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Hepatocellular carcinoma (HCC) is a primary liver cancer that produces a high mortality

rate. It is one of the most common malignancies worldwide, especially in Asia, Africa,

and southern Europe. Although surgical resection is an effective treatment, patients with

HCC are at risk of recurrence after surgery. Preoperative early recurrence prediction for

patients with liver cancer can help physicians develop treatment plans and will enable

physicians to guide patients in postoperative follow-up. However, the conventional clinical

data based methods ignore the imaging information of patients. Certain studies have

used radiomic models for early recurrence prediction in HCC patients with good results,

and the medical images of patients have been shown to be effective in predicting

the recurrence of HCC. In recent years, deep learning models have demonstrated

the potential to outperform the radiomics-based models. In this paper, we propose

a prediction model based on deep learning that contains intra-phase attention and

inter-phase attention. Intra-phase attention focuses on important information of different

channels and space in the same phase, whereas inter-phase attention focuses on

important information between different phases. We also propose a fusion model to

combine the image features with clinical data. Our experiment results prove that our

fusion model has superior performance over the models that use clinical data only or the

CT image only. Our model achieved a prediction accuracy of 81.2%, and the area under

the curve was 0.869.

Keywords: early recurrence, deep learning, multi-phase CT images, intra-phase attention, inter-phase attention

INTRODUCTION

Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. It is one
of the most common malignancies worldwide, especially in Asia, Africa, and southern Europe
(1, 2). The main treatment options for HCC include surgical resection, liver transplantation,
transarterial chemoembolization, targeted therapy, immunotherapy, and radiofrequency ablation.
Doctors usually need to develop a proper and reasonable treatment approach based on the patient’s
lesion stage, physical condition, and wishes. For patients with well-preserved liver function, surgical
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resection is the first-line treatment strategy (3). Surgical resection
is also the most common treatment (4). Patients have the longest
survival period if the surgery is completed in one stage. However,
the recurrence rate of HCC can reach 70–80% after surgical
resection (5). HCC recurrence is also an important cause of
patient death (6). Time to recurrence is an independent survival
factor, and patients with early recurrence tend to have lower
overall survival (OS) than patients with late recurrence (7, 8). It
is important to identify patients at high risk of early recurrence
of HCC after radical surgical resection.

To date, many studies have been performed to evaluate the
prognosis of HCC patients after resection. Previous studies
have shown that pathologic features, such as microvascular
invasion (MVI), vascular tumor thrombosis, histologic grading,
and tumor size, are factors in the prognostic risk stratification
of HCC (9–11). However, the pathologic features can only be
obtained by preoperative biopsy and cannot be widely used in
routine clinical practice because of their aggressive nature and
the risk of bleeding. Therefore, we need to develop a method to
accurately predict the risk of early recurrence after resection prior
to surgery.

Traditional approaches use machine learning methods (e.g.,
random forests or support vector machines) to construct
predictive models based on patients’ clinical data (12, 13). These
methods ignore the medical imaging information of patients.
Medical imaging is an integral part of the routine management
of HCC patients and has become an important non-invasive tool
for detecting and identifying the degree of malignancy of HCC
(14, 15). However, conventional images obtain limited imaging
features that do not fully reflect the heterogeneity within the
tumor and are subjective assessments of the lesion made by
physicians; the assessments show a high degree of variability
among physicians. The use of such qualitative imaging features
to accurately predict early recurrence in HCC patients remains
challenging for physicians. In 2012, Lambin introduced the
concept of radiomics, which uses machine learning techniques to
extract many features frommedical images to analyze disease and
prognosis (16). Machine learning, on the other hand, is defined as
a subclass of artificial intelligence systems and belongs to weak
AI, which helps machines to learn and make decisions based
on data (17). In 2015, Gillies et al. illustrated the effectiveness
of radiomics, a quantitative method for extracting features from
medical images (18). Since then, several studies have shown that
the application of extractedmedical image features can be used as
prognostic imaging biomarkers (19, 20). Zhou et al. extracted 300
radiomic features from multi-phase computed tomography (CT)
and screened 21 radiomic features to predict early recurrence of
HCC using the least absolute shrinkage and selection operator
(LASSO) regression method (21). Ning et al. also developed a
CT-based radiomic model to predict early recurrence of HCC
(22); they found that the integration of radiomic features and
relevant clinical data could effectively improve the performance
of the prediction model. Radiomics is a new tool for radiologists
to provide quantitative analysis and image interpretation and
to provide an automated process to remove repetitive tasks to
save physician time and effort, improve diagnostic performance
and optimize overall workflow (23). In addition, radiomics can

facilitate a personalized approach to medicine by providing
physicians with a non-invasive tool to change the way cancer
patients are treated, which can allow patient-specific treatments
(24, 25). Nowadays, problems such as the lack of standardization
and proper validation of radiomics models hinder the practical
application of radiomics-based technologies to clinical practice,
and the establishment of large-scale image biobanks may be one
way to solve the problem (26). In addition to this, deep learning-
based radiomics models are considered as black boxes by
clinicians, making these models less interpretable and practical,
and these challenges will be further explored in future studies.
However, the image features extracted in these two studies were
based on handcrafted low- or mid-level image features, which
are limited by a comprehensive description of the potential
information associated with early recurrence. Manual tuning of
the models also brings in human bias.

In recent years, deep learning has been applied to survival
prediction for various cancers (27–29). Deep learning uses
convolutional neural networks (CNNs) that can directly perform
feature extraction and feature analysis on image inputs; deep
learning uses an end-to-end network structure. End-to-end
deep learning models can automatically extract relevant features
from images without human intervention. Such models can
eliminate human bias and can extract high-level semantic
features that are limited by manually defined feature extraction
(30). Although the predictive performance of deep learning
has been shown to outperform radiomics approaches in other
topics, a few studies have applied deep learning to early
recurrence prediction in HCC. Yamashita et al. constructed a
deep learning model to predict the recurrence of HCC based on
digital histopathologic images with good results (31). However,
digital histopathology images are usually obtained from resected
tumors only after surgery, and they are difficult to apply to
preoperative prediction.

Previous research has shown that deep learning methods
make better predictions than radiomics methods (32, 33). We
combined the patient’s preoperative multi-phase CT images after
registration into a single three-channel image as the input to the
deep learning network. Although previous studies have yielded
good results, there are still enhancements to be made. We can
combine the correlation information between the three phases
to further extract more important and critical features from the
features extracted by CNN. The attention mechanism, which
has become very popular recently, is applied to deep learning
networks to obtain a breakthrough in the accuracy of many
tasks in computer vision (34–36). In deep learning, the features
extracted by the backward network flow are equally important.
The attention mechanism can suppress the flow of some invalid
information based on some a priori information, thus allowing
important features to be retained. In this paper, we propose a
prediction model based on deep learning, which contains intra-
phase attention and inter-phase attention modules. The intra-
phase attention module focuses on important information in
different channels and spaces within the same phase, whereas the
inter-phase attention module focuses on important information
in different phases. We also propose a fusion model to combine
the image features and clinical data.
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MATERIALS

This study was approved by Zhejiang University, Ritsumeikan
University, and Run Run Shaw Hospital. The medical images
and clinical data used in this study were collected from Run
Run Shaw Hospital. Initially, 331 consecutive HCC patients who
underwent hepatectomy from 2012 to 2016 were included in this
retrospective study. The following criteria were followed to select
the patients: (1) patients with postoperatively confirmed HCC;
(2) patients having a contrast-enhanced CT scan within a month
prior to surgery; (3) patients undergoing postoperative follow-up
for at least 1 year; (4) patients without any history of preoperative
HCC treatment; and (5) patients with negative surgical margins
(complete tumor resection). Ultimately, a cumulative total of
167 HCC patients (140 men and 27 women) were included in
the study. The peak time of HCC recurrence was 1 year after
resection, which was defined as “early recurrence” (ER) (37).
Sixty-five (i.e., 38.9%) patients were identified as having early
recurrence, whereas the remaining 102 (i.e., 61.1%) patients
did not have any recurrence, that is, they were non-ER (NER).
Therefore, these patients were divided into two groups: ER
and NER.

Clinical Data
Many studies have discussed clinical prognostic indicators
of HCC recurrence. For example, Portolani et al. showed
that chronic active hepatitis, such as the hepatitis C virus
(HCV) infection, and tumor MVI were associated with ER
(5). Examination of MVI is obtained by observing pathological
sections after surgery. These clinical data were not included in
our study. Chang et al. suggested a patient age of 60 years as the
cut-off value for ER and NER (38). Okamura et al. (39) found
that preoperative neutral lymphatic ratio (N/L ratio), an index
of inflammation, was associated with disease-free survival and
OS in HCC patients. Patients with NLR ≥ 2.81 had significantly
better outcomes in the NLR < 2.81 group as compared to those
with NLR ≥ 2.81. In addition to NLR, general clinical indicators
of prognosis included age, gender, tumor size, tumor number,
hepatitis B virus (HBV) infection, portal vein invasion, alanine
aminotransferase (ALT), alkaline phosphatase (AKP), glutamate
transaminase (AST), Barcelona clinical liver cancer (BCLC) stage,
cirrhosis, and alpha-fetoprotein (AFP) (40).

The clinical factors collected in our study are shown inTable 1
and include gender (male or female), age (<60 or ≥60 years),
tumor size (<5 or≥5 cm), number of tumors (single ormultiple);
portal vein NLR (<2.81 or ≥2.81), invasion (yes/no), CP level
(A or B), cirrhosis (yes/no), HBV infection (yes/no), AST (<50
or ≥50 U/L), ALT (<40 or ≥40 U/L), and AKP (<125 or ≥125
U/L), BCLC staging (0, A, B, C), ALB (≥40 or <40 U/L), AFP
(<9 or ≥9 µg/L), TB (<20.5 or ≥20.5 U/L), and GGT (<45 or
≥45 U/L). Clinical data were evaluated by the chi-squared test,
a well-known method used to estimate dependencies between
categorical variables (41, 42); p-values < 0.05 were considered to
be significant. Seven clinical factors, namely, tumor size, portal
vein invasion, N/L ratio, TB, AFP, and BCLC stage, were selected
and further expressed as a binary vector. The nine elements of
the binary vector are [c1, c2, c3,..., c8, c9], where [c1] represents

TABLE 1 | Clinical variables of patients with ER and NER.

Clinical variables Total

n = 167

NER

n = 102

ER

n = 65

P-value*

(Chi-square

test)

Sex 0.826

Female 27 17 10

Male 140 85 55

Age 0.018

<60 102 55 47

≥60 65 47 18

Tumor size (mm) <0.001

<50 102 74 28

≥50 65 28 37

Tumor number 0.152

Single 155 97 58

Multiple 12 5 7

Portal vein invasion 0.001

No 143 95 48

Yes 24 7 17

Liver cirrhosis 0.794

No 52 31 21

Yes 115 71 44

HBV infection 0.054

No 33 25 8

Yes 134 77 57

N/L ratio 0.039

<2.8 106 71 35

≥2.8 61 31 30

ALT (U/L) 0.417

<40 104 66 38

≥40 63 36 27

AST (U/L) 0.500

<50 123 77 46

≥50 44 25 19

AKP (U/L) 0.054

<125 131 85 46

≥125 36 17 19

GGT (U/L) 0.065

<45 66 46 20

≥45 101 56 45

ALB (g/L) 0.256

≥40 165 100 65

<40 2 2 0

TB (µmol/L) 0.020

<20.5 122 81 41

≥20.5 45 21 24

AFP (µg/L) 0.003

<9 50 39 11

≥9 117 63 54

CP level 0.132

A 140 89 51

B 27 13 14

BCLC stage <0.001

(Continued)
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TABLE 1 | Continued

Clinical variables Total

n = 167

NER

n = 102

ER

n = 65

P-value*

(Chi-square

test)

0 22 17 5

A 117 78 39

B 4 1 3

C 24 6 18

*P < 0.05 means significant difference. The bold values indicate P values <0.05 are

highlighted. The bold values indicate the best results.

the age ([0]: <60, [1]: ≥60); [c2] represents the tumor size ([0]:
<5 cm, [1]: ≥5 cm); [c3] represents the portal vein infiltration
([0]: absent, [1]: present); [c4] represents the N/L ratio ([0]: <2.
8, [1]: ≥2.8); [c5] represents TB ([0]: <20.5, [1]: ≥20.5); [c6]
represents AFP ([0]: <9, [1]:≥ 9); [c7, c8, c9] represents the
BCLC staging ([0, 0, 0]: 0, [0, 0, 1]: A, [0, 1, 0]: B, [1, 0, 0]: C).

Contrast-Enhanced CT Scan
Contrast-enhanced CT scans (multi-phase CT images) are used
for prediction of early recurrence of hepatocellular carcinoma.
The standard scans for CT liver enhancement in hospitals are
four phases. A non-contrast-enhanced (NC) scan was performed
prior to the contrast injection. The post-injection phase included
the arterial (ART) phase (30–40 s after the contrast injection),
the portal vein (PV) phase (70–80 s after the contrast injection),
and the delayed (DL) phase (3–5min after the contrast injection).
Since the DL and PV phases provide overlapping information
and adding delayed phases not only increases the workload but
also adds burden of patients, only the first three phases (i.e., NC,
ART and PV) are usually captured and used for diagnosis inmany
clinical practices (43, 44). We also only use the NC, ART, and PV
phases for this study. Our CT images were acquired using two
scanners: a GE LightSpeed VCT scanner (GE Medical Systems,
Milwaukee, WI, USA) and a Siemens SOMATON Definition
AS scanner (Siemens Healthcare, Forchheim, Germany). The
resolution of these CT images was 512 × 512, and the thickness
of each slice was either 5 or 7mm. The region of interest (ROI)
was manually marked by an abdominal radiologist having 3
years of experience via ITK-SNAP (version 3.6.0, University of
Pennsylvania, Philadelphia, USA) (39). It was then corrected by
a radiologist having 6 years of experience in the field. In our
experiments, we used the physician-labeled ROI as the input
to the model. The tumor and liver would behave differently at
different stages, which means that the multi-phase CT would
show more information. Figure 1 shows the CT images of a
patient who underwent a contrast-enhanced scan before surgery.

METHOD

We propose an end-to-end deep learning prediction model that
combines imaging data and clinical information of HCC patients.
Figure 2 shows the workflow of our proposed deep phase
attention (DPA) model, which directly predicts early recurrence
of HCC from multi-phase CT inputs and clinical data. The DPA

model is composed of two pathways: image and clinical. The
image pathway consists of three residual convolution branches
and two phase-attention modules. It is a self-designed prediction
network based on the deep residual network (ResNet) backbone
(45). In the next subsections, we will introduce our proposed
DPAmodel in detail in terms of the backbone network, the phase
attention module, and the clinical data combined with images.

ResNet Backbone
The proposed deep residual network (ResNet) is a milestone
event in the history of CNN images (45). The degradation
problem of deep networks indicates that deep networks are
not easy to train. Residual blocks can effectively alleviate the
network degradation problem and remains a design element of
various deep learning networks. We first designed three residual
branch CNNs in the same network based on the ResNet structure
and extracted high-level features of each of the three phases
through these three branches. This backbone network is shown
in Figure 3. Our experimental sample size was not large enough;
therefore, we used the fine-tuning training method (46), which
could alleviate the overfitting problem in network training. We
used ImageNet (47) as our pre-training data, and then fine-tuned
it using our private data. The detailed residual block design is
shown in Table 2.

Phase Attention Modules
The phase attentionmodules were added to extract the important
features so that the model could improve the prediction accuracy.
At the same time, it did not bring more overheads to the
computation and storage of the model. We proposed two types
of phase attention modules: intra-phase attention and inter-
phase attention.

Intra-phase Attention
We implemented intra-phase attention by using the channel
attention and spatial attention modules, namely, squeeze-
and-excitation network (SENet) (34) and convolutional block
attention module (CBAM) (35). The intra-phase attention
module is shown in Figure 4. The intra-phase attention acts
independently on each phase. The intra-phase attention module
contains channel attention and spatial attention in parallel. For
channel attention, a global average pooling (squeeze operation)
was first performed on the feature map. By the operation of
global pooling (pooling size H × W), we obtained a C × 1 ×
1 tensor. Then the excitation operation contains 2 FC layers.
The first FC layer has C/r neurons (r is set to 16 in our
experiments), which is a dimensionality reduction process. The
second FC layer is then up-dimensioned to C neurons, which
has the advantage of adding more non-linear processing to fit
the complex correlations between channels. Then a sigmod layer
is connected to obtain C × 1 × 1 weights. The original feature
map (C × H × W) and the C × 1 × 1 attention features
are scaled. For spatial attention, a channel-based global max
pooling and global average pooling were performed to obtain
two H × W feature maps. After that, the two feature maps were
concatenated (channel splicing) based on the channel. Then after
a 7× 7 convolution operation, the dimensionality is reduced to 1

Frontiers in Radiology | www.frontiersin.org 4 March 2022 | Volume 2 | Article 856460

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Wang et al. Phase Attention Model

FIGURE 1 | (A–C) are NC, ART, PV phases, respectively. The region of interest (ROI) is the bounding box of the tumor.

FIGURE 2 | Workflow of the DPA model for joint image data and clinical data. The image pathway consists of three residual CNN blocks and two phase-attention

modules. Deep image features are derived from these two components and fed into the fully connected (FC) layer. Clinical data are passed through an FC layer and

then concatenated with image features to pass through a final FC layer for early recurrence prediction of HCC.

channel again. Then, the spatial attention feature was generated
by the sigmoid function, and the feature was multiplied by
the original feature map. The final feature was obtained by
summing up the features generated by the channel attention and
spatial attention.

Inter-phase Attention
In the inter-phase attentionmodule, the feature maps of the three
phases are input to the channel attention and spatial attention
blocks (see Figure 5). The inter-phase channel attention module
differs from the intra-phase channel attention module in the

Frontiers in Radiology | www.frontiersin.org 5 March 2022 | Volume 2 | Article 856460

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Wang et al. Phase Attention Model

FIGURE 3 | Basic backbone network that was designed based on ResNet.

TABLE 2 | ReNet18 residual block structure.

Layer name Output size ResNet 18

kernel size, out channels, stride

ResNet 50

kernel size, out channels, stride

Conv1 112 × 112 7 × 7, 64, stride 2 7 × 7, 64, stride 2

Conv2_x 56 × 56 3×3 max pool, stride 2




3× 3, 64

3× 3, 64



 × 2

3 × 3 max pool, stride 2








1× 1, 64

3× 3, 64

1× 1, 256









× 3

Conv3_x 28 × 28





3× 3, 128

3× 3, 128



 × 2









1× 1, 128

3× 3, 128

1× 1, 512









× 4

Conv4_x 14 × 14





3× 3, 256

3× 3, 256



 × 2









1× 1, 256

3× 3, 256

1× 1, 1024









× 6

Conv5_x 7 × 7





3× 3, 256

3× 3, 256



 × 2









1× 1, 512

3× 3, 512

1× 1, 2048









× 3

channel attention features (C × 1 × 1). In the inter-phase
attention module, the channel features generated by each of the
three phases are summed and averaged to generate a new channel
attention feature (C × 1 × 1; see the yellow part of the inter-
channel phase attention in Figure 5). Then, the scale operation
was performed with the original feature maps of each of the three

phases. Similarly, the spatial attention features (H × W × 1)
generated by each of the three phases were summed and averaged
to generate a new spatial attention feature (H × W × 1; see the
yellow part of inter-spatial phase attention in Figure 5). Then,
the multiplication operation was performed using the original
feature maps of the three phases. Finally, all the generated feature
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FIGURE 4 | Intra-phase attention structure. All three phase branches are operated in the same way, but we have shown only one phase example here.

maps were summed to produce the output of this inter-spatial
attention module.

Fusion Model Using Clinical Data and CT
Images
As shown in Figure 2, our proposed DPA model uses different
types of data as the input to the deep learning network. The
image features (2,048) were extracted by the image pathway
after the CNN module and phase attention module. The clinical
data vector had only nine elements; therefore, we added an FC
layer to the clinical data pathway to up-dimension it to 30.
We also added an FC layer to the image pathway to down-
dimension to 30. Then, we concatenated these two types of data
features. The early recurrence prediction of HCC was performed
by the last FC layer (softmax). We used cross entropy as the loss
function of the DPA model. Let N be the number of samples.
Ij and cj are the j-th CT image input data and clinical input
data (i = 1, 2, . . .N), respectively. We used b, k, and W to
denote the bias term, number of neurons, and weight of the
last FC layer, respectively; yj denotes the label. T(cj) and S(Ij)
represent the output of the clinical data training pathway and the
image training pathway, respectively, before the last FC layer;

⊕

denotes the concatenation operation. The loss function is given
as follows:

L = CrossEntropy
(

S
(

Ij
)

⊕ T
(

cj
))

= −
1

N

N
∑

j=1

[

yj ln pj1 +
(

1− yj
)

ln
(

pj2
)]

(1)

pjk =
ezk

∑2
k=1 e

zk
(2)

zk = W
T
k ·

[

S
(

Ij
)

⊕ T
(

cj

)]

+bk , k = 1, 2. (3)

Joint Loss Function
In the DPA model, we added a softmax layer to the clinical data
pathway and CT image pathway before concatenation. With this,
we could calculate the loss of both pathways. Let pIj1 represent the

output possibility of the image pathway; pcj1 represent the output

possibility of the clinical data pathway; and pcomj1 represent the

output possibility of the concatenate pathway. Then, the joint loss
is given as follows:

L =
1

4
Limage +

1

4
Lclinical +

1

2
Lcombine =

1

4
CrossEntropy

(

S
(

Ij
))

+
1

4
CrossEntropy

(

T
(

Ij
))

+
1

2
CrossEntropy

(

S
(

Ij
)

⊕ T
(

cj
))

(4)

where Limage represents the loss of the image pathway;
Lclinical represents the loss of the clinical data pathway; and
Lcombine represents the loss after combination. Lcombine is
calculate by the loss function (Equation 1).

Experiments
Our experiments were based on the Python 3.6 language
environment. We implemented our network using the
Tensorflow and Keras frameworks. All our experiments
were conducted on a machine with the following specifications:
Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 64-bit, RAM 32G,
GPU NVIDIA GeForce GTX 1080 Ti, Windows 10 Professional
version number: 19042.1415.

We used ten-fold cross-validation as our evaluation method.
The accuracy and the area under the curve (AUC) for the
receiver operating characteristics were calculated to evaluate the
prediction performance of the model. We randomly divided 167
patients into 10 groups; each group contained 6 or 7 ERs and
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FIGURE 5 | Inter-phase attention structure containing inter-channel phase attention and inter-spatial phase attention: they are in parallel.

TABLE 3 | The distribution of the 10-fold cross-validation dataset.

Experiment E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Training 695 (150) 681 (150) 683 (150) 691 (150) 694 (150) 676 (150) 700 (150) 694 (151) 680 (151) 691 (151)

Testing 70 (17) 84 (17) 82 (17) 74 (17) 71 (17) 89 (17) 65 (17) 71 (16) 85 (16) 74 (16)

Total 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167) 765 (167)

E1∼10 is 10 sets of experiments.
Outside the brackets is the number of slices. The bracket indicates the number of cases (patients).

10 or 11 NERs. During the ten-fold cross-validation, we selected
one data group as the test group, and the remaining nine groups
were training groups. The mean value was calculated for the
results obtained from the ten sets of experiments. This mean
value was used as the final score of the model. The number of
CT slices containing the tumor varied from patient to patient
because of the different tumor sizes and locations. We selected
the central slice (the one with the largest tumor cross-section) as
well as its adjacent slices as our data set. A total of 765 labeled

slices were used in our experiments. Table 3 summarizes the
number of training images and test images (CT slice images) for
each experiment.

We used the following parameters in the training process: a
batch size of 8, a default training epoch of 50, a learning rate of
0.0001 for finetuning training, and a loss function as described
in Section Fusion Model Using Clinical Data and CT Images. In
the model with the addition of joint loss, the training parameters
were the same, and the loss function is described in Equation (4).
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TABLE 4 | Prediction results of ReNet18 and ResNet50 based branch CNN.

Model ResNet50 based (pretrain) ResNet18 based (pretrain)

Accuracy AUC Accuracy AUC

Average 62.5% ± 5.5 0.662 ± 0.08 62.3% ± 6.0 0.662 ± 0.04

Acc, accuracy; AUC, area under the receiver operating characteristics curve.

Comparison Results of Different Models
We first compared the prediction results of ReNet18 and
ResNet50 as the residual branching blocks. From Table 4, we can
see that the performance of ResNet18 is almost the same as that of
ResNet50, but ResNet18 has fewer network layers and parameters
and a lower training time. Therefore, we chose the residual block
of ResNet18 as our backbone CNN.

We compared the proposed method with different existing
models in Table 5. The existing models include the clinical model
(32), the radiomics model (48), deep learning models (32, 33)
and deep attention models (34, 35). The clinical model is a
random forest approach that uses only clinical data to construct a
random forest, as described in (32). To extract radiomic features
and select features using LASSO, we used the radiomics model
given in (48). Finally, a random forest was used to build the
prediction model. Also, we compared the proposed method with
our previous deep learning-based work (32, 33) and the deep
attention models of SENet (34) and CBAM (35). In our previous
study (32), we input three phases as three channels into a single
network, which we considered as early fusion. The original SENet
and CBAM were not applicable to multi-period phase input
data. Here, we applied the attention mechanisms of SENet and
CBAM to the three-branched backbone network of ResNet18.
The comparative results of the experiments are shown in Table 5.
Our experiment results prove that the clinical model predicts
better than the imagingmodel (radiomics model or deep learning
model) with our batch of data. Among the imaging models, our
proposed DPA model performs the best. Our proposed DPA
fusion model, which combined multi-phase CT and clinical data,
achieved a prediction accuracy of 81.2% and an AUC of 0.869;
our proposed model outperformed other models.

Ablation Study
To demonstrate the effectiveness of intra-phase attention and
inter-phase attention in the DPA model, we compared the fusion
strategies of the proposed phase attention module. We used the
three-branch ResNet18 as the network backbone of all fusion
strategies. The comparison results are shown in Table 6. Note
that all the methods using phase attention outperformed the
network without phase attention, which proves the effectiveness
of phase attention. Moreover, the experiments proved that
more improvements are obtained by adding both intra-phase
attention and inter-phase attention. The inclusion of clinical
data and joint loss strategy are also ways to improve the
prediction performance. In particular, the DPA fusion model
can better predict early recurrence in HCC patients after adding
clinical data.

TABLE 5 | Comparison results of different models.

Input data type Models Acc AUC

Clinical data only Clinical model (32) 76.03% ± 10.0 0.753 ± 0.13

Image data only Radiomics model

(48)

67.04% ± 4.9 0.640 ± 0.03

WANG et al.’s

Model (32)

69.5% ± 5.1 0.723 ± 0.06

SENet-like model

(34)

64.5% ± 3.4 0.675 ± 0.06

CBAM-like model

(35)

66.7% ± 4.2 0.684 ± 0.05

Propose DPA

model

70.7% ± 2.4 0.747 ± 0.03

Clinical data and

Image data

WANG et al.’s

fusion model (33)

80.49% ± 4.3 0.833 ± 0.03

Propose DPA

fusion model

81.2% ± 1.3 0.869 ± 0.03

Acc, accuracy; AUC, area under the receiver operating characteristics curve. The bold

values indicate P values <0.05 are highlighted. The bold values indicate the best results.

DISCUSSION

Contrast-enhanced CT is one of the most important modalities
for liver tumor diagnosis. Multi-phase CT images provide
rich and complementary information for the diagnosis of
liver tumors. Based on clinical observations, the PV phase
is the preferred choice for liver tumor segmentation. In our
experiments with ResNet18 and using only single-phase CT
images, the highest prediction accuracy was achieved for the PV
phase, as shown in Table 7. This is consistent with the clinical
observation that the PV phase provides doctors with clearer
information, such as contours. In this study, we propose a multi-
branch ResNet18 backbone model using multi-phase images
as multiple inputs to improve the early recurrence prediction
performance of HCC using information from multiple phases.
Our method improved the prediction accuracy by at least 8% in
both cases as compared with the network using only single-phase
images; this demonstrated the effectiveness of the multi-branch
ResNet18 backbone model and the efficient use of multi-phase
CT images.

We demonstrated the effectiveness of the phase attention
module through an ablation study (see Table 6). When intra-
phase and inter-phase attention were used together, the accuracy
of the backbone network improved by 8.4%. In contrast
to the SENet-like and CBAM-like systems, our proposed
attention mechanism was designed with an additional inter-
phase attention module. Natural images do not use multi-phase
inter-attention mechanisms, but in the medical field, multi-phase
medical images are commonly available, such as multi-phase CT
and multi-phase MR. These images are not only applicable to the
study of liver tumors but can also be applied to the analysis of
other organ diseases. In the future, we will apply the DPA model
to other topics as a method to further validate the effectiveness
and scalability of the phase attention module.

Our study has certain limitations mainly because we
implemented a deep learning approach on a small sample dataset.
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TABLE 6 | Prediction results by ablation study.

Intra-phase Inter-phase Clinical data Joint loss Acc AUC

Baseline 62.3% ± 6.0 0.662 ± 0.04

Model1
√

67.2% ± 3.1 0.692 ± 0.04

Model2
√

67.6% ± 2.5 0.695 ± 0.04

Model3
√ √

70.7% ± 2.4 0.747 ± 0.03

Model4
√ √ √

80.5% ± 2.5 0.849 ± 0.04

Model5 (proposed)
√ √ √ √

81.2% ± 1.3 0.869 ± 0.03

The best results are highlighted in bold.

TABLE 7 | Comparison of single-phase ResNet18 backbone networks.

Model ResNet18 (NC) ResNet18 (ART) ResNet18 (PV)

Acc AUC Acc AUC Acc AUC

Average 58.7% ± 6.4 0.627 ± 0.09 60.3% ± 4.1 63.24 ± 0.06 61.42 ± 6.6 65.76 ± 0.06

The best results are highlighted in bold.

To avoid overfitting, we expanded the training sample by data
augmentation and used fine-tuning for training. The experiment
results look good, but deep learning training requires more
training data. Moreover, in our previous data collection, the
DL phase of the patients was missing, which prevented the DL
phase from being included in the network training. Although
the DPA model based on three-phase CT images performed well
in the predictions, the performance can be further improved
by using the information of the DL phase. In our future work,
we will collect more extensive data. We propose that deep
learning models can extract high-level features. However, the
high-level radiological features extracted by the convolutional
layers may suffer from low medical interpretability and high
overfitting probability, especially when the training dataset is not
large enough for understanding andmaking diagnostic decisions.
In the future, we will consider more image features, such as
incorporating histology-extracted features into the deep learning
network; these measures will increase medical interpretability
and make the model better for use in clinical practice.

CONCLUSION

The performance of the deep learning model was improved
by adding intra-phase attention and inter-phase attention. Our
proposed fusion model, which combined multi-phase CT and
clinical data, achieved a prediction accuracy of 81.2% and an
AUC of 0.869.
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