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Quantitative magnetic resonance imaging (qMRI) can increase the specificity

and sensitivity of conventional weighted MRI to underlying pathology by

comparing meaningful physical or chemical parameters, measured in physical

units, with normative values acquired in a healthy population. This study

focuses on multi-echo T2 relaxometry, a qMRI technique that probes

the complex tissue microstructure by di�erentiating compartment-specific

T2 relaxation times. However, estimation methods are still limited by

their sensitivity to the underlying noise. Moreover, estimating the model’s

parameters is challenging because the resulting inverse problem is ill-posed,

requiring advanced numerical regularization techniques. As a result, the

estimates from distinct regularization strategies are di�erent. In this work, we

aimed to investigate the variability and reproducibility of di�erent techniques

Frontiers in Radiology 01 frontiersin.org

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/journals/radiology#editorial-board
https://www.frontiersin.org/journals/radiology#editorial-board
https://www.frontiersin.org/journals/radiology#editorial-board
https://www.frontiersin.org/journals/radiology#editorial-board
https://doi.org/10.3389/fradi.2022.930666
http://crossmark.crossref.org/dialog/?doi=10.3389/fradi.2022.930666&domain=pdf&date_stamp=2022-07-28
mailto:erick.canalesrodriguez@epfl.ch
https://doi.org/10.3389/fradi.2022.930666
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fradi.2022.930666/full
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org


Fischi-Gomez et al. 10.3389/fradi.2022.930666

for estimating the transverse relaxation time of the intra- and extra-cellular

space (T IE2 ) in gray (GM) and white matter (WM) tissue in a clinical setting,

using a multi-site, multi-session, and multi-run T2 relaxometry dataset. To this

end, we evaluated three di�erent techniques for estimating the T2 spectra

(two regularized non-negative least squares methods and a machine learning

approach). Two independent analyses were performed to study the e�ect

of using raw and denoised data. For both the GM and WM regions, and

the raw and denoised data, our results suggest that the principal source of

variance is the inter-subject variability, showing a higher coe�cient of variation

(CoV) than those estimated for the inter-site, inter-session, and inter-run,

respectively. For all reconstruction methods studied, the CoV ranged between

0.32 and 1.64%. Interestingly, the inter-session variability was close to the

inter-scanner variability with no statistical di�erences, suggesting that T
IE

2
is a robust parameter that could be employed in multi-site neuroimaging

studies. Furthermore, the three tested methods showed consistent results

and similar intra-class correlation (ICC), with values superior to 0.7 for most

regions. Results from raw datawere slightlymore reproducible than those from

denoised data. The regularized non-negative least squares method based on

the L-curve technique produced the best results, with ICC values ranging from

0.72 to 0.92.

KEYWORDS

relaxometry, reproducibility, variability, MRI, multi-echo, quantitative MRI

1. Introduction

Quantitative magnetic resonance imaging (qMRI) has

the potential to increase the specificity and sensitivity of

conventional weighted MRI to underlying pathology. This

increased sensitivity and specificity has stimulated the use of

qMRI methods as potential biomarkers for microstructural

integrity of the brain. Pathological processes such as

demyelination, edema, iron accumulation, and tissue loss

lead to variable and complex changes in tissue microstructure,

inducing in turn changes in relaxation times. Therefore, these

microstructural features can be inferred by in-vivo qMRI

at millimeter resolution thanks to biophysical models. The

spin-spin transverse relaxation rate T2 is one of the fundamental

tissue-specific MRI contrast sources. In complex tissue, the

microstructure can be seen as a combination of different

pools of water with different chemical environments (called

compartments) which each have their own characteristic T2.

Hence, for complex tissues, multi-component T2 relaxometry

allows probing the tissue microstructure by differentiating

compartment-specific T2 relaxation times (1). Recent advances

in multi-component T2 relaxometry acquisition (2, 3) and

reconstruction methods (4) have boosted the use of this

technique for the assessment of white matter (WM) integrity in

general, but most notably for the determination of the myelin

water content (5–11), and the T2 of the intra- and extra-cellular

spaces (TIE
2 ) (12).

As TIE
2 is usually estimated from the T2 distribution by

taking the (geometric) mean in the interval from 40 to 200

ms (at 3T), it is not affected by partial volume contamination

from free water (T2 >200 ms) or myelin water compartments

(T2 <40 ms). This is the main advantage of using TIE
2 over

the mean intra-voxel T2 estimated from other qMRI techniques.

Interestingly, a recent study revealed a strong correlation

between TIE
2 and age extending through the whole gray matter

(GM), suggesting that this metric is sensitive to microstructural

and macro-molecular content changes (13). However, multi-

compartment T2 estimation methods are still sensitive to the

underlying noise and the employed regularization technique for

solving the resulting inverse problem (14, 15). This limitation is

especially relevant for clinically achievable signal-to-noise ratios

(SNR), which may affect the reproducibility and stability of

the derived scalar maps. Several studies have already focused

on the reproducibility and stability of myelin water fraction

(MWF) estimates (16–20). However, the variability linked to the

intra- and extra-cellular T2 component has been less studied,

particularly in GM regions.

Other than the clinically achievable SNR, variability in

qMRI data can be due to different factors such as hardware

differences (scanner manufacturer, field strength, etc.), different

MR reconstruction methods and acquisition parameters, among

others. Even when the same hardware and sequence parameters

are employed, high inter- and intra-scanner variability due

to local and/or temporal scanner characteristics can occur.
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Characterizing this variability is challenging, mainly due to

the lack of available data specifically designed to perform

this task. In Cai et al. (21), authors tackle this issue with

diffusion-weighted MRI data (DWI) using an ad-hoc data

set (the MASiVar data set). The multi-site, multi-scanner,

and multi-subject dataset proposed in that work was used

to simultaneously characterize four commonly used diffusion

processing techniques [diffusion tensor signal representation,

multi-compartment neurite orientation dispersion and density

imaging NODDI, microstructure model (22), white-matter

bundle segmentation (23), and graph-based connectomics

representations (24)].

In this study, we investigated the TIE
2 variability and

reproducibility in a clinical setting, in both GM and WM, using

a multi-site, multi-session and multi-run dataset consisting of

20 healthy adults scanned in two different scanning sites, two

separate sessions, and two runs (repetitions) per session and

per site, resulting in a total of 160 scans (eight per subject).

This unique dataset allows for quantifying the variability of

the estimated multi-compartment T2 spectra, with respect to

the subject, the acquisition site, session and run. Moreover, we

aimed at evaluating the impact of using different techniques for

estimating the T2 spectra, as well as the effect of the denoising of

the data. In particular, three different non-parametric techniques

were tested, including two types of regularized non-negative

least squares (NNLS) methods based on the Chi-square (5)

and L-curve (14) regularization criteria and a recently proposed

Model-Informed Machine Learning approach using neural

networks trained with synthetic data (25) on the original (raw)

data and the same data after denoising.

2. Methods

2.1. Human brain MRI data

2.1.1. Population

Twenty healthy subjects (nine female, mean age = 27,

standard deviation = ± 3 years, age range = [24–33 years old])

were enrolled in the study. All subjects were right-handed and

had no history of psychiatric diseases or any contraindications

for performing MRI. Written informed consent was obtained

from each participant following the Declaration of Helsinki. The

ethics committee of the Canton of Vaud approved the study

(Switzerland, project number: 2018-01355).

2.1.2. MR acquisition

The MRI data were collected using a high-resolution

3D multi-echo gradient and spin-echo (GRASE) prototype

sequence accelerated through CAIPIRINHA (3) with the

following parameters: matrix-size = 144×126×134; voxel-size

= 1.6×1.6×1.6 mm3; minimum echo time (TE) = 10.68 ms;

Number-of-echoes = 32; 1(TE) = 10.68 ms; repetition time

FIGURE 1

Overview of the data set. The cohort consists of 20 healthy
subjects. All subjects were scanned on Siemens MAGNETOM
Prisma (Siemens Healthcare, Erlangen, Germany) located at two
di�erent sites. Each subject underwent two sessions on each
scanner and had two scans acquired per session, for a total of
160 scans.

(TR) = 1s; prescribed flip angle (FA) = 180◦; number-of-slices

= 84; acceleration factor = 3 x 2(1); number of averages =

1; acquisition time = 10:30 min. T1-weighted images were

also acquired for anatomical localization and definition of

regions of interest (ROIs) using a 3D magnetization-prepared

rapid gradient-echo (MP-RAGE) sequence with the following

parameters: TR= 2,300 ms; Inversion Time (TI)= 7.1 ms; TE=

2.96 ms; FA = 9◦; number-of-slices = 192; voxel-size = 1×1×1

mm3, field of view= 256×256 mm2.

2.1.3. MRI scanning design

Each subject was scanned in two MRI scanners

(MAGNETOM Prisma, Siemens Healthcare, Erlangen,

Germany) located at the Geneva University Hospital and Sion

Hospital, Switzerland (sites) at two different points in time

(sessions). At each session, each subject was scanned twice in

two separate runs. Between the runs, subjects exited the scanner

and were then repositioned, followed by a new shimming.

Eight scans were obtained per subject, for a total of N = 160

scans. Figure 1 shows a schematic representation of the MRI

scanning design. The mean elapsed time between intra-site and

inter-site repetitions was 16 days (± 10 days) and 29 days (± 17

days), respectively.
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2.2. MRI spatial processing

The T1-weighted image was normalized to the MNI

standard space by registering them to the MNI152 template

image using FSL FLIRT (26). Tissue partial volume estimates

were obtained from the T1-weighted image using the FSL BET

(27) and FSL FAST (28) methods. The definition of the different

regions of interest, in both WM and GM, was performed using

the Destrieux atlas available in FreeSurfer (29). Seventy-four

regions per hemisphere were obtained for each tissue type. They

were further grouped into five main cerebral lobes: parietal,

occipital, temporal, the prefrontal part of the frontal lobe and

its medial part.

2.3. T2 estimation

Two different scenarios were tested. In the first approach,

the T2 estimation was performed over the raw data, without

any prior denoising (raw data). For the second approach, the

multi-echo T2 MRI data were filtered using a 3D total variation

algorithm before fitting, using the denoise-tv-chambolle function

in the scikit-image python toolbox (30) (denoised data). Spatial

filtering is effective for decreasing the variability of the estimated

maps [see (31–33)]. The noise standard deviation σ for each

3D volume was estimated by employing a robust wavelet-based

estimator (34), and each volumewas then denoised with a weight

of 2σ as described in Canales-Rodríguez et al. (15). In both cases,

the T2 spectra were estimated by using three different methods;

two regularized non-negative least squares (NNLS) algorithms

(X2− I, L-curve−I) and theModel-InformedMachine Learning

(MIML) approach. More details are provided in the next

two subsections.

2.3.1. Regularized NNLS

The T2 spectra were computed in two steps. The refocusing

flip angle (FA) value for each voxel was determined first, and

then the intra-voxel T2 spectrum was computed by using

the dictionary generated for the estimated FA. Estimating the

optimal FA involves various steps. First, different matrices were

generated using the Extended Phase Graph (EPG) model (35),

each one corresponding to a fixed refocusing FA value selected

from a discrete set of 15 equally spaced values between 90 and

180◦. A fixed T2 range from 10 to 2,000 ms (36) with N = 60 T2
logarithmically spaced points was employed. Subsequently, we

created a smoothed copy of the acquired multi-echo T2 data by

using a Gaussian kernel (i.e., FWMH of 4.8 mm) as suggested

in Drenthen et al. (20). Afterwards, the non-regularized NNLS

algorithm was used to fit the smoothed data for each matrix, and

the resulting mean square errors were interpolated using cubic

B-splines (35). Next, the optimal FA was selected at the global

minima of the resulting interpolated curve. Finally, a newmatrix

was generated using the estimated FA, which was used then for

estimating the T2 spectrum (35). Note that the T2 spectrum and

derived maps were computed from the TV-denoised data and

not from the Gaussian-filtered copy, which was only employed

to get a smooth FA map. To accelerate the estimation, instead

of generating a new matrix for each estimated FA, we loaded

the optimal kernel from a set of precomputed matrices which

were created on a high-resolution grid of FA values from 90 to

180◦ with a step-size of 0.33◦. The optimal kernel was selected

by identifying the FA grid point closest to the interpolated FA.

As the estimated T2 distribution may depend on the

chosen technique for determining the optimal regularization

parameter, two approaches were implemented, a regularized

NNLS method based on the Chi-square residual fitting

criterion (5), and another based on the L-curve technique,

as implemented in the multi-component T2 reconstruction

toolbox (14): https://github.com/ejcanalesr/multicomponent-

T2-toolbox. Both methods, named X2 − I and L-curve−I,

used an identity regularization matrix to promote smooth

T2 distributions.

2.3.2. Model-informed machine learning

The T2 distributions were obtained by using the MIML

approach described in Yu et al. (25). It is based on a multilayer

perceptron (MLP) which is trained to learn a map directly

from the noisy multi-echo T2 signals to the corresponding T2

distributions. The MLP network was composed of 6 hidden

layers with 256 neurons per layer and an output layer with

60 units, corresponding to the same resolution we used to

solve the regularized NNLS problem described in the previous

section. The hidden layers used a ReLu function as the activation

function, while the output layer used a SoftMax activation

function. The input to the network is a vector with 32

elements corresponding to the 32 echos of the acquisition

sequence. The loss function is composed of two penalty terms,

a squared L2 norm term and the Wasserstein distance on

probability distributions.

This technique was implemented using TensorFlow 2.0 (37)

on Python 3.6 (38) with an Nvidia GTX 2070 GPU. The MLP

networkwas trained using a total of 1,120,000 signal/distribution

pairs. The optimization was carried out by using the Adam

optimizer (39) with a learning rate of 5e−4, a batch size of

2,000, and 30 epochs. For more details, see Yu et al. (25). The

trainedMLP network was used to predict theT2 spectra from the

measured multi-echo T2 data. The trained model and code are

available at the following website: https://github.com/thomas-

yu-epfl/Model_Informed_Machine_Learning.

2.4. Statistical analysis and evaluation
metrics

In order to investigate all possible sources of variability

in the (semi)-quantitative TIE
2 maps in a clinical setting, four
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different effects were studied for both WM and GM. They

included inter-run, inter-session, inter-scanner (i.e. inter-site)

and inter-subject effects. The N = 160 scans were grouped in

different subsets: (i) inter-run variability was computed using

scans acquired within the same session of the same subject on

the same scanner; (ii) for the inter-session variability, we used

the scans acquired between different sessions of the same subject

on the same scanner; (iii) inter-scanner variability included

scans acquired between different sessions of the same subject

on different scanners and (iv) finally, inter-subject was assessed

averaging the scans of different subjects acquired in different

sessions on the same scanner.

For each of the four effects studied, the variability

was evaluated by computing variability within each of the

aforementioned groups and then visualizing the distribution

across groups on the inter-run, inter-session, inter-scanner and

inter-subject levels. The variability was computed by means of

the coefficient of variation (CoV), defined for each group as

the standard deviation (SD) of the scalar metrics in each group,

divided by the mean of the group, times 100. Intuitively, CoV is

computed as the proportion of the average scalar measurement

attributable to variability. As such, higher CoV indicates higher

variability. The inter-run, inter-session, inter-scanner and inter-

subject variability was independently computed on the TIE
2

maps obtained for each of the reconstruction methods used

(X2−I, L-curve−I, andMIML). For all reconstructionmethods,

the variability due to session, site and subject effects were

compared pairwise using a Wilcoxon rank-sum test with

Bonferroni correction.

In addition, the reproducibility of each reconstruction

method (defined as the agreement of multiple assessments of

the same subjects) was computed via the Intraclass Correlation

Coefficient (ICC). While ICC is generally used to determine if

subjects can be rated reliably by different raters, it can also be

used for test-retest (repeated measures of the same subject).

The definition of the intraclass correlation is mainly based

on analysis of variance or random effects models. While several

ICC estimators have been proposed, most of the estimators can

be defined in terms of the random effects model

Yij = µ + αj + εij, (1)

where Yij is the i
th observation in the jth group. The terms µ, αj

and ǫij are the unobserved overall mean, the unobserved random

effect shared by all values in group j and the unobserved noise,

respectively. Using a random effect framework, the population

ICC can be defined as

σ 2
α

σ 2
α + σ 2

ε

. (2)

The selection of the ICC statistics needs to be chosen carefully,

as different statistics can produce different results for the same

data. In this work, and following Koo and Li (40), we focus

on the ICC for scan-rescan reliability study using a “two-way”

random effects (i.e., considering both subjects and "raters" as

random effects) a single repeated measurement model with

"consistency" as the agreement term. ICC values range between

0 and 1, with a value of ICC close to 1 indicating high similarity

between rater’s scores (or repeatedmeasurements) and ICC close

to 0 showing low similarity of the values. According to Koo and

Li (40), an ICC of less than 0.50 indicates poor reliability, while

an ICC ranging from [0.5, 0.75] indicates a moderate one. Good

reliability is indicated by an ICC value of 0.75 and higher, with

excellent reliability defined as an ICC greater than 0.9.

For each reconstruction method, the ICC was computed by

arranging the MRI scans in a matrix where rows represented

subjects, and the columns represented each one of the repeated

measurements. In order to assess the reproducibility of the MR

measurements in specific brain regions and determine whether

one region is more reproducible than others, several matrices

were computed, where each cell of the matrix stored the mean

TIE
2 value within the ROI for each scan and reconstruction

method. The ROIs under study comprised the whole WM and

GM tissues as well as the prefrontal, frontal, parietal, temporal

and occipital in WM and GM, independently. The ICC was

computed in R Studio (Version 1.2.5042) using the icc function

from the irr package https://cran.r-project.org/web/packages/

irr/irr.pdf. Only the single raters absolute ICC was used. The

confidence interval was set to 0.095.

3. Results

3.1. Inter-run, inter-session,
inter-scanner and inter-subject variability

The inter-run, inter-session, inter-scanner and inter-subject

variability for each reconstruction method in WM and GM

tissue independently for both the raw data and the denoised data

is shown in Figure 2 (from top to bottom,X2−I, L-curve−I, and

MIML methods).

For all reconstruction methods under study in both the

raw and the denoised cases, the mean CoV ranged between

0.32 and 1.64%. Overall, results from the raw and denoised

data were similar. The highest TIE
2 variability was found for the

inter-subject effect, which was higher than the CoV induced by

different sessions and sites for all the reconstruction methods

in both GM and WM. This increased variability speaks in

favor of the specificity of this metric for characterizing brain

tissues. Moreover, our results demonstrate that, as expected, the

variability consistently increases when changing session and site,

with inter-run being the least variable followed by inter-session,

and then inter-scanner and inter-subject for all the estimation

techniques. Interestingly, the inter-session variability was close

to the inter-scanner variability in both WM and GM. The

pairwise comparison of the 4 effects show statistical significant
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FIGURE 2

Variability of TIE
2 for all reconstructions for both GM and WM for the raw data (without denoising, columns 1 and 2) and denoised data (columns

3 and 4): Coe�cient of variation (CoV) across inter-run (scans acquired within the same session of the same subject on the same scanner),
inter-session (scans acquired between di�erent sessions of the same subject on the same scanner), inter-site (scans acquired between di�erent
sessions of the same subject on di�erent sites) and inter-subject (average of the scans of di�erent subjects in di�erent sessions on the same
scanner) groups. Increased variability is seen with session, scanner and subject e�ects, for both the raw data and the denoised data. Statistical
di�erences between e�ects were assessed using a Wilcoxon rank-sum test with Bonferroni correction.

pairwise differences for all effects besides between inter-session

and inter-site effects (see Figure 2).

3.2. Variability in brain lobes

The voxelwise regional variability for each reconstruction

method is represented in Figure 3, which shows heat maps

of TIE
2 mean (first panel) and TIE

2 standard deviation

(second panel) across the whole dataset. While the raw

and denoised datasets appeared qualitatively similar, more

anatomical details can be seen in the mean maps estimated

from raw data. Overall, the mean TIE
2 was higher in GM, and

some WM regions, including the corticospinal tract and the

optic radiations.

Table 1 show the mean and standard deviation values of

the T2IE in the different brain regions for both WM and

GM for all reconstruction methods under analysis. All three

reconstruction methods showed consistent results, although the

MIML method displayed a higher mean TIE
2 values. The values

obtained with the NNLS methods were almost identical, with

only slight differences mostly related to the smoothness of

the solution. On the other hand, the variability (measured by

the standard deviation) is higher in frontal regions for all the

reconstruction techniques.

3.3. Reproducibility of each
reconstruction method

We investigated the reproducibility of each reconstruction
method bymeans of the ICC. The result of the voxel-wise ICC in

the whole brain GM and WM, as well as different brain regions,
for both the raw and denoised data is shown in Figure 4.

For most GM and WM regions, the ICC of TIE
2 was higher

when the T2 spectra were estimated using regularized NNLS

methods (a few exceptions are the prefrontal in GM and WM,

and the parietal in GM). When comparing the two NNLS

methods under study, the one based on the L-curve−I criterion

performed better. It produced the highest ICC scores for almost

all the GM and WM regions, with values ranging from 0.72

to 0.92. Concerning the reproducibility of the reconstruction

methods in specific brain regions, all three methods behaved

similarly. Overall, the ICC in the whole GM and WM was

moderate to good for the NNLS methods (ICC > 0.72 for

L-curve−I, and > 0.70 for X2 − I), while the MIML method
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FIGURE 3

Whole-brain voxelwise T2IE mean (upper panels, hot colormap) and standard deviation (lower panels, cold colormap) maps for the three
reconstruction methods: X2 − I, L-curve−I, and MIML. Left column, raw data. Right column, denoised data.

TABLE 1 TIE
2 mean (standard deviation) in WM and GM regions for all reconstruction methods under analysis.

RAWDATA DENOISED DATA

ROI L-CURVE-I X2-I MIML L-CURVE-I X2-I MIML

GM (whole brain) 68.09087 (1.074768) 67.31724 (1.154775) 69.34736 (1.33019) 69.19943 (1.105125) 68.55026 (1.1633760) 71.31032 (1.340239)

Prefrontal GM 72.54601 (7.8579) 72.23892 (8.124845) 76.43832 (6.546387) 72.88112 (7.50065) 72.43613 (7.8527090) 76.21879 (6.583347)

Frontal GM 71.46121 (4.971109) 71.47943 (4.942458) 76.81224 (4.137405) 73.01721 (4.285368) 72.49305 (4.433513) 76.45853 (3.986504)

Parietal GM 72.50995 (3.400083) 72.38689 (3.376828) 76.1375 (2.455073) 73.00612 (2.770335) 72.77265 (2.849852) 76.00545 (2.688274)

Temporal GM 73.57243 (3.604324) 73.39499 (3.891249) 79.01297 (2.923089) 73.91503 (3.68813) 73.30519 (4.158284) 79.24136 (3.283316)

Occipital GM 70.42572 (1.982738) 69.51394 (2.066751) 72.34303 (2.929528) 70.01067 (2.027722) 69.21856 (2.129861) 72.06157 (3.041027)

WM (whole brain) 71.68393 (1.123686) 71.5595 (1.165196) 76.91091 (1.005409) 72.69097 (1.272473) 72.28397 (1.350981) 76.87399 (1.147712)

Prefrontal WM 65.8683 (2.772873) 64.89867 (2.933406) 67.18295 (3.023913) 67.31196 (2.875424) 66.51591 (3.110145) 69.46465 (3.057553)

Frontal WM 68.67319 (2.961073) 67.7981 (3.022375) 69.8067 (3.290552) 70.14292 (2.638769) 69.12846 (2.707075) 71.52526 (3.074072)

Parietal WM 68.75922 (2.078946) 67.91948 (2.005582) 69.85067 (2.294526) 69.71293 (1.960121) 69.11882 (1.95721) 72.01084 (2.35551)

Temporal WM 68.1875 (2.561752) 67.58988 (2.742603) 70.06063 (2.503632) 69.64208 (2.399448) 69.23569 (2.538462) 72.58441 (2.308901)

Occipital WM 69.34293 (2.868029) 68.95491 (3.168218) 71.22032 (3.485063) 69.38705 (2.224087) 69.26719 (2.5307) 72.14998 (2.709813)
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FIGURE 4

Regional ICC of Mean TIE
2 for all three reconstruction methods for raw (left plot) and denoised data (right plot). Results for GM and WM are

displayed in sub-panels (A,B), respectively. In each plot, the following anatomical regions are shown, from left to right: whole-brain (GM/WM),
prefrontal, frontal, parietal and temporal regions. Color bars indicate di�erent reconstruction methods: Red: L-curve−I, Green: X2 − I,
Blue: MIML.

achieved an acceptable ICC (ICC > 0.6). For all methods,

the highest scores were obtained in the prefrontal GM region

and the temporal and occipital GM/WM regions. The lowest

ICC scores were reported in the frontal GM and WM regions.

Overall, ICC scores from raw data were slightly higher than

those from the denoised data.

4. Discussion

In this study, we have evaluated the reproducibility of

the intra- and extra-cellular T2 relaxation time estimated by

three non-parametric reconstruction techniques using a unique

multi-echo T2 MRI dataset acquired in different subjects,

scanning sites, and in separate sessions and runs. Moreover,

two scenarios were tested with respect to the T2 estimation:

first, estimating from the raw data (without any processing) and

second, estimating from the data after denoising. An important

contribution of our study is the analysis of reproducibility and

stability in both GM andWM tissue types.

As the TIE
2 is less affected by partial volume effects (PVE)

than the voxelwise mean T2 estimated by other standard

quantitative MRI techniques, we hypothesized that it could be

a helpful imaging biomarker and an alternative or complement

to the myelin water fraction. PVE appear especially close to

the brain cortex, where voxels may contain a mixture of tissue

and free water (e.g., GM/CSF) due to the highly convoluted

geometry of the cortical mantle. As a result, the voxelwise

mean T2 will be the average of TIE
2 and the T2 of free water,

weighted by their relative volumes. Thus, the voxelwise mean

T2 may depend on the voxel location. This issue does not

affect the TIE
2 estimated in this study since it is computed from

the T2 spectrum by discarding the portion corresponding to

the myelin water and free water. Consequently, the intra- and

extra-cellular T2 relaxation time may provide more specific

information about potential abnormalities within the intra- and

extra-cellular tissue compartments.

Interestingly, our results point to relatively higher stability

of the TIE
2 in the GM compared to WM. Hence, our findings

suggest that the TIE
2 could be a relevant metric for studying

pathological conditions in the GM. A plausible explanation for

this findingmight be related to the complexity of the distribution

of T2 times in these brain regions. While the T2 spectrum in

GM commonly has a single lobe (or two very well separated

lobes, when a portion of the voxel contains free water), in

WM, there is a dominant lobe encoding the information from

the intra- and extra-axonal water and a non-dominant lobe

representing the myelin water. Estimating the myelin water lobe

is difficult because (1) the myelin water signal decays very fast,

and therefore, few data points contain relevant information

about this water pool, and (2) the relative volume fraction of

the myelin water is smaller than that of the intra- and extra-

axonal water. Hence, its quantification is more affected by the

underlying noise. Any error in estimating the right location and

amplitude of the myelin water could increase the uncertainty in

assessing the dominant lobe, i.e., TIE
2 in the WM. In contrast,

the TIE
2 in GM is less affected by this issue. Moreover, the

exchange between the intra- and extra-cellular water in GM

is more significant, which tends to homogenize the spectrum,

further reducing its complexity/variance.

4.1. Estimated variability in comparison
to previous studies

Two primary metrics were employed to characterize the

performance of the evaluated methods, the coefficient of
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variation (CoV) and the intra-class correlation (ICC). The range

of values for the CoV resulting from the evaluated methods (i.e.,

in the range 0.32 and 1.64%) are smaller than those obtained in

similar neuroimaging studies using other scalarmetrics obtained

from diffusion MRI data (in WM), and are concordant with

previous studies using multi-echo T2 relaxometry data. For

example, the median CoV values reported in the MASiVar study

(21) for the fractional anisotropy and mean diffusivity varied

from 3.34 to 11.95%, and from 1.37 to 5.12%, respectively (21).

On the other hand, an average within-subject coefficient of

variation (CoV) of 5.9% for the MWF metric was reported in

Drenthen et al. (20). In contrast, Lee et al. (19) reported a mean

inter-site MWF CoV across participants of 2.77% in the global

WM. The only two previous studies that evaluated the TIE
2

metric found a mean longitudinal CoV of 4% using 1.5T data

and ROIs in WM and subcortical structures (11) and intra-site

and inter-site CoVs of 0.51 and 0.31% in WM (17), respectively.

It is important to note that although other previous studies

assessed the reproducibility of the parameters estimated from

multi-echo T2 data, they mainly focused on characterizing the

myelin water fraction (11, 16–20). The only two studies that

analyzed the TIE
2 time (11, 20) exclusively considered WM

regions and subcortical structures. Therefore, to the best of our

knowledge, this is the first study evaluating the reproducibility

of TIE
2 in the cortical GM.

4.2. Local microstructure sensitivity

The whole-brain voxelwise mean and standard deviation

maps displayed in Figure 3 show a rich anatomical contrast

provided by the TIE
2 . It suggests that this parameter is sensitive

to the local microstructure and chemical properties. Notably,

higher TIE
2 values are located in GM and WM tracks with

potentially higher axon calibers (e.g., the corticospinal tract

and the optic radiations) (41), and smaller values are found

in subcortical structures (e.g., putamen, pallidum) which may

be affected by iron deposition, which is well-know to alter the

magnetic field homogeneity and to decrease the T2. Mean TIE
2

maps with similar image contrasts were previously reported in a

multi-parametric atlas throughout the adult life span (42).

4.3. Estimation methods for T IE

2

Results from the ICC metric indicate that the regularized

NNLS method based on the L-curve−I is the best method

for estimating TIE
2 , in terms of reproducibility. Interestingly, a

previous study reported a superior performance of the MIML

algorithm to estimate the MWF in WM Yu et al. However,

as the performance of both methods for estimating TIE
2 was

not compared, it is not possible to know if our findings are

agreement or disagreement with those reported in Yu et al.

(25). We noticed that a potential bias in the evaluation could

emerge as the MIML algorithm was trained for noisy data

and, as such, results from denoised data may be sup-optimal.

Nevertheless, we can discard this issue because our evaluation

was conducted for both raw and denoised data, and results

from both datasets showed a similar pattern. In fact, results

from raw data were slightly more reproducible than those

from denoised data, at a ROI level. Regarding the variability

in different brain regions, the lowest ICC was found in frontal

lobe regions and the highest in parietal regions, where the

ICC strongly depended on the reconstruction method, being

the L-curve−I the one that performed the best, and MIML

the worst. The lower ICC found in frontal regions could be

explained by a higher level of local noise, MRI-related artifacts,

and residual errors in estimating the flip angle due to magnetic

field inhomogeneity.

4.4. Limitations

This study has certain limitations. First, all the analyses

are based on the same multi-echo T2 MRI sequence. Future

studies should compare additional acquisition parameters

and data collected from different MRI vendors (e.g., Siemens,

Philips, GE). Second, all the participants were young healthy

subjects. While this allowed us to reduce age-related differences,

additional analyses comparing the sensitivity of the employed

reconstruction methods to detect age-related differences

were not possible. Third, future studies could evaluate the

sensitivity of TIE
2 to detect abnormalities in patients, as well

as the comparison of the different metrics derived from

multi-component T2 analyzes [see (43)]. Fourth, while the

implemented EPG framework allowed us to study the variation

in the MRI signals as a function of flip angle error, other

factors including magnetization transfer effects and exchange

(44), and the effect of diffusion due to internal gradients

(45) caused by magnetic susceptibility differences at the

fluid-tissue interfaces, were not considered. However, this is

a standard assumption in multi-echo T2 relaxometry and its

generalization would imply the development and validation

of new models, which is beyond the scope of this work. Five,

despite the fact that TIE
2 is relatively immune to partial volume

effects, we noticed image gradients around the boundary

between GM and CSF. Nevertheless, as these gradients were

not present in the individual images, we conclude that they

were introduced by the normalization process, e.g., due to

minor registration inconsistencies at the group level, and the

linear interpolation (i.e., smoothing) done by the registration

algorithm at the subject level. Finally, although we evaluated

three reconstruction methods, additional algorithms could

be analyzed, including the recently proposed Bayesian NNLS

method (14) and the spatially regularized technique proposed

by Kumar et al. (46).
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5. Conclusion

We have acquired a unique multi-echo T2 MRI dataset to

characterize the variability and reproducibility of the intra- and

extra-cellular T2 relaxation time (TIE
2 ). Moreover, we compared

the estimates from three different reconstruction methods,

including two classical algorithms based on regularized non-

negative least squares and a novel machine learning approach

trained with synthetic data. The analysis was conducted by using

raw and denoised data, separately. We found that the smallest

source of variance is the run (i.e., inter-run), followed by inter-

session, inter-scanner, and inter-subject effects, respectively.

Notably, there were no statistical differences between the inter-

session and inter-scanner effects for any of the evaluated

reconstruction techniques, suggesting that the acquisition

sequence and employed methodology may be used in multi-

site neuroimaging studies. Results from raw data were slightly

more reproducible than those from denoised data. To the best

of our knowledge, this is the first work reporting the variability

and reproducibility of TIE
2 across the cortical mantle, globally

and in different brain lobes. Interestingly, the variability in the

GM was smaller than that in the WM. Therefore, TIE
2 could be

a helpful imaging biomarker to characterize microstructure and

molecular abnormalities in a range of pathological conditions in

both GM and WM tissue types. Finally, the non-negative least

squares method based on the L-curve technique produced the

lowest intra-class correlation; therefore, it may be the preferred

method for estimating the TIE
2 time.
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