc. (61). In order to predict the occurrence of
side effects, some scholars have conducted research. Especially
for the prediction of RILI, scholars have used AI to make
predictions from various angles: For the first time, scholars
extracted radiomic features from the gross tumor volume (GTV)
in CT images of patients receiving treatment from two different
medical institutions, and used the extracted radiomic features
and clinical/dose to establish regularized models to predict local
lung fibrosis (LF) about time and frequency of occurrence, but
the model is not applicable to the prediction of disease-free
survival (DFS) and overall survival (OS) (62). Based on the data
of 3 medical institutions, some scholars have used LightGBM to
develop three different models from the perspectives of dose-
volume indices (DVIs), radiomics and a mixture of the two to
predict radiation pneumonia of grade 2 and above, and the ROC
of the three models. ROC-AUC and PR-AUC values are 0.660
± 0.054 and 0.272 ± 0.052, 0.837 ± 0.054 and 0.510 ± 0.115

and 0.846 ± 0.049 and 0.531 ± 0.116, respectively (63). The
above results indicate that there is still a lot of room for the
development of AI in the related fields of SABR treatment of
lung cancer.

THE ROLE OF ARTIFICIAL INTELLIGENCE
IN PREDICTING THE PROGNOSIS OF
LUNG TUMORS

An accurate prognosis can guide the selection of the most
beneficial treatment for lung cancer patients. The treatment
and prognosis of patients are affected by TNM staging. With
the development of artificial intelligence, lung cancer has
made great progress in diagnosis and treatment, but at the
same time, people can also provide more accurate prognoses
through artificial intelligence to make decisions for patients
based on the prediction results. The most beneficial treatment
decisions can help to prevent unnecessary treatment. In terms of
complications, some scholars have used artificial neural networks
(ANNs) to establish a prediction model for the occurrence of
fungal lung infections in lung cancer patients based on seven
variables: age, antibiotic use, low serum albumin concentrations,
radiation therapy, surgery, low hemoglobin hyperlipidemia, and
length of stay in hospital. The AUC value was 0.829 ± 0.019
(64). Some scholars proposed medical MLP (MediMLP) based
on the multilayer perception model (MLP). This model uses
the Grad-CAMA algorithm for feature selection to determine
whether complications will occur after lung cancer surgery as
well as the types of complications (lung, other organs, whole
body); the results indicated that the postoperative indwelling
drainage tube time is the key to whether complications occur
(65). Some scholars use wearable activity trackers to collect
patient-generated health data (PGHD) and patient-reported
outcomes (PROs) after discharge from the hospital and use
the L2 regularized logistic regression model to predict whether
complications will occur during the early postoperative period.
In that study, the prediction of complications after discharge was
most relevant to the length of hospital stay and complications
before discharge. This regular remote detection model is the
first model to predict complications after discharge. It was
found to improve the survival rate and more effectively use
medical resources (66). In addition, in terms of lung cancer
patient survival and risk stratification, some scholars have used
clinical data and radiomics of PET/CT images combined with
SResCNN in deep learning to establish a PD-L1 immunotherapy
prediction model. The deep learning score (DLS) predicted
persistent clinical benefit (DCB), overall survival (OS), and
progression-free survival (PFS). The conclusion was that DLS
combined with clinical features can accurately predict DCB,
OS, and PFS (54). Some scholars established an immune
prognosis model composed of two immune genes (ANLN and
F2) by using LASSO and Cox regression analysis along with
the software CIBERSORT to analyze immune infiltration based
on the differential expression of mRNA in tumor vs. normal
tissues and predicted patients with a high risk of a poor
prognosis. At the same time, the model and pathological analysis
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TABLE 1 | The development of AI in the field of lung cancer.

Author Model Function AUC Sensitivity

Han et al. (29) SVM To identify benign and malignant

nodules based on texture features

0.9270 –

Dhara et al. (30) SVM To identify benign and malignant

nodules based on texture and shape

features

0.9337 –

Yu-Jen et al. (31) DBN To identify benign and malignant

nodules for the first time

– 73.40%

CNN – 73.30%

Xie et al. (36) TIME algorithm To distinguish benign and evil nodules 0.9778 –

Fuse-TSD algorithm 0.9665 –

Fei Kang et al. (37) Machine learning combined with

radiomics

To construct a nomogram to reduce

the false-positive rate

0.98 –

Zhang et al. (45) Logistic regression To establish an EGFR mutation

prediction model based on PET/CT

radiomics and clinical data

0.87 –

Qiu et al. (46) RF. logistic regression model

xgboost machine

learning algorithm

To establish a prediction model of

EGFR mutation subtypes and EGFR

status

EGFR exon

19 deletions

0.77

–

EGFR exon

21 L858R

missense

0.92

–

EGFR

mutation

positivity 0.87

–

Koyasu et al. (47) XGB algorithm combined with

Bayesian algorithm

To predict EGFR mutation status

based on radiomics

0.659 –

RF algorithm combined with

Bayesian algorithm

To predict of EGFR mutation status

based on radiomics

0.577 –

Sun et al. (53) Combination of CT radiomics

and clinical information

To predict PD-L1 expression 0.848 –

Wiesweg et al. (55) Detect the RNA expression level

of tumor immune context, use

machine learning

To establish a predictive model to

predict whether it is suitable for

anti-PDL-1 therapy

– –

Ahn et al. (56) LighGBM algorithm To establish a predictive anti-PD-1

response model based on multiple

clinical features

0.788 –

Chen et al. (64) ANN To predict the occurrence of lung

fungal infections in lung cancer based

on clinical information

0.829 ±

0.019

–

He et al. (65) MediMLP model To predict postoperative

complications and types of lung

cancer

0.88 –

Rossi et al. (66) L2 regularized logistic regression To predict whether complications will

occur in the early postoperative

period for the first time

0.74 –

Luo et al. (67) LASSO and COX regression

analysis and CIBERSORT

To establish an immune prognostic

model and nomogram according to

the differential expression of mRNA

between tumor and normal tissues to

identify high-risk patients

0.7061 –

She et al. (68) Deep feed-forward neural

network and the Cox

proportional hazard model

To evaluate patient prognosis and

treatment recommendations, the

DeepSurv model was established

– –

Guo et al. (69) The EfficientNet model and

ResNet

To build a predictive model on

immunohistochemical images

0.913 –

Shi et al. (70) LASSO Cox algorithm To calculate the HPRS and HIRS of

the sample and establish a

nomogram

0.809 –
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were combined to establish a nomogram for prognosis. The
experimental results show that the comprehensively established
nomogram has a higher AUC for prediction (67). The DeepSurv
model, which aimed to evaluate patient prognosis and treatment
recommendations and was composed of clinical information
(sex, age, marital status), tumor characteristics (location, size,
histological type and grade, and TNM staging), and treatment
details from the SEER database and based on a deep feed-
forward neural network and the Cox proportional hazard model,
was found to have a better predictive ability than TNM. At
the same time, it also developed the user input view, the
survival prediction view, and the treatment recommendation
view to visualize the DeepSurv model (68). Some scholars use
the EfficientNet model to segment tumor cells and tumor-
infiltrating cells in tumor microarrays (TMAs). At the same
time, ResNet was used on the immunohistochemical images
to extract the characteristics of OS and RFS (recurrence-free
survival), and a reliable prediction model was established (69).
Some scholars have used WGCNA to analyze the gene modules
related to hypoxia based on the imbalance between the supply
and demand of the hypoxia response tumor environment and
then use the LASSO Cox algorithm or logistic regression model
and RF to screen out the most relevant hypoxia prognostic
genes, establish formulas, and calculate the hypoxia-related
prognostic risk score (HPRS) of the sample. They concluded
that the higher the HPRS is, the worse the OS of the patient.
At the same time, a multivariate Cox regression analysis
with age, stage, and sex demonstrated the excellent predictive
ability of HPRS, and the use of HPRS and clinicopathological
characteristics to establish a predictive nomogram achieved
high accuracy (70). To date, a prognostic model of lung
cancer has been established based on radiomics, genomics,
clinical features, and pathological results. The established model
has a good predictive ability from the experimental data,
which is significant for guiding the choice of lung cancer
treatment. Table 1 shows the development of AI in the field of
lung cancer.

DISCUSSION

For the diagnosis of pulmonary nodules, the application of
AI has improved the detection rate, but we should also focus
on improving the specificity of nodules to reduce the false-
positive rate. For images of lung cancer tumors, confidential
information is not visible to the naked eye, but with the help
of AI, radiomics, and genomics, we can extract this information
and combine it with clinical information for patient diagnosis,
treatment, and prognosis. The current research still has the
following problems. At present, most AI models are tested in
a single race. Data from multiple sources should be tested to
determine whether it can be applied to other races (71). In
addition, the prediction or classification model established based
on deep learning has black-box attributes because the neural
network is not interpretable. Thus, we should further study
how the neural network model calculates and make judgments.
At the same time, we should explore the specific relationship

between deep learning and radiomics to establish a better model.
According to previous studies (45, 56), the combination of
clinical features, semantic features, radiomics, and deep learning
has better prediction or classification capabilities than models
established by a single factor. Therefore, we should continue to
explore how the above factors can be combined to establish the
best model in the future. The development of AI and the rise
of big data are inseparable; standardizing effective and sufficient
data is essential for deep learning model training. Therefore,
in the future, a standardized and shared database should be
established for research so that artificial intelligence can be better
used in lung cancer diagnosis, treatment, and prognosis. Finally,
it is worth mentioning that although the application of artificial
intelligence in medical care has a great development space, it
also faces many other problems, such as ethical, psychological
and legal issues. With the development and application of AI,
especially when AI is used to decide the end of life in the future,
perhaps we need new principles and regulations to manage
medical artificial intelligence, so as to make the most favorable
decision for patients and achieve the goal of “doing no harm”
(72, 73). In order to achieve this goal, doctors should not accept
the combination of AI with medical care without criticism, nor
should they resist the application of AI without reason, but
should actively participate in and promote its development (74).
In addition, on the premise that deep learning has black-box
attributes, we should not ignore patients’ fear, but also ensure
patients’ right of informed consent and explain the benefits
and potential risks, so as to solve patients’ excessive fear or
overconfidence (75). When AI is applied to medical disputes,
the division of responsibilities may involve doctors, artificial
intelligence system manufacturers and regulatory agencies (76),
so relevant laws and regulations must be actively improved to
solve related disputes.
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