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Artificial intelligence (AI) is frequently used in non-medical fields to assist with

automation and decision-making. The potential for AI in pediatric cardiology,

especially in the echocardiography laboratory, is very high. There are multiple

tasks AI is designed to do that could improve the quality, interpretation, and

clinical application of echocardiographic data at the level of the sonographer,

echocardiographer, and clinician. In this state-of-the-art review, we highlight

the pertinent literature on machine learning in echocardiography and discuss

its applications in the pediatric echocardiography lab with a focus on

automation of the pediatric echocardiogram and the use of echo data to better

understand physiology and outcomes in pediatric cardiology. We also discuss

next steps in utilizing AI in pediatric echocardiography.
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Introduction

Artificial intelligence (AI), the study and development of computational algorithms

that mimic human cognitive functions such as learning and thinking, is used in non-

medical fields to assist with automation and decision-making (1). There are multiple

tasks AI is designed for that could improve the quality, interpretation, and clinical

application of echocardiographic data at the level of the sonographer, echocardiographer,

and clinician. Machine learning (ML), algorithms whose goal is to learn patterns from

data to improve at a given task, is a field within AI that has been applied to many

tasks in medical research. ML algorithms often require some engineering of the input

features (i.e., the process of creating new variables from the data such as extracting pixel

density, peak velocity from a spectrogram, or a measurement from an image) prior to

developing the model which can be both time consuming and challenging especially for

large high dimensional datasets like images and videos. Deep learning (DL) is a subset

of ML algorithms that allow more flexibility in approximating the underlying structure
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of the data which leads to less feature engineering requirements

to obtain accurate predictions. While this approach is especially

appealing for high dimensional data such as echocardiograms,

this flexibility is at the cost of increased complexity which has

its own shortcomings (e.g., ‘black-box’ decision-making and

computational cost) (2).

Advances in pediatric cardiac imaging have proven

challenging due to the complexity of pediatric heart disease

and the impact of growth. The potential for ML in pediatric

cardiology, especially in the pediatric echocardiography

laboratory, is very high. While there are several excellent recent

reviews that have highlighted the clinical applications of AI

in medicine and cardiology, reviews specific to AI applied in

the pediatric echocardiography laboratory are lacking (1, 3–5).

In this state-of-the-art review, we identify needs unique

to the pediatric echocardiography laboratory that could be

addressed by AI, the recent applications of ML in pediatric

echocardiography, and perspectives on future directions of AI

in the pediatric echocardiography laboratory.

Part I: Optimizing the pediatric
echocardiogram

Echocardiography is one of the fundamental technologies

that helps guide the diagnosis and treatment of children

with congenital heart disease (CHD). AI, especially DL, has

been implemented in other fields where it has excelled in

tasks using unstructured data (e.g., raw images and video

clips) such as facial recognition and automated driving (2).

Here, we describe the recent literature on using deep learning

to automate and optimize echocardiographic acquisition,

image optimization, measurements, and diagnosis in pediatric

cardiology (Tables 1, 2).

Facilitating image acquisition and
automating optimization

In congenital and pediatric cardiology, the quality of

ultrasound image acquisitions is guided by the proper

implementation of published practice guidelines (16).

However, despite best efforts to adhere to consensus standards,

misdiagnoses may still occur as echocardiography is a highly

operator-dependent technique. This may be related to errors

at the acquisition level such as sonographic planes being

incorrectly obtained or the defect visualized on screen but not

recognized by the operator (17) (Figure 1). AI has been shown

to achieve human-level performance in some medical imaging

analysis tasks (18). This raises the potential for automating

aspects of the pediatric ultrasound scan, including automated

image identification and measurements in real-time. In fetal

CHD screening, proof of concept studies using AI tools during

TABLE 1 Key AI literature in pediatric echocardiography.

Study Type of ML Description

Acquisition/optimization

Komatsu et al. (6) CNN Detection and labeling of cardiac

structures in a fetal US

Diller et al. (7) GAN Denoising and artifact removal in

congenital heart disease

echocardiograms

View classification

Arnaout et al. (8) CNN and FCN Classify fetal echocardiographic views

Gearhart et al. (9) CNN Classify transthoracic

echocardiographic views

Segmentation

Guo et al. (10) FCN Segment and measure left

atrial/ventricular structures

Measurements

He et al. (11) CNN Segment Left Ventricle in different

views and estimate LV EF

Diagnosis

Chotzoglou et al.

(12)

GAN Screen fetal echocardiograms for

abnormal cardiac structures

Arnaout et al. (8) CNN and FCN Screen fetal echocardiograms for

congenital heart disease

Wang et al. (13) CNN Diagnose septal defects on pediatric

transthoracic echocardiograms

Cardiac phenotypes

Meza et al. (14) Hierarchical

Clustering

Identify parameters that distinguish LV

obstructive disease

Garcia-Canadilla

et al. (15)

MKL and K-means

Clustering

Identify high-risk phenotypes for

adverse events in dilated

cardiomyopathy

CNN, convolutional neural network; US, ultrasound; GAN, generative adversarial

network; FCN, fully convolutional network; LV, left ventricle; EF, ejection fraction; MKL,

multiple kernel learning.

the acquisition phase have been shown to positively impact

the efficiency and quality of the fetal examination compared

to a standard manual scan. Recently, Matthew et al. showed

that using AI-embedded tools to reduce repetitive tasks (e.g.,

measuring fetal biometry and manually acquiring video clips of

standard fetal views) may allow more attention to be directed

to obtaining accurate morphological diagnoses (19). They

used an ensemble of convolutional neural networks (CNN),

a type of DL algorithm that is versatile in performing tasks

related to images and videos, that were trained for anatomic

measurements and image classification (20). Komatsu et al. (6)

also found that CNNs could be trained to achieve an automatic

detection of each cardiac substructure in fetal ultrasound videos,

and showed this could be applied to assist in detecting cardiac

structural abnormalities.
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TABLE 2 Selected machine learning approaches to pediatric

echocardiography.

Algorithm Description

Deep learning

Convolutional

neural network

A network architecture that is especially strong in

detecting underlying patterns in imaging data for both

unsupervised and supervised tasks. Though quite

versatile, often requires large datasets to be reliable

Fully convolutional

network

A type of CNN that is especially useful for

segmentation (e.g., tracing) tasks, but can be

computationally inefficient. Example: U-Net

Generative

adversarial network

Unique architecture that is employed in unsupervised

and certain supervised tasks. Consists of two networks:

a generator that creates synthetic data and a

discriminator that tries to distinguish synthetic data

from real data

Conventional

machine learning

Ensemble methods Algorithms that employ several decision trees and

averages their outputs to create a composite decision.

Requires structured data (i.e., features are manually

created) and can be computationally intense. Examples:

Random Forest, XGBoost

Cluster analysis A group of unsupervised learning techniques that

create homogenous groups of observations based on

similarities between features. Examples: Hierarchical,

K-means

Multiple kernel

learning

A kernel-based group of algorithms used in both

supervised and unsupervised tasks including for

non-linear dimensionality reduction (to determine the

set of features that retain the most variability in the

dataset)

Dimensionality

reduction

Seeks to determine the set of features that retain the

most variability in the dataset to find a good

representation of the data with the least amount of

variables. The resulting output is abstract and at best

estimates the feature values

Transthoracic echocardiographic measurements and

interpretation are heavily reliant on optimal probe positioning

and insonation angle (16). Østvik et al. (21) trained a CNN

to automatically identify if the operator has positioned the

probe correctly to obtain optimal angles for seven different

cardiac views (e.g., parasternal long axis, apical 2/3/4 chamber).

They demonstrated the CNN’s ability to do this in real time

such that it could facilitate optimal acquisition at the bedside.

Issues of image optimization for automation can be more

challenging in fetal and pediatric echocardiography, despite

having generally better image quality. Indeed, contrary to adult

cardiology, multiple ultrasound probe types can be used at

different frequencies and different frame rates. This issue of

acquisition heterogeneity is especially troublesome in AI as the

impact on image quality and the ensuing lack of homogeneity is

detrimental in AI-model training if not accounted for (22). For

this purpose, AI-assisted feedback systems have been proposed

to facilitate optimization of parameters including depth,

gain and frequency (23). Additionally, AI-based denoising

and artifact removal tools have been recently developed

for transthoracic echocardiographic imaging in congenital

heart disease that can further standardize image quality (7).

This allows a new generation of standardized high-quality

images that can be used for AI-based tools for measurement,

segmentation, and classification.

While these proof-of-concept studies support that AI can

address a strong clinical need within echocardiography, each

study has developed their own proprietary means to integrate

their AI algorithms and operator interface with the ultrasound

scanner. Extensive collaboration and development with industry

is needed before these novel innovations can be incorporated

into readily available commercial packages.

Automating echocardiography laboratory
tasks

After image acquisition and prior to the comprehensive

interpretation of an echocardiogram, several intermediate steps

need to be manually performed including view classification,

segmentation of cardiac structures (e.g., “tracing” a clinically

relevant structure within an image), and other quantitative

measurements that rely on view classification and segmentation

[e.g., ejection fraction (EF)].

While identifying an echocardiographic image to an

experienced operator is a simple task, it is because training a

sonographer or cardiologist in finding the correct view is often

the first step in understanding echocardiography. Subsequently,

training an algorithm to classify echocardiographic views is

an important first step in creating an AI workflow, especially

for automation tasks (2). This has been demonstrated to be

feasible in adult studies (21, 24, 25). More recently, Arnaout

et al. used 1,326 fetal echocardiograms to train a CNN to

identify five standard fetal views (e.g., three-vessel view, left

ventricular outflow tract view) with an AUC range of 0.72–0.88

(8). Furthermore, Gearhart et al. used a similar approach

to perform automatic image view classification on 12,067

individual transthoracic pediatric echocardiographic images (9).

The authors showed this model identified 28 preselected views

with 90% accuracy.

In echocardiography, we perform segmentation of cardiac

structures to assess abnormalities in cardiac morphology (e.g.,

left ventricular end diastolic diameter to assess for dilation)

and to be used in other quantitative measurements (e.g., end

systolic/diastolic left ventricular area to derive ejection fraction).
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FIGURE 1

Overview of tasks in the pediatric echocardiography laboratory that could be assisted with artificial intelligence workflows.

When an AI algorithm is tasked to use an image to segment

a cardiac structure, it needs to be trained on a pre-labeled set

of training images, supervised learning. The accurate labeling

(i.e., establishing the ground truth) of this dataset, which is often

manually performed, is a key aspect to creating a strong model.

However, in clinical medicine, such labels are not always clear-

cut. For example, if a researcher was interested in developing a

model to facilitate the echocardiographic screening of pediatric

hypertrophic cardiomyopathy (HCM), the current guidelines on

the diagnosis of HCM recommend a ventricular wall thickness

z-score of >2.5 as a potential cutoff to screen asymptomatic

children (26). Yet, it is unclear which z-score criteria to use

(e.g., Detroit, Boston, PHN) and there may be inconsistency

in the measurement itself (e.g., determining how to exclude

right ventricular muscle bundles for interventricular septal

diameter) all of which lead to imperfect labeling and thus a less

accurate model. With that said, segmentation tasks with clearly

defined labels have been proven to be comparable to manual

segmentation in adult echocardiographic studies (25). However,

in pediatrics sample size and variability in cardiac morphology

are common challenges to the development of pediatric-specific

AImodels. Guo et al. (10) was able to develop a pediatric-specific

DL model that is based on a fully convolutional network (FCN),

a type of CNN that is designed for segmentation tasks common

in medical imaging, to segment and perform measurements on

the left atrium and left ventricle. They developed novel methods

to accommodate for variability in size and heart rate prevalent

in children. Other methods are being developed to augment

the abilities of deep learning on smaller datasets such as the

use of generative adversarial networks (GAN) (27, 28). GANs

generate simulated data based on the original training images

to improve the model’s ability to perform a certain task; Arafati

et al. developed an FCN to perform segmentation of atrial and

ventricular chambers in the 4-chamber view and used a GAN to

augment the 450 adult echocardiograms used resulting in a dice

metric of 86%−92%, a measure of the degree of overlap between

the model’s segmentation and the manual segmentation.

It is possible for a deep learning algorithm to replicate

the steps a human would take to perform a quantification

task. For example, Zhang et al. (25) developed a CNN that

automatically identified the apical four chamber view, selected

the frames that best represented end-diastole and end-systole,

traced the LV endocardial border, and then derived an ejection

fraction from those steps. In contrast, Ouyang et al. used a CNN
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architecture that considers both spatial and temporal features

(i.e., spatiotemporal convolution) in predicting EF (Simpson’s)

and did not restrict the model predictions solely based on end-

diastolic volumes derived by endocardial area segmentation.

This permitted the model to have more freedom to derive its

own spatiotemporal features leading to a more accurate and

consistent prediction (29). The downside to this approach is

that is less transparent than the former model whose pipeline

makes each part of the segmentation process explicit. This model

was recently adapted for children where it was retrained on

a pediatric dataset to not only use apical four chamber views

but also parasternal short views to estimate EF by 5/6 area

length method with an R2 of 0.78 (11). This so-called ‘transfer

learning’ technique of fine-tuning a model previously trained

on a different dataset to be optimized for a different task is a

methodology unique to DL. In practice it allows the practitioner

to develop a model with significantly less data, a problem that

frequently occurs in pediatric cardiology (30, 31).

Apart from traditional methods to assess ventricular

function, other functional measurements including strain

imaging can be fully automated. However, compared to adult

echocardiography labs the uptake of the method has been

slower in pediatric cardiology (32). This can be explained

by the anatomical variability present in congenital cardiology,

the absence of dedicated post-processing software adjusting

for different probe frequencies, and the limitations in frame

rates relative to the higher heart rates present in younger

children, especially in infants (33). Some of these limitations

could be addressed using an AI-based approach to strain

imaging. An adult study has recently demonstrated that, using

B-mode image acquisitions, an AI algorithm could automatically

derive global longitudinal strain measurements with minimal

measurement variability (34). Applying AI-based automated

strain measurements in children would potentially result in

improving its applicability in pediatric heart disease and better

understanding of the factors that influence strain imaging in

children (35, 36).

Several of the studies in this section have obtained large

multicenter retrospective datasets to train and test their

algorithms. However, this does not preclude these algorithms

from prospective real-world trials to test their efficacy and

generalizability. Indeed, a number of these studies rely on open-

source datasets which have its own set of limitations (e.g.,

variable quality and number of images, poor labeling, etc.)

which could induce bias if not properly accounted for (22).

To address this, imaging biobanks are being developed whose

goal is to provide standardized medical image collections for

the development of higher quality models (37). Furthermore,

ML is the norm within the field of radiomics, the study of

deriving and analyzing imaging biomarkers from conventional

medical images to aid in clinical decision support systems,

and there is a strong push toward the standardization of not

only image acquisition but of the entire radiomics pipeline

from the development of features and ML algorithms, to

its implementation in the clinical workspace (e.g., the image

biomarker standardization initiative) (38).

Diagnosis of heart disease

The past 5 years have seen research efforts in developing AI-

based tools to assist with congenital heart disease diagnosis. This

would be useful as democratizing the diagnosis of significant

congenital heart disease to non-expert echocardiography users

would make the screening for CHD more efficient in particular

in fetal echocardiography. First-line screening for CHD is

typically provided by obstetricians during routine anatomic

scans during the second trimester. Despite newer guidelines

recommending a more comprehensive approach to screening

including additional fetal views, CHD continues to be missed

(17, 39). Having AI-based methods for screening would likely

increase the detection rates for significant CHD. Chotzoglou

et al. (12) were interested in developing an AI algorithm to

screen for abnormal hearts on fetal echocardiography using

a method called one-class anomaly detection. This method

trains a deep learning model on normal echocardiographic data

using generative adversarial networks and an autoencoder (α-

GAN). Here, the GAN involved two separate networks: the

first network (generator) creates simulated echocardiographic

images based on the training data given to it, and a second

model (discriminator) tries to discriminate if a given image is

simulated or real. With this method, the α-GAN model was able

to distinguish normal hearts from HLHS with an AUC of 0.81

when exposed to a fetal ultrasound dataset from a single center.

To understand if the model was making clinically intelligible

decisions, they applied a gradient-weighted class activation map

to the model which visualizes which pixels the model deemed

most important in detecting an abnormal image (Figure 2). This

approach demonstrated that an AI-based model could help in

screening for specific types of critical CHD. This will need to

be tested for other types of CHD since HLHS was deliberately

chosen as the initial lesion as it is grossly abnormal in the four-

chamber view and thus identifiable from a single imaging plane.

Arnaout et al. (8) further assessed the clinical applicability of

deep learning as a screening tool by testing an ensemble of neural

networks on a larger more heterogenous dataset of 107,823

images derived from multiple sources. They utilized a novel

CNN algorithm for classification of fetal images and found an

AUC of 0.95–0.99 discriminating normal from abnormal from a

test set of many complex CHD.

As a decision support tool, AI could further help

transthoracic echocardiography operators in diagnosing

different types of CHD. For instance, two studies demonstrated

the ability for DL models to diagnose septal defects including

ASDs, VSDs, and AVSDs (13, 40). Additionally, Diller et al. (41)

trained a CNN to classify apical 4-chamber and parasternal
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FIGURE 2

Gradient-weighted class activation mapping (Grad-CAM) helps us understand what aspects of an image are important in a deep learning

model’s decision-making. Chotzoglou et al. developed a DL model that classified fetal images as normal or abnormal cardiac anatomy. They

used Grad-CAM mapping to demonstrate that the model identifies cardiac structures as important in understanding if the fetal ultrasound image

represents a normal or abnormal heart. Figure adapted from Chotzoglou et al. (12).

short-axis images as congenitally corrected transposition of the

great arteries (ccTGA), d-TGA, and normal with an accuracy

of 98%. Furthermore, they used transfer learning to adapt

a CNN that was previously developed for biomedical image

segmentation tasks to segment the endocardial border of

the systemic ventricle (Dice score 0.79 for ccTGA). Of note,

current error rates in CHD diagnosis in experienced pediatric

echocardiography laboratories are extremely low relative to the

number of studies performed, often with limited therapeutic

impact. Instead, DL could prove more useful in developing

models for specific interventions that diagnostic imaging is

used to help with. For example, a CNN could be trained on

echocardiographic data to accurately predict the correct atrial

septal defect occlusion device, patent ductus arteriosus closure

device, or pulmonary valve replacement device size and type.

Using ML to assist in specific interventions in CHD is further

elaborated below (Part II, subsection: Congenital Heart Disease).

Part II: Machine learning to
understand pediatric heart disease

While AI applications in echocardiography have largely

focused on automation of different tasks, it can also be

used to obtain a deeper statistical understanding of data by

identifying cardiac phenotypes or associated factors to clinical

outcomes. In the pediatric echocardiography lab, this could be

used to understand how our non-invasive assessments reflect

cardiac physiology.

Explainability in machine learning

Supervised ML is where an algorithm’s goal is to best

predict the label (e.g., outcome) for a given set of pre-

labeled observations. Some supervised algorithms, especially DL

models, are often considered “black box” techniques in that

it is difficult to understand how predictions are derived for a

given model. The field of interpretable machine learning has

been developed in order to explain model predictions which

could help improve clinical acceptance of the ML model (42).

For instance, for a given set of features (i.e., variables), we can

compute how important an individual feature is by evaluating

the impact on prediction accuracy in a dataset when those

feature’s values are not used in its prediction (e.g., permutation

feature importance). To understand how features are used in a

model, we can develop a global surrogate model to approximate

the predictions of the original comprehensive model. Surrogate
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FIGURE 3

Unsupervised learning techniques such as dimensionality reduction and cluster analysis have improved our ability to identify imaging

phenotypes [Garcia-Canadilla et al. (15)]. (A) Non-parametric dimensionality reduction techniques (multiple kernel learning) quantify the

similarity between patients based on their echocardiographic inputs (Doppler velocity and ventricular strain tracings). This plot is a

representation of how patients are positioned by their similarities based on dimensionality reduction. K-means clustering then identified five

separate groups of patients based on these similarities (di�erent colors represent di�erent clusters). (B) Each cluster has clinically distinct

characteristics. Clusters 1 and 2 were healthy volunteers. Clusters 3–5 were DCM patients. In particular, cluster 5 had the oldest patients and

had a relatively increased usage of oral and IV medications. (C,D) Representative mitral, aortic and pulmonary vein Doppler velocity patterns

normalized for one full cardiac cycle for each group are seen here. Patients with DCM (Clusters 3–5) have relatively abnormal Doppler tracings

compared to healthy volunteers (clusters 1–2). Figure adapted from Garcia-Canadilla et al. (15).

models provide a more transparent way of assessing feature

usage (e.g., regression coefficient table in a logistic regression

or feature value cutoffs in a decision tree) and by assessing

the performance of the approximated model to the original

comprehensive model, we can understand how accurate the

surrogate model is (43, 44).

In unsupervised machine learning, there are no labels or

outcomes annotated with each observation, and instead the

algorithm’s task is to understand the structure of the data with

tasks typically involving reducing the amount of redundant

variables/features (e.g., dimensionality reduction) or quantifying

the similarity between patients/observations (e.g., cluster

analysis; Figure 3). Thus, the end-goal in unsupervised learning

is finding relationships in the data itself. The potential of this

technique to identify imaging phenotypes in echocardiography

is strong due to the high dimensional and complex data

generated from an echocardiogram when representing cardiac

form and function (5). Unsupervised techniques are often used

in combination with other techniques in a ML pipeline. For

example, dimensionality reduction (e.g., principal component

analysis, multiple kernel learning, autoencoders) can be used

initially to identify the most important features in order to

facilitate the efficiency and interpretation of a subsequent cluster

analysis (15). It can also be combined with a supervised learner

such as in generative adversarial networks (7). Finally, it can be

used on the output of the supervised learning model to improve

our understanding of how it chose to group patients (24).

Deep learning has been very successful in performing tasks

on high dimensional data and can be given both supervised

and unsupervised tasks. If one considers each pixel to be an

individual input feature, then an individual echocardiogram

could potentially have millions of features (45). Therefore,

the high dimensionality of imaging data like echocardiograms

proves to be an excellent substrate for DL. The advantage of

DL over traditional ML algorithms is that it can derive very

complex abstract relationships for a given input with relatively
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less engineering of those input features. This capability is, in

large part, due to several layers that analyze features in highly

non-linear ways to establish mapping between the features and

labels/outcomes. A major trade-off of this complexity is that it

its decision-making process is increasingly abstract. Methods

have been developed to specifically address explainability for

this unique aspect of DL. For example, Chotzoglou et al.

(12) used gradient-weighted class activation maps (Grad-CAM)

to visualize which parts of an image are most important in

detecting if the fetal echocardiogram was normal or abnormal

(Figure 2). This provides a way for the clinician to both verify

if the model decided correctly and to assist the provider in

deciding if additional views are needed. As another example,

Madani et al. used t-distributed stochastic neighbor embedding

(t-SNE) to visualize how their deep learning model classified

images into different views (Figure 4). t-SNE is a dimensionality

reduction technique that has been designed to organize

observations based on how similar their learned features are

(i.e., activation maps) according to the DL model. Using this

technique, error analysis of the mis-classified observations can

facilitate understanding the strengths and inherent biases of

the model. Other ways of understanding model bias include

occlusion experiments and test data with artificially created

image artifacts (7, 24). Finally, exploring the causal relationship

between a set of features and an output is one of the goals of

clinical inference (46). eXplainable AI is a field of research that

attempts to reduce the issues of black-box methods including

developing AI models within a framework of causality. One of

its goals is to develop a “Human-AI interface” which allows

the user to interrogate the model (e.g., counterfactual “what-

if ” questions) to gain insight into the model’s decision-making

process (47). While the terms interpretable and explainable are

sometimes used interchangeably, some consider eXplainable AI

the approach to develop models that explain why it came to its

decisions while interpretable ML seeks to describe how a model

came to its decision (48).

Congenital heart disease

Since the introduction of B-mode echocardiography into

clinical practice over 50 years ago (49), congenital heart

specialists have honed and exceled at deriving anatomic

relationships non-invasively to guide surgical decision making.

Nevertheless, there are many surgical management options that

rely on echocardiography where there is still clinical equipoise

such as timing of neonatal Tetralogy of Fallot repair or surgical

management of the patient with borderline left ventricle (LV).

Most echocardiographic clinical research on borderline LV

involves a reductionist approach whereby clinically accepted

measures on an echocardiogram that are thought to potentially

relate to prognostic information are studied to assess their

strength in relating to outcomes. This approach is necessary

in clinical echocardiographic research due to the abundance

of information that each echo provides without a methodically

robust way of identifying patterns within them. The risk scores

that have been developed over the past 20 years with this

approach have largely focused on aortic valve, left ventricle

length, and mitral valve size (50). Yet, these heuristic-based

algorithms account for some, but not all, of the complex patterns

in an echocardiogram that could be useful in diagnosis (51).

Meza et al. (14) helped demonstrate that unsupervised

machine learning could help identify patterns in

echocardiographic data that could be clinically relevant to

diagnosis and prognosis of patients with borderline left ventricle.

They collected 194 functional and morphologic variables in

each echocardiogram of neonates with ductal-dependent

hypoplastic left-sided structures or aortic stenosis/atresia. They

performed hierarchical clustering using this echo data alone

without any additional clinical or outcomes data to reduce bias

in understanding similarity between patients. It identified three

distinct groups of patients which corresponded to multi-level

LV hypoplasia, hypoplastic left heart syndrome, and critical

aortic stenosis. Accordingly, surgical decision and mortality

were distinguishable between groups with mortality and single

ventricle palliation being the highest in the hypoplastic left

heart group. Within these groups, they found that aortic valve

atresia and LV end-diastolic volume best distinguished between

the groups as determined by multinomial regression and

linear discriminant analysis. Mitral valve characteristics and

pulmonary vein anomalies, parameters often used in clinical

practice to help guide clinical management, were not found

to be significant in distinguishing between the three groups.

This study is important in that it used echocardiographic

data on congenital heart disease patients to define statistically

driven variables of importance with a technique that was free

of any a priori assumptions about the relationships between

the variables.

Cardiomyopathy

The manual extraction of measurements for a given set

of data, like peak E wave, deceleration time, E/A ratio from

a mitral inflow Doppler spectrogram, summarizes the data

source into a set of expert-crafted features (e.g., Meza et al.

extracted a set of 194 features). Performing manual extraction

of a set of inputs can be time consuming, and subtle patterns

not previously identified may be lost with this approach.

To overcome this limitation, Garcia-Canadilla et al. explored

the use of unsupervised learning directly on left ventricular

longitudinal strain, aortic outflow Doppler, pulmonary vein

Doppler, and mitral inflow Doppler velocity tracings as inputs to

assess whether echocardiographic imaging phenotypes could be

associated with clinical characteristics and outcomes in dilated

cardiomyopathy. They used multiple kernel learning to perform
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FIGURE 4

T-distributed stochastic neighbor embedding (t-sne) is a deep learning-specific dimensionality reduction visualization tool that plots how similar

each image is according to the deep learning model. Madani et al. developed a convolutional neural network (CNN) to classify

echocardiographic images into 18 di�erent views, and they used t-sne to understand how the CNN analyzed each image with respect to each

other. Visually distinct views tended to group farther away from each other such as continuous wave Doppler (black; cw) and apical 4 chamber

view (blue; a4c) while pulse wave (gray; pw) was very similar to continuous wave and tended to overlap. Figure adapted from Madani et al. (24).

dimensionality reduction and organize patients in accordance

with their similarity in feature values, performed k-means

cluster analysis to identify groups with similar phenotypes, and

most importantly they were able to explore how each of the

strain/Doppler tracings are represented in the output space.

In other words, they were able to visualize how strain and

Doppler velocity tracings would look like for a given group

of patients. With this approach, we can potentially understand

and identify how systolic and diastolic dysfunction in DCM

can be represented by subtle patterns in strain and Doppler

velocity data; and further, how they relate to clinical course and

risk for adverse outcome. The analysis of strain and Doppler

patterns rather than absolute values provides useful information.

Moreover, this study used Doppler and strain data over the

entire cardiac cycle, thereby providingmore comprehensive data

than current approaches which typically measure data at single

point (e.g., peak systolic strain).

Both cluster analysis and dimensionality reduction

techniques described are excellent at using underlying statistical

patterns in echocardiographic data to relate observations

and features to each other. However, just like in supervised

learning methods, unsupervised algorithms do not necessarily

make explicit how they came to their decisions. For example,

cluster methods do not quantify which features are similar

within a group of observations, and dimensionality reduction

techniques often render feature values into abstract estimations.

While the output of these unsupervised learners may be

adequate for a given situation, there are methods being

developed to help elucidate underlying statistical patterns

including model-agnostic interpretability methods to describe

feature importance in cluster analysis (52). For dimensionality

reduction, separate algorithms have been developed that

retain feature values after the dataset has been reduced

into the low output space (CUR) (53). Finally, while the

unsupervised learning techniques described in Part II are

excellent at identifying key patient groups and features, they

are not validated as a predictive model. Thus, in isolation,

they are hypothesis generating techniques for the purposes

of understanding how physiology is reflected in patterns

within echocardiographic data. Unsupervised learning is often

paired as a data preparation step with supervised learners

and these algorithms could be used in an ML pipeline to

accurately predict surgical technique (e.g., determining surgery

for LV obstruction in CHD) or risk of diastolic heart failure

(relating echocardiographic phenotypes of diastolic function

in DCM).

Perspectives and future steps

The non-invasive assessment of the heart through

echocardiography provides us representations of the interplay

between cardiac anatomy and physiology. We often perform a

reductionist approach to identify the key features of an echo that

are most associated with the underlying pathophysiology of the

heart as it relates to clinical signs and symptoms. This approach,

though easy to perform, disregards complexity and nuances in

an echocardiogram that could potentially improve detection

of physiologic/anatomic changes in cardiac health and disease

and their association with clinical outcomes. Machine learning

has been used successfully over the past few years in identifying

more subtle and complex patterns in echocardiographic

data that can strengthen our understanding of how cardiac

(patho)physiology is represented in an echocardiogram (5).

This ability to learn and categorize patterns, in conjunction

with modern day computing power, provides us the ability to

not only improve our understanding of cardiac anatomy and

physiology, but optimize and automate logistic tasks in the

clinical echocardiography laboratory.
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Challenges in pediatric cardiology

Validation of translational diagnostic tools is necessary to

promote their use in clinical practice with the goal of becoming

standard of care. This is especially true in pediatric cardiology

where a range of anatomic variability and loading conditions,

which may change over time, pose a challenge (54). Although

the standard of practice in AI workflows includes a step where

the model is tested on unseen data (e.g., a test or holdout set),

unidentified biases and poor generalizability are still issues if the

training/test set is limited in size and heterogeneity (e.g., data

exclusively from developed countries, a single center, one type

of imaging machine/vendor, etc.). Thus, prospective multicenter

validation is still required to assess for generalizability and help

identify previously unrecognized biases in the model (2, 55).

Indeed, these considerations, in addition to the small sample

sizes prevalent in pediatric cardiology and the inherent difficulty

in translating predictive models into clinical practice, are all

hurdles that need to be overcome for widespread use to occur

(45, 56, 57). Ways to facilitate bias reduction and prospective

validation of a model to promote widespread use includes

decentralizing the AI algorithm, so-called federated learning.

This developing approach is an alternative to sending de-

identified data to a central storage system where the algorithm is

then trained. Instead, the model is brought to each collaborating

center where it is trained on the data locally which reduces

the effort of data de-identification/transfer and can potentially

expedite the adoption of the AI model (22). The potential

downside to this approach is that quality control may be more

challenging without all images being assessed and processed

in a central core laboratory. Finally, while AI innovations

continue to advance at a rapid pace, it is critical that the proper

governance and regulatory oversight is in place to establish

a secure and ethical standard (58). For example, equitable

inclusion of patients during model development or maintaining

high security standards against data breaches will promote

acceptance of AI as a whole in the clinical community.

AI and the clinician

Other reasons why AI is not as readily accepted in clinical

practice is due to skepticism and unfamiliarity of AI with

the clinician. On top of the standard rigor needed for a tool

to be clinically validated, it is important that the user (i.e.,

the sonographer and practicing physician) is familiar with the

strengths and weaknesses of the tool, is facile in its use, and

can ultimately trust in its abilities. While there are conventional

therapies routinely used inmedicine whosemechanism of action

is not fully-elucidated, understanding the process by which a

diagnostic tool achieves its decision is very important in the

acceptance of the model in clinical practice. Indeed, certain

AI modalities (e.g., DL) are notorious for their black box

nature, but the fields of interpretable machine learning and

eXplainable AI have been developed to address this issue (Please

see Explainability in machine learning). Further, it should be

noted that fully automated AI have gained notoriety for not

only being successful at mimicking human intelligence, but also

for the critical errors that inevitably occur (e.g., the self-driving

car that runs a red light). It is unlikely that fully-automated AI

will exist in clinical practice without physician oversight and

instead it will fulfill a much-needed role as a reliable partially

automated tool (59). In addition, with the adoption of any form

of automation, there is an increased risk of automation bias, an

error where the user trusts the automated calculation despite

overt clinical evidence suggesting it is incorrect (1). Thus, the

active training of physicians to critically appraise AI models

as well as training in how to use it in the clinical workspace

is needed.

This review has discussed literature on optimizing and

improving the clinical pediatric echocardiogram workflow.

Though there is little research on this currently in pediatric

echocardiography, using AI to understand clinical narratives in

the echocardiogram report can both improve report consistency

and enrich its diagnostic utility. Natural Language Processing

(NLP) is a branch of AI and linguistics devoted to performing

tasks related to speech and text, and there is a growing

body of work on applying it to radiology report data (60).

Tasks NLP models were designed to address include improving

quality compliance by identifying if patient indications for

scans adhered to study guidelines and institutional protocols

(61). Many studies focused on disease surveillance including

extracting relevant information for a particular disease and

tracking key features longitudinally over several diagnostic

reports (60).

AI, echocardiography, and the patient

While AI has great potential to improve the standard of care

in patients who are diagnosed with echocardiography, equity is

an issue that needs to be accounted for early in the development

of AI algorithms. Centers who performAI research will naturally

include more of their patients relative to other centers, and

consequently the models will tend to be trained and tested

on these populations. If not accounted for, the fitted model

could make incorrect decisions if applied to a new setting due

socioeconomic factors as well as variations in local practice (e.g.,

indications for echocardiogram, differences in image acquisition

protocol) leading to significant sampling bias (22). For example,

AI can improve prenatal detection of CHD especially in

practices that serve disadvantaged communities where pediatric

cardiology expertise may not be readily available. However,

under/overrepresented medical conditions endemic to that

community could impact the accuracy of the DL model if not
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adequately addressed (62). In addition, poor insurance coverage

may limit the access to deep learning tools (62).

AI and translational medicine

AI provides a means for rapid innovation in medicine as

it is designed to perform tasks efficiently on data structures

commonly used in medical research (e.g., images, video clips,

and tabular datasets). However, despite all the promising results

in the studies featured in this review, AI is still a translational

technology which carries with it unique problems both old

and new. Namely, the process of translating a novel idea

into a tool used in standard of care is a complex one which

involves more than just the rigorous academic stages from

in vitro experimentation to multicenter clinical validation.

Indeed, widespread clinical use of a novel technology requires

regulatory approval from regional government agencies as well

as industry partnership to help facilitate the accessibility of

the technical innovation. It is impossible for one person to

be expert in all of these facets of translational medicine, and

thus a multidisciplinary team of collaborators who partner

well between clinicians, academia, industry, and government

is needed to shepherd these novel AI tools to clinical

implementation (63).

Conclusion

The echocardiogram is the first-line imaging tool for the

cardiologist due to its ability to allow the clinician to quickly

identify cardiac anatomy and physiology. With the advent

of AI in medical imaging, we can extend the utility of a

cardiac ultrasound beyond what is immediately apparent to

explore patterns previously unseen and make diagnoses more

accurately and efficiently. Indeed, based on current trends,

we expect that the next era of pediatric echocardiography

will be data-centric where AI will augment and integrate the

role of the sonographer, echocardiographer, and clinician to

improve patient care. The development of the AI-based pediatric

echocardiography laboratory of the future will however be a

long path with many expected obstacles, given the complexity

of pediatric heart disease.
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