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A body of studies has proposed to obtain high-quality images from low-dose and

noisy Computed Tomography (CT) scans for radiation reduction. However, these studies

are designed for population-level data without considering the variation in CT devices

and individuals, limiting the current approaches’ performance, especially for ultra-low-

dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom

model integrating an unsupervised learning framework, using a novel deep learning

technique called Cyclic Simulation and Denoising (CSD), to address these limitations.

We first acquired paired low-dose and standard-dose CT scans of the phantom and then

developed two generative neural networks: noise simulator and denoiser. The simulator

extracts real low-dose noise and tissue features from two separate image spaces (e.g.,

low-dose phantom model scans and standard-dose patient scans) into a unified feature

space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the

generated noise. In this way, the simulator and denoiser cyclically interact to optimize

network learning and ease the denoiser to simultaneously remove noise and restore

tissue features. We thoroughly evaluate our method for removing both real low-dose

noise and Gaussian simulated low-dose noise. The results show that CSD outperforms

one of the state-of-the-art denoising algorithms without using any labeled data (actual

patients’ low-dose CT scans) nor simulated low-dose CT scans. This study may shed

light on incorporating physical models in medical imaging, especially for ultra-low level

dose CT scans restoration.

Keywords: physical model, medical image denoising, low-dose CT, noise removal, dose reduction, deep learning,

generative adversarial network (GAN)

1. INTRODUCTION

The quality of medical imaging is critical for diagnosis and treatments. However, medical imaging
often suffers from the noise produced at either the image reconstruction or post-imaging stages.
Medical physicists in radiology play several essential roles in maintaining imaging quality and
stability for imaging machines, such as computed tomography (CT). They usually adopt an
anthropomorphic physical model to facilitate the assessment of imaging quality and the adjustment
of the imaging machines’ parameters before performing on real patients. Motivated by this, we
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hypothesized that a physical model could also help restore high-
quality images for the cases in the post-imaging stage, such as
radiation reduction in CT imaging.

Reducing radiation dose during imaging is a low-cost

approach to release concerns about causing cancer or other

negative health conditions using CT scanning (1), but this

method introduces noise into CT scans, hindering the diagnostic
effectiveness of such scans. Several studies (2, 3) have been
proposed to address this problem by removing the noise
from low-dose CT scanned images. However, these studies are
designed based on Gaussian noise simulation for populations
without considering the variation in CT devices and individuals,
limiting the current approaches’ performance, especially for
ultra-low-dose CT imaging (see Figure 1A).

Moreover, most of the success of deep learning-based
approaches for low-dose CT image restoration (4, 5) much relies
on a large number of labeled images. However, obtaining the
real low-dose CT scans is not available in practice. Accessing
real image noise is critical for the development of any practical
imaging algorithm. Also, real noise properties significantly
vary among different CT machines and individuals. Thus, the
Gaussian noise assumption is not always guaranteed in practical
scenarios and significantly limits the existing approaches for
ultra-low-dose CT imaging.

We address these problems by incorporating an

anthropomorphic physical phantom model into generative
adversarial networks. The proposed framework is named

cyclic simulation and denoising (CSD). The physical model

provides paired low-dose and standard-dose phantom CT scans

before scanning the actual patients. These phantom scans can

offer statistical noise prior, which is related to the specific CT
machine for patient diagnosis, for CSD to precisely capture

noise properties and remove real complex noise from CT scans.

Our CSD is composed of noise simulation and denoising two

networks. The simulation network facilitates the denoising

network to learn real noise properties. The denoising network

thus can access realistic noise through physical phantom
CT scans. However, phantom scans lack tissue features (see

Figure 1B). The missing tissue information prevents feasible

phantom-based solutions for CT image restoration. As one can

see in Figure 1C, the model trained with paired low-dose and
standard-dose phantom scans fail to remove real noise from
low-dose patient scans. To overcome this problem, we train CSD
using normal-dose and phantom CT scans simultaneously to
embrace realistic noise and tissue features into a unified learning
framework without the access to labeled or Gaussian noise
simulated data.

We evaluate our CSD for removing both real low-

dose and Gaussian simulated noise. The results show that

CSD outperforms one of the state-of-the-art denoising
algorithms for ultra low-quality medical image restoration.

Our main contributions include that (1) we incorporate an

anthropomorphic physical phantom model into generative

adversarial learning to address the challenges of removing real

noise from ultra-low-dose CT scans for radiation reduction; (2)

we develop an unsupervised framework in the combination of

phantom CT scans that can outperform one of the start-of-the-
art methods without using any labeled or other noise simulation
data; (3) to the best of our knowledge, this is the first study
to incorporate physical model into deep learning for medical
imaging.

2. MATERIALS AND METHODS

The problem of CT image denoising can be understood by L =

H + N, where H is the clean, standard-dose CT image, L is
the noisy, low-dose CT image, and N is additive image noise.
Though an additive relationship does not completely represent
the relationship between clean and noisy images, this formula
provides a baseline for understanding the problem.

We utilize two deep networks in the framework. The first
network Gs is the noise simulator and can be modeled by
L = Gs(H,α), where α is the desired simulated dose level and
implicitly indicated in training data. The second network Gd is
the denoiser that can be modeled by H = Gd(L), where Gd is the
network generating a clean image from a given low-dose noisy
input L.

2.1. Unsupervised Learning by
Incorporating Physical Model
We use a head phantom model to obtain paired low-dose and
standard-dose phantom CT scans, with which we combine the
normal dose (standard-dose) patient CT scans to develop our
CSD model. The phantom scans allow the model to access real
noise properties and the patient scans offer the actual brain
tissue features to the model. In this way, we eliminate the need
for noisy low-dose CT scans from actual patients and even
the Gaussian noise simulated low-dose CT scans to develop
our model (Figure 2A). Therefore, we present an unsupervised
learning framework by incorporating an anthropomorphic
physical phantom model.

2.2. Cyclic Simulation and Denoising
2.2.1. Overview
We develop two deep networks to perform simulator and
denoiser individually. To ease the network training, we first
use paired low-dose and standard-dose phantom CT scans
to pre-train the simulator and denoiser, separately. Then, we
plug the simulator and denoiser pre-trained models into our
CSD framework (Figure 2A). In particular, we start with noise
simulation using both the phantom and patient CT scans to
generate low-dose noisy patient CT images that simultaneously
provide noise and tissue features for training the denoiser
(Figure 2B). Meanwhile, CSD also allows the backward training
process from denoiser to simulator. The denoiser takes phantom
noisy scans and simulated noisy patient scans as input to
learn how to remove realistic noise and restore tissue features
simultaneously, while the simulator mainly plays as a regularizer
to the denoiser for stabilizing the training (Figure 2B). The
interaction between simulator and denoiser forms a dynamic
data-driven framework, named cyclic simulation and denoising
(CSD), to address the challenges of low-dose CT image
restoration.
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FIGURE 1 | Real low-dose has a different noise distribution from Gaussian noise and is hard to remove. (A) It shows a visual comparison of the standard-dose

computed tomography (CT), real low-dose CT, and Gaussian simulated low-dose CT scans. (B) It shows a low-dose CT scanned by using a physical phantom model.

(C) We trained four same structural Deep Neural Network (DNNs) using various types of low-dose noise with the same noise level (20 mAs radiation dose) and then

compared the effectiveness of noise removal.
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FIGURE 2 | The overview of the model development in (A) and the proposed cyclic simulation and denoising (CSD) training framework in (B). (A) demonstrates how

we incorporate a physical phantom model into the proposed deep learning model CSD. (B) shows how our CSD is developed in detail. Two training stages: first, we

initialize the weights of simulator and denoiser by pretraining on physical phantom CT scan (1); second, the cycle-training from noise simulation to denoising (2) and

another cycle-training from denoising to simulation (3) are developed simultaneously. The Gs and Gd represent simulation and denoising, separately. During training,

the two cycles interact with each other and are executed alternatively.

2.2.2. Pretrain Simulator and Denoiser (H → L̂,L → Ĥ)
We train the simulator with a u-shape encoder-decoder
generative adversarial network by formulating the objective as
adversarial learning. We use a discriminator Ds to differentiate
real low-dose CT images from fake samples generated by the
simulator Gs. We illustrate the formulation of the simulation as
below.

LGAN(Gs,Ds) = EL∼p(L)[log(Ds(L))]

+ EHphantom∼p(H)[log(1−Ds(Gs(Hphantom)))] (1)

To encourage the output of the denoiser to match the clean
phantom scans, we use an ℓ1 loss between the output and the
ground truth image.

L1(Gd) = EL,H∼p(L,H)

∥∥H − Gd(L)
∥∥
1

(2)

Initializing the weights by pretraining can significantly ease
the convergence of two interactive generators in both spatial
and temporal space. However, the phantom scans still lack the
essential features of scanning on a real patient.

2.2.3. Learn Simulation Interacting With Denoiser:

S2D (H → L̂ → Ĥ)
We start with noise simulation to provide both noise and tissue
features for training denoiser. We apply a discriminator Ds to

train the simulator Gs. We formulate the simulation objective as
below.

L
S2D
GAN(Gs,Ds) = EL∼p(L)[log(Ds(L))]

+ EH∼p(H)[log(1−Ds(Gs(H)))] (3)

The simulator feeds its output into the denoiser during training.
Thus, we formulate the denoising loss using a modified
Equation 2 as below.

L
S2D
1 (Gd) = EL,H∼p(L,H)

∥∥H − Gd(Gs(H))
∥∥
1

(4)

Besides the discriminator Ds, we take advantage of the denoising
performance as regularization feedback to indicate the quality of
the simulation. As the simulation becomes better, the denoising
is getting harder.

Furthermore, the simulatorDs in S2D takes the standard-dose
scans from both phantom and patients as inputs. The phantom
data applies a latent constrain to theDs and stabilizes the training.
Interacting with denoising encourages the simulator to generate
realistic low-dose noise. Further, the denoise can benefit from
taking the output of the simulator as additional training data,
dynamically.
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2.2.4. Learn Denoising in Simulator: D2S (L → Ĥ → L̂)
The development of the training process from denoising to
simulation has two significant varies from the cycle consistency
study (6) (see Figure 2B). We first enable supervised learning
to train the denoiser Gd using the standard-dose and the
corresponding low-dose CT images. Compared to adversarial
learning, supervised learning provides a stronger supervision
signal to build an accurate denoiser. More importantly, the
simulator in S2D produces the noise gradually close to the
desired level during training. Thus, we can acquire various noise
level images from the simulator, with which, the denoiser-self
implicitly learns to restore clean CT scans for a range level of
low-dose CT scans, rather than a specific noise level indicated
in the training data. Therefore, the input to the denoiser Gd in
D2S includes phantom low-dose and simulated patient low-dose
images. We use a ℓ1 loss to train the denoiser Gd. The ℓ1 loss
encourages a pixel-wise match to the ground-truth. We illustrate
the ℓ1 loss as below.

L
D2S
1 (Gd) = EL,H∼p(L,H)

∥∥H − Gd(L)
∥∥
1

(5)

Besides, we use adversarial learning to train the simulator in D2S
to match the desired noise distribution in the actual low-dose CT
scans. The objective to this adversarial learning the distribution
is written as below.

L
D2S
GAN(Gs,Ds) = EL∼p(L)[log(Ds(L))]

+ EĤ∼p(H)[log(1−Ds(Gs(Ĥ)))] (6)

We develop the cyclic simulation and denoising training with
regularizations in both directions and take advantage of both
cycles H → L̂ → Ĥ and L → Ĥ → L̂. The total objective is
illustrated below:

G∗
s ,G

∗
d = arg min

Gs ,Gd

max
Ds

λ1L
S2D
GAN(Gs,Ds)+ λ2L

D2S
GAN(Gs,Ds)

+ λ3L
S2D
1 (Gd)+ λ4L

D2S
1 (Gd) (7)

where λ indicates the weights of each loss. With these novel
developments, the simulator and denoiser interact with each
other in a cyclic self-learning manner to enable realistic noise
simulation and accurate denoising for low-dose CT image.

3. RESULTS

3.1. Datasets
We use three CT datasets during training and testing. The first
dataset is obtained from the CT scanning on a single tissue-
equivalent physical phantom model. This set contains various
levels of low-dose series, scanned between 5 and 95 mAs with
5 mAs intervals. In this work, we simply use 20 mAs, 30 mAs,
and 60 mAs low-dose phantoms for training noise simulation
and evaluate the reality of various types of noise in Figure 1C.
We also include the standard-dose (175 mAs) scans as the
ground-truth. Each dose level of the phantom series produces
138 CT scans. The second dataset is a public Retrospective Image
Registration Evaluation (RIRE) dataset. This dataset includes 388

standard-dose CT scans. We use 80% for training the simulator
and denoiser in the proposed CSD and also task 20% for
demonstrating the advantages of CSD over end-to-end training
a denoiser in Table 2, where we simulate the low-dose noise by
adding Gaussian noise on normal dose CT scans. We compute
the corresponding standard variation of Gaussian noise for a
specific mAs by following (7). Additionally, we acquire a real
patient dataset including paired standard-dose (190 mAs) and
low-dose (20 mAs) in a total of 432 CT scans. We use them for
comparing various types of simulated noise in Figure 1C and
evaluate the real noise removal performance of our approach in
Table 1, where 250 scans are used for training and 182 scans are
used for testing. Moreover, we randomly select 373 scans from
this dataset combining with 20% of the RIRE dataset, in total 449
scans included to evaluate our CSD’s generalizability in Table 2.

This dataset used de-identified data from a retrospective study
which was HIPAA compliant and performed with University of
Florida IRB approval as a minimal risk study with a waiver of
informed consent.

3.2. Evaluation Metric
We develop CSD with U-net (8) for the simulator network Gs

and DnCNN (9) for the denoiser network Gd. We evaluate image
denoising performance using Peak signal-to-noise ratio (PSNR)
and image structural similarity index measure (SSIM).

3.3. Unsupervised Learning Performance
on Real Low-Dose Noise Removal
Here, we aim to demonstrate that the proposed CSD framework
in a combination with phantom can remove the real low-
dose noise effectively. We first take the start-of-the-art medical
image denoising network (9) as a baseline and train it with
Gaussian simulated low-dose CT scans at different noise

TABLE 1 | The average real low-dose noise removal performance of the same

deep neural network trained with Gaussian noise simulation and cyclic simulation

and denoising (CSD) + physical phantom noise simulation, separately.

PSNR (dB)/SSIM

Noise level (mAs) Trained with Gaussian Trained with CSD + phantom

30 24.47/0.7555 26.10/0.8235

60 23.03/0.6960 25.51/0.7894

The best results are highlighted in bold.

TABLE 2 | The average Gaussian noise removal performance of the same deep

neural network trained through the proposed CSD framework and the standard

end-to-end manner, separately.

PSNR (dB)/SSIM

Noise level (mAs) End-to-end training CSD training

30 31.93/0.9105 32.05/0.9124

60 33.33/0.9365 33.92/0.9429

The best results are highlighted in bold.

Frontiers in Radiology | www.frontiersin.org 5 May 2022 | Volume 2 | Article 904601

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Liu et al. Physical Model-Aware Low-Dose CT Restoration

FIGURE 3 | The visual comparison of the denoising performance between the network trained with end-to-end and the one trained with our CSD framework.

levels. Then, we build the Gd in CSD using the baseline’s
architecture and train it with paired low-dose and standard-
dose phantom CT scans at the same noise levels as Gaussian
simulation. We test each model on 182 real low-dose CT
scans at the noise level of 20 mAs. The comparison results
are shown in Figure 1C at 20 mAs and Table 1 at 30, 60
mAs noise levels. As one can see, the combination of the
proposed CSD training framework and phantom simulation
significantly outperforms the baseline with an average 1.56
dB improvement on PSNR across three different noise levels.
Furthermore, as one can see in Figure 1C, the baseline network,
which is trained with paired low-dose and standard-dose
phantom scans, performs much worse than the model trained
with both our CSD phantom and Gaussian simulation, which
may be due to the lack of critical tissue features in the
phantom scans. Notably, these results may indicate that CSD, in
combination with phantom simulation, can encourage the denoiser

to learn both real low-dose noise features from phantom and
tissue image features from patient scans, simultaneously, and
leading to real low-dose noise removal with greater accuracy
and precision.

3.4. Evaluate CSD’s Generalizability
(Ablation Without Gs)
Here, we further evaluate the proposed CSD’s generalizability to
train a denoiser targeting the general simulated low-dose noise,
such as Gaussian simulation. We still use the same baseline
network to conduct this study. We use the standard end-to-
end manner and our CSD framework to train two networks
with the same architecture as the baseline, separately. Notably,
to have a fair comparison, we only use original noisy CT scans
in the training dataset as the input of the Gd in D2S cyclic
training. Then, we compare the two networks to remove 30
and 60 mAs levels of Gaussian simulated low-dose noise from
449 CT scans. As one can see in Table 2, the model trained
with our CSD can consistently outperform the one trained in
an end-to-end manner, with an impressive average performance
gain of 0.355 dB for PSNR. In addition, we also show a visual
result comparison in Figure 3. As one can see, the denoiser Gd

trained with our CSD framework can produce more realistic
CT scans from its low-dose noisy version. This improvement
can also be attributed to the interplay between the simulator
and denoiser which serve as regulators to each other during
the optimization process. These results suggest that starting
with simulation may create a live environment from which the

denoiser can learn high-validity representations to achieve a
better denoising performance.

4. CONCLUSION

This paper proposed incorporating an anthropomorphic physical
phantom model with generative deep learning networks for
medical imaging, with a focus on realistic low-dose CT
image restoration. A combination of an anthropomorphic
physical model with deep generative adversarial networks can
eliminate the needs of both actual low-dose patients and even
other low-dose simulation CT scans to build an unsupervised
learning framework for low-dose CT image restoration. More
importantly, an anthropomorphic physical model CT scanning
can abstract the unique noise properties of a particular CT
imagingmachine for the deep learningmodel to take CTmachine
domain variation into account during training. Eventually,
with the interaction between a noise simulation network
and a denoising network in cyclic training processing, the
proposed deep learning model embraces realistic noise from
low-dose phantom CT scans and tissue features from normal-
dose patient CT scan into a single unified framework for
building a state-of-the-art method for real low-dose CT image
restoration.
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