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Mouse brain MR super-resolution
using a deep learning network
trained with optical imaging data
Zifei Liang and Jiangyang Zhang*

Department of Radiology, Center for Biomedical Imaging, New York University, New York, NY,
United States

Introduction: The resolution of magnetic resonance imaging is often limited at the
millimeter level due to its inherent signal-to-noise disadvantage compared to
other imaging modalities. Super-resolution (SR) of MRI data aims to enhance its
resolution and diagnostic value. While deep learning-based SR has shown
potential, its applications in MRI remain limited, especially for preclinical MRI,
where large high-resolution MRI datasets for training are often lacking.
Methods: In this study, we first used high-resolution mouse brain auto-
fluorescence (AF) data acquired using serial two-photon tomography (STPT) to
examine the performance of deep learning-based SR for mouse brain images.
Results: We found that the best SR performance was obtained when the
resolutions of training and target data were matched. We then applied the
network trained using AF data to MRI data of the mouse brain, and found that
the performance of the SR network depended on the tissue contrast presented
in the MRI data. Using transfer learning and a limited set of high-resolution
mouse brain MRI data, we were able to fine-tune the initial network trained
using AF to enhance the resolution of MRI data.
Discussion: Our results suggest that deep learning SR networks trained using
high-resolution data of a different modality can be applied to MRI data after
transfer learning.

KEYWORDS

MRI, super-resolution (SR), deep learning, transfer learning, multi-modality image

1. Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging technique with many

applications in neuroscience research, both in humans and animals, due to its rich soft

tissue contrasts. For example, T1- and T2-weighted MRI are commonly used to examine

brain structures, and diffusion MRI (dMRI) is sensitive to tissue microstructure and

useful for detecting acute stroke (1). Compared to other imaging techniques, such as

optical imaging, MRI is inherently a low signal-to-noise (SNR) technique, and as a result,

its spatial resolution is limited at the millimeter (mm) or sub-mm level. Advances in

high-field MRI and high-performance gradient systems have greatly improved the spatial

resolution of MRI but these approaches are facing increasing challenges associated with

the high complexity and cost of such systems (2–5).

A promising approach to improving resolution is using super-resolution (SR) to

transform a low-resolution image into a high-resolution image. The conventional

machine-learning-based image SR takes multiple images acquired with sub-voxel spatial

shifts and produces images with higher spatial resolution (6–12). For example, in order to

improve the resolution along the slice direction, multiple images can be acquired, each

shifted by a known sub-voxel distance along the slice direction, and images with
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enhanced through-plane resolution can be reconstructed (13). To

improve in-plane resolution, acquiring multiple images with

rotated scans has also been reported (14, 15). Also, some work

incorporated extra information from inter-scan subject motions

or image distortions to achieve SR (6, 16). These MRI SR

methods have many applications, such as generating finer maps

of metabolic activities of the brain (9), improving brain structure

segmentation (6), or visualizing small white matter tract (17).

However, the need to acquire multiple images increases the total

imaging time and makes the technique susceptible to motions

(11). An alternative SR approach is based on sparse

representation (18–20), but is sensitive to noise and is

computationally expansive.

When conventional and sparse representation-based SR are not

applicable, deep learning-based SR has been proposed as an

alternative (21). Leveraging large amounts of training data, many

reports have demonstrated the success of this approach using

generic images. Early work used the Feed-Forward neural

networks, including the convolutional neural network (CNN)

[e.g., the LeNet5 proposed in 1998 by LeCun et al. (22)], to

achieve image SR (21), but used moderate numbers of layers and

neurons, which limited its performance. Later, the ResNet

further improved the performance by using “skip connections”

to avoid the problem of vanishing gradients in very deep

(>100) networks (23). Recent development based on generative

adversarial network (GAN) provided additional improvements

(24). Deep learning based SR of MRI data has been

demonstrated recently using CNN, ResNet, and GAN-based

networks (25–29), which showed success in improving results

from low-field MRI systems (30), dMRI studies (31, 32), as

well as coronary MR angiography (33).

Although deep-learning-based SR has made a lot of progress in

recent years, especially on generic images, it is still not fully

understood how image contrast and resolution affect the

performance of SR. Some work already analyzed the effects of

resolution on deep learning performance (e.g., 34), on diagnosis

or image labeling tasks. There have been several reports that took

advantage of multiple MRI contrasts for a variety of tasks

including image segmentation, diagnosis, and lesion detection

(35–39), using the multi-contrast information to train a neural

network. Many SR methods take multi-contrast MRI data to

train a neural network or use them as a prior/constraint for SR

(40–43). This approach allows the network to learn the different

characteristics of each contrast and how they relate to the task at

hand, such as (40), which used high-resolution T1-weighted MRI

data to enhance the resolution of low resolution T2-weighted

MRI data.

Large collections of high-resolution MRI data of the human

brain, such as the Human Connectome Project (HCP) (44),

which contain hundreds of MRI data acquired with identical

resolutions and contrasts, made it possible to train deep learning

network to perform SR (45, 46). In contrast, studies involving

the mouse brain often have a much smaller sample size, and

pooling data from multiple studies is not a viable option due to

variations in imaging resolution and contrasts caused by

differences in study designs and MRI systems. While similar MRI
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resources for the mouse brain still do not exist, more than 1,700

three-dimensional (3D) mouse brain auto-fluorescence (AF)

images acquired using optical imaging techniques [e.g., serial

two-photon tomography (STPT)] are available from the Allen

mouse brain connectivity atlas (AMBCA) (47). In this study,

using the large collection of 3D AF data, we examined how

much improvement deep learning based SR can provide for

mouse brain data and whether we can leverage the AMBCA

mouse brain AF data to enhance the resolution of mouse brain

MRI data. We also examined the effects of contrasts and

resolution of the training data on deep learning-based SR.

Specifically, we investigated the difference between training

using low and high-resolution AF data, applying SR networks

trained using AF data to MRI data, and using transfer learning

to adapt networks trained using AF data to different MRI

contrasts.
2. Method and material

2.1. Auto-fluorescence (AF) data of the
mouse brain

High-resolution 3D auto-fluorescence AF data (n = 100), with a

spatial resolution of 25 µm × 25 µm × 25 µm were downloaded

from AMBCA (http://help.brain-map.org/display/mousebrain/

API). These data were used as the training and testing data in

the following sections. 3D AF data were down-sampled by

averaging the corresponding patch voxels to various resolutions

(Figure 1).
2.2. Animals MRI

We acquired multi-contrast mouse brain MRI data to examine

the performance of SR networks trained using 3D AF data. All

animal experiments have been approved by the Institute Animal

Care and Use Committee at New York University. Inbred C57BL/

6 mice (Jackson Laboratories, 4 months old, female, n = 10) were

fixed by trans-cardiac perfusion of 4% paraformaldehyde in

phosphate buffered saline (PBS) for ex vivo MRI. After fixation,

mouse heads were removed and immersed in 4% PFA in PBS for

24 h at 4°C before being transferred to PBS. Before ex vivo MRI,

specimens were placed into 10 ml syringes, which were filled with

Fomblin (Fomblin Profludropolyether, Ausimont, Thorofare, New

Jersey, USA) for susceptibility matching and prevention of

dehydration.

Images were acquired on a 7 Tesla MRI system (Bruker

Biospin, Billerica, MA, USA) using a quadrature volume

excitation coil (72 mm inner diameter) and a receive-only

4-channel phased array cryogenic coil. The specimens were

imaged with the skull intact and placed in a syringe filled with

Fomblin (perfluorinated polyether, Solvay Specialty Polymers

USA, LLC, Alpharetta, GA, USA) to prevent tissue dehydration.

3D diffusion MRI data were acquired using a modified 3D

diffusion-weighted gradient- and spin-echo (DW-GRASE)
frontiersin.org
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FIGURE 1

Representative down-sampled AF images of a mouse brain. This axial section was selected from a 3D AF volume.
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sequence (48) with the following parameters: echo time

(TE)/repetition time (TR) = 30/400 ms; two signal averages; field

of view (FOV) = 12.8 mm × 10 mm× 18 mm, resolution =

0.1 mm × 0.1 mm × 0.1 mm; two non-diffusion weighted images

(b0s); 30 diffusion encoding directions; and b = 2,000 and

5,000 s/mm2, total 60 diffusion-weighted images (DWIs). Maps

of fractional anisotropy (FA) were generated by tensor fitting

using MRtrix (49). Co-registered T2-weighted (T2w) MRI data

were acquired using a rapid acquisition with relaxation

enhancement (RARE) sequence with the same FOV, resolution,

and signal averages as the diffusion MRI acquisition and the

following parameters: TE/TR = 50/3,000 ms, acceleration factor =

8; The total imaging time was approximately 12 h for each

specimen.
2.3. Conventional CNN (cCNN), ResNet, and
GAN based SR networks

In our study, we compared the performance of three SR

networks: cCNN, ResNet, and GAN. The basic architectures of

the three types of networks are shown in Figure 2 and explained

below.

2.3.1. cCNN
The classical CNN models for SR used by previous studies (21)

correspond to a specific parameterization of the baseline neural

network architecture with 3 convolution layers, with two-

dimensional (2D) kernel size 9, 1, 5 and channels 64, 32, 1,

separately. In this study, we used the same architecture with the

same number of channels but with 3D kernels with size of 3 for

all layers (Figure 2A).

2.3.2. Resnet
We followed the description in (23) to build a ResNet SR

network. To achieve a balance between the performance and the

cost of time and space, we used 10 Residual blocks and 64

channels for the convolution layer (50) and 3 × 3 × 3 filter size

(Figure 2B). One residual block is composed of two

convolutions, two ReLU with one additional layer.

2.3.3. GAN
A typical GAN network consists of a generator and a

discriminator (Figure 2C). In this study, we used the ResNet as
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the generator. The discriminator was composed of 10 Residual

blocks and necessary dense, and Sigmoid layers (64 channels and

3 × 3 × 3 kernels in each layer). The discriminator was trained to

identify the real high-resolution data from those generated from

the Generator (51, 52).

One important consideration is the size of the input when

training deep neural networks. Previous studies (e.g., 32),

considered 2D and 3D training inputs separately. In our work,

we used 2D data to test the effects of training samples size

and 3D data to test the performance of SR as our MRI data

were acquired in 3D. For training with 3D data, we chose 21 ×

21 × 21 as the size of the input following the suggestion of

(18). As for loss function, many previous works had used

perception loss (5), which fits the human visual system.

Nevertheless, considering the criteria of keeping the fidelity of

image details, here we employed the simple mean square error

(MSE) loss.

Due to the size difference between low and high-resolution

images, up-sampling is necessary. With conventional camera

picture super-resolution, many deep learning models

incorporated transposed convolution for up-sampling under the

assumption that natural scenery is locally continuous and

smooth (10, 32, 53). However, considering the small input size

used here, to minimize the edge effects, we up-sampled the 3D

MRI volume before input to the neural network with cubic

interpolation.

2.3.4. Transfer learning
In order to fine-tune the network trained using mouse brain

AF data and apply it on MRI data, we used transfer learning.

This is necessary because high-resolution MRI data is scarce. We

used transfer learning to obtain a specific network for the FA

maps from diffusion MRI, by refining the ResNet network

trained using AF data. By freezing most of the network layers’

parameters while adjusting the last three layers weights by

training with high-resolution FA maps from 6 mouse brains.

2.3.5. Hyper-parameters for training
Other choices of hyper-parameters and tricks used during

training procedures are primarily referring to practical

considerations in (25). Rectified linear unit (ReLU) is used as the

activation function that has the form f=max(0,x). The network is

initialized with glorot_normal initialization (54) to encourage the

weights to learn different input features. Glorot_normal
frontiersin.org
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FIGURE 2

Basic network layouts of the cCNN (A), resNet (B), and GAN (C).
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initialization essentially draws form either a normal or uniform

distribution, which is expressed in math formula as

Wij � U � 1ffiffi
n

p , 1ffiffi
n

p
h i

(n is the number of columns in W, U is a

uniform distribution), and keeps weights in a reasonable range

across the entire network. The Adam method (55) is adopted for

stochastic optimization in this study with beta1 of 0.9, beta2 of
Frontiers in Radiology 04
0.999, epsilon of 1 × 10−08, and a learning rate of 0.001. The

number of epochs is initialized as 1,000, but to prevent

overfitting, early stopping is also employed when monitoring the

validation set loss not decreasing in 100 epochs. The input data

are preprocessed to standardize each input with the form of

ranging [0, 1].
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FIGURE 3

Representative SR images generated from down-sampled low-resolution images (LR, 200 µm isotropic) using cubic interpolation (cubic), cCNN, resNet,
and GAN are compared with the reference image at 100 µm isotropic resolution. Top and middle panels: horizontal and axial images. Bottom panel:
enlarged views of a region containing part of the cortex and hippocampus, as indicated by the red box in the axial reference image.
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2.3.6. Testing
We kept 10 from the 100 AF dataset for testing in AF SR

experiments and 4 from 10 MRI data for testing in MRI SR

experiments. All the testing data were not included in the

training group. The testing was performed by dividing the brain

into many 3D patches, with the size as the input of the deep

neural network required, and recombine them together to

reconstructive the entire 3D volumes. The quantitative evaluation

was calculated based on selecting several group of brain slices

with valid information from the reconstructed subjects and

comparing with the corresponding high-resolution data.

2.3.7. A ResNet network trained using human brain
MRI data

We also conducted a study to evaluate whether a neural

network trained using human brain MRI data can also be

applied to mouse brain MRI data. We downloaded 60 3D

humanbrain magnetization prepared rapid gradient echo

(MPRAGE) MRI data from the HCP online database (https://

humanconnectome.org/) (44) and down-sampled the data from

the original 0.8 mm × 0.8 mm × 0.8 mm resolution to 1.6 mm × 1.

6 mm × 1.6 mm resolution to train the ResNet network as

described above. We tested the performance of the ResNet

network on a separate group of down-sampled MPRAGE data

(n = 5) and found the network can significantly improve the

resolution of the images using the original data as the ground

truth (Supplementary Figure S1). The SR performance of our

network was comparable to previous reports.
2.4. Image quality and statistical analysis

We used root mean square error (RMSE) and structural

similarity index (SSIM) to evaluate the difference between SR
Frontiers in Radiology 05
and reference images. RMSE was calculated by evaluating the

absolute differences between two images (6), which rates pixel

value fidelity, while SSIM appraises structure level fidelity (6).

We also used the open-access, parameter-free image resolution

estimation tool developed by Descloux et al. (56) (https://github.

com/Ades91/ImDecorr.git) to evaluate the effective image

resolution. The algorithm utilizes image partial phase

autocorrelation and uses the local maximum of the highest

normalized frequency coefficient K (also termed cut-off

frequency) to determine the effective resolution (effective

resolution = voxel size/K).

Paired t-test in GraphPad Prism 9.0 (www.GraphPad.com) was

used to test whether there was a significant difference between the

RMSE/SSIM of images generated using different SR methods.

Correlation analysis of AF and MRI signals was also performed

using GraphPad Prism. Welch’s ANOVA test in GraphPad was

used to evaluate if the multiple population means are equal, and

ultimately to assess whether the variable among different groups

is a significant factor to the super-resolution.
3. Results

3.1. Comparisons of cCNN, ResNet, and
GAN and required training dataset

Using the large collection of 3D AF data from AMBCA, we first

compared the performances of the three types of SR networks. We

down-sampled the 3D mouse brain AF data from their native

25 µm resolution to 100 µm resolution and then to 200 µm

resolution (Figure 1). We chose the 200 mm resolution here

because in vivo MRI experiments often have spatial resolutions

between 100 and 200 µm. After we completed training the

networks using 20,000 21 × 21 × 21 patches of AF data (200 µm
frontiersin.org
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FIGURE 4

(A) Quantitative measurements (RMSE and SSIM) corresponding to Figure 3. (B) RMSE results by training and testing on various resolution/amount of auto
fluorescence datasets. Left, results with 5,000 training samples. Right, results with 20,000 training samples.
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data as inputs and corresponding 100 µm data as training targets),

a separate set of down-sampled 3D AF data (200 µm resolutions)

(Figure 2, LR) were used for testing with the corresponding

100 µm resolution 3D AF data as the ground truth (Figure 3,

Reference HR). Visually, the structural details in the SR results

still did not match those in the reference 100 µm images. For

example, the internal structures in the hippocampus were less

clear in the SR results than in the reference (Figure 3, bottom

row). The SR results generated by ResNet and GAN were closer

to the reference 100 µm images than the results generated by

cubic interpolation and cCNN.

RMSE analysis indicated ResNet produced the lowest RMSE,

significantly outperforming cubic interpolation, GAN, and cCNN

(Figure 4A). GAN yielded significantly lower RMSE values

compared to cubic interpolation and cCNN. Regarding SSIM

analysis, ResNet produced significantly higher SSIM values than

cubic interpolation and cCNN, but no significant improvement

over GAN (Figure 4A).

We also compared the ResNet SR results at different

resolutions and training data size (listed in Table 1). With 5,000
Frontiers in Radiology 06
training samples, the ResNet only out-performed cubic

interpolation in terms of RMSE at the 400 µm resolution

(p < 0.0001) and was out-performed by cubic interpolation at the

100 and 200 µm resolutions (Figure 4B). After increasing the

number of training samples to 20,000, ResNet out-performed

cubic interpolation at all three resolution levels (Figure 4B).
3.2. The role of training data resolution in SR

Next, we tested the generalization ability of SR networks

trained at different resolutions. We trained three ResNet

networks using data at 50–25, 100–50, and 200–100 µm,

respectively, and tested their performances on 200 µm data.

Visually, the network trained using 200–100 µm data performed

better than networks trained using data at other resolutions

(Figure 5A). Quantitative assessment showed that ResNet-based

SR produced the best results when the resolution of the training

data matched the resolution of actual data (Figures 5B,C).

ResNet networks trained using higher resolution data did not
frontiersin.org
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TABLE 1 Design and results of training on various resolution datasets.

Training data
resolution (µm/
voxel)

# of training
samples

Improvement over cubic
interpolation in RMSE

400–200 5,000 4.4 ± 1.1

200–100 5,000 −0.8 ± 0.9

100–50 5,000 −2 ± 1.5

400–200 20,000 4.7 ± 2.0

200–100 20,000 3.0 ± 1.4

100–50 20,000 2.1 ± 0.8
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produce significant improved RMSE and SSIM scores over cubic

interpolation. The results generated by the ResNet network

trained with matching resolution (200–100 µm) improved RMSE

and SSIM significantly (ANOVA, p = 0.0019, F = 7), highlighting

the importance of resolution for training data.
3.3. Cross-modality transfer learning SR

Although the previous results showed effective SR using the 3D

AF data from AMBCA, using the same approach to SR mouse

brain MRI data remained challenging due to the lack of a large

high-resolution mouse brain MRI dataset. One question is

whether we can use the network trained on the 3D AF data to

SR mouse brain MRI data. To test this approach, we down-

sampled 3D T2-weighted (T2w) and FA MR images of the

mouse brain from 100 µm resolution to 200 µm resolution and

applied the ResNet network trained using 200–100 µm 3D AF

data. The results were compared to the original 100 µm FA and

T2w MR images. Visually, the ResNet results were better than

cubic interpolation results for both FA and T2w (Figures 6A,B),

comparing the jagged edges in cubic interpolated results with
FIGURE 5

(A) Representative SR images generated from down-sampled low-resolution i
trained with images at three different resolutions and the reference image at
images. Bottom panel: enlarged views of a region containing part of the cor
image. (B, C) Quantitative measurements (RMSE and SSIM) of SR results in (A)
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smooth edges in ResNet results. Quantitative assessment showed

that the ResNet T2w MRI results indeed had higher effective

resolution, measured using a toolbox in (56), and lower RMSE

than the cubic interpolated T2w MRI data (Figures 6C–E).

However, the RMSE of the SR FA data showed no improvement

over the cubic interpolation results (Figure 6E). The difference

between T2w and FA images might be explained by the

difference in MR contrasts. After co-register the FA and T2w

data with the 3D AF data, the AF signals showed a positive

correlation with normalized T2w (R = 0.72, p < 0.0001) and a

negative correlation with FA values (R = 0.69, p < 0.0001), as

shown in Figures 6F,G.

We then used transfer learning by keeping on training the

last three layers of the neural network while fixing the rest of

the network. Compared with results from directly applying

the network trained using AF data, the SR result from

transfer learning showed significantly reduced RMSE

(Figure 6E). This result suggests that transfer learning may

allow us to use SR network trained using 3D AF data to

SR MRI data.
3.4. Training from human MRI and
application on mouse MRI

As there have been many reports on human brain MRI SR

(26, 57, 58), it is worth accessing whether the SR networks

trained using human brain MRI data can be applied to mouse

brain MRI data. Apply the ResNet network trained using HCP

MPRAGE data to the mouse brain T2w MRI data generated

sharper results than cubic interpolation (Figure 7), but also

introduced some ringing artifacts (indicated by the orange arrows

in Figure 7A). Quantitative evaluations using PSNR, SSIM, and
mages (LR, 200 µm isotropic) using cubic interpolation (cubic) and resNet
100 µm isotropic resolution. Top and middle panels: horizontal and axial
tex and hippocampus, as indicated by the red box in the axial reference
.
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FIGURE 6

Super-resolution of T2-weighted (T2w) and FA images of the mouse brain. (A) T2w MRI SR using the ResNet trained using the 3D AF data compared with
cubic interpolation results and high-resolution (HR) data; (B) results of FA SR using the ResNet trained on the AF data (ResNet) and transfer learning
(ResNet + TL) compared with cubic interpolation results and HR data. (C) Estimation of the effective resolutions of the cubic interpolation, ResNet SR,
and HR T2w images shown in (A). The magenta lines: radial average of log of the absolute value of Fourier transform from T2w images; the gray
lines: all high-pass filtered decorrelation functions; blue to black lines: decorrelation functions with refined mask radius and high-pass filtering range.
Blue crosses: all local maxima. K is the max of all maxima (shown as a vertical line) and the cut-off frequency. The effective resolution was calculated
as nominal resolution (100 µm here) divided by K. (D) Effective resolution of the cubic-interpolation, ResNet SR, and native HR images (n= 5).
(E) RMSE results of selected images shown in (A,B). (F,G) Voxel-wise correlations between AF and normalized T2w as well as between AF and FA signals.

Liang and Zhang 10.3389/fradi.2023.1155866
RMSE suggested that the human ResNet results were significantly

worse than cubic interpolation (Figure 7B).
4. Discussion

The goal of our study is to investigate whether deep learning-

based SR can enhance the resolution of mouse brain MRI data.
Frontiers in Radiology 08
Acquiring high-resolution MRI data of the mouse brain or

human brain is technically challenging and requires lengthy

acquisition. For example, Wang et al. recently demonstrated

dMRI of the mouse brain at 25 µm isotropic resolution, which

took 95 h even with compressed sensing (59). Prolonged MRI

acquisition is expensive and impractical due to the constant drift

of the magnetic field as well as sample stability. Moreover, the

available resolution also depends on the MRI contrast. For
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FIGURE 7

Super-resolution of T2w images of the mouse brain using the resNet trained using HCP MPRAGE data. (A) T2w MRI SR using the ResNet trained using the
3D AF data compared with cubic interpolation results and high-resolution (HR) data; (B) the PSNR, SSIM, and RMSE of the results from cubic-interpolation
and ResNet.
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example, certain MRI acquisition techniques (e.g., dMRI)

inherently require lengthy acquisition and have lower signal-to-

noise (SNR) than conventional T1- and T2-weighted MRI. As a

result, MRI data acquired using such techniques often have

limited spatial resolutions and could benefit from SR methods.

In this study, we compared three types of deep learning

networks for SR. As expected, ResNet and GAN outperformed

cCNN in this study. This is because cCNNs require a large

number of parameters to accommodate all potential features in

images, which can lead to overfitting, as reported in previous

studies (52, 60). The finding that ResNet outperformed GAN,

however, was surprising to us because GAN has shown improved

performances in many conventional image processing tasks

including realistic image generation (61), inpainting (62), and

image repairing (63). One possible explanation is that the loss

functions used by the generator and discriminator here were not

designed specifically to minimize the RMSE. In a previous study

(52), a GAN network similar to the one used in this study

generated visually realistic results but had lower RMSE and SSIM

values against the ground truth than ResNet. Recent

developments in GAN networks, such as conditional GAN (64),

Cycle GAN (65), and the use of more sophisticated loss

functions instead of the simple MSE loss function, may improve

the performance of GAN for SR in the future.

Previous work on SR of generic images did not consider the

effects of actual image resolution as the training and testing

images were often acquired under a wide range of settings (e.g.,

multiple subjects in a scene and varying image sizes). However,

for MRI and medical imaging, imaging resolution can be
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precisely defined by the field of view and image dimension and

is an important parameter for evaluating its diagnostic value.

Our results based on the mouse brain AF data demonstrate

that the resolutions of the training data need to match the

target resolution in order to achieve optimal SR performance

and mismatches between the resolutions of training and target

data resulted in reduced SR performance. In MRI data,

structural details visible at different resolutions may have

distinct statistical characteristics. For example, at low resolution

(200–400 µm), we can only see major white matter tracts in the

mouse brain, but as the resolution improves, smaller white

matter tracts and other structural features emerge. Although it

is possible to train a network with data of multiple resolutions,

doing so will result in increased network complexity and

require more training data.

We showed that increasing the training data size from 5,000 to

20,000 improved the network performance, but there is no hard

threshold as the amount of training data needed depends on the

network as well as the data pattern. For generic image SR, an

early report on CNN-based SR used only 91 images, divided into

24,800 training samples, and the authors claimed that the

training set already captured enough nature images features to

avoid overfitting (23). Another study (43) used 5,744 slices to

train a GAN-based SR network. In our case, the ResNet had

about more than 10,000 parameters, and the 20,000 training

samples were likely to capture all the mouse brain features to

prevent overfitting. However, given the large number of optical

data in AMBCA, we can potentially further increase the number

of the training dataset.
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As there is a lack of large collections (100 or more subjects) of

high-resolution mouse brain MRI data, we investigated whether the

extensive set of AMBCA mouse brain optical data could be used for

SR of mouse brain MRI data. However, we found that the direct

application of the SR network trained using AF to MRI data did

not work well and transfer learning was required. Our results

indicate that direct training on AF data can enhance the T2w

MRI data, but provides limited improvement in the resolution of

FA images. This may be due to the anisotropic microstructure

organization characterized by FA, which may not be captured by

the AF images. Transfer learning may have worked in this case

because FA and AF images share links to some common

features. It has also been reported that the contrast in AF mainly

reflects tissue myelin content, and as myelinated white matter

structures have anisotropic microstructure, there is a potential

indirect link between AF and FA contrasts. However, it is

important to note that high-resolution MRI data still needs to be

collected to train the network.

One critical question of deep learning-based SR is whether it can

be extended to human brain MRI data. Several studies have used SR

techniques to improve the resolution of human brain images. For

example, in (66), SR was used to enhance the low-resolution

spectroscopic images of the human brain to detect the metabolic

features. Other studies, such as (67), have proposed to apply SR

models trained using lower resolution data (e.g., 2.5–1.25 mm) to

high resolution data (1.25 mm or higher). However, our results in

Sections 3.2 and 3.4 demonstrate that the SR becomes ineffective

once the resolution and contrast discrepancy between the training

and target data increases beyond a certain extent. For the current

deep learning SR methods, the lack of high-resolution training data

remains a significant challenge, which may be alleviated by using

images acquired from postmortem brain specimens, taking into

consideration the differences in MRI signals between in vivo and

post-mortem MRI. Future studies are needed to explore the

generalizability of deep learning-based SR methods to human brain

MRI data with different image contrasts and imaging protocols, as

well as the potential of using transfer learning and data

augmentation techniques to enhance the performance of SR models.

In summary, we demonstrated that a deep learning network

trained using AF data acquired from the mouse brain using serial

two photon microscopy can improve the resolution of mouse brain

MRI data via transfer learning. Our results suggest that the deep

learning network can achieve better MRI SR than conventional

cubic interpolation. This approach potentially allows us to leverage

the large collection of mouse brain data from AMBCA and reduce

the requirement on available high-resolution MRI data.
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