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Radiomics combined with
transcriptomics to predict
response to immunotherapy from
patients treated with PD-1/PD-L1
inhibitors for advanced NSCLC
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Lyon, Lyon, France, 6Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France

Introduction: In this study, we aim to build radiomics and multiomics models
based on transcriptomics and radiomics to predict the response from patients
treated with the PD-L1 inhibitor.
Materials and methods: One hundred and ninety-five patients treated with PD-1/
PD-L1 inhibitors were included. For all patients, 342 radiomic features were
extracted from pretreatment computed tomography scans. The training set was
built with 110 patients treated at the Léon Bérard Cancer Center. An
independent validation cohort was built with the 85 patients treated in Dijon.
The two sets were dichotomized into two classes, patients with disease control
and those considered non-responders, in order to predict the disease control at
3 months. Various models were trained with different feature selection methods,
and different classifiers were evaluated to build the models. In a second
exploratory step, we used transcriptomics to enrich the database and develop a
multiomic signature of response to immunotherapy in a 54-patient subgroup.
Finally, we considered the HOT/COLD status. We first trained a radiomic model
to predict the HOT/COLD status and then prototyped a hybrid model
integrating radiomics and the HOT/COLD status to predict the response to
immunotherapy.
Results: Radiomic signature for 3 months’ progression-free survival (PFS)
classification: The most predictive model had an area under the receiver
operating characteristic curve (AUROC) of 0.94 on the training set and 0.65 on
the external validation set. This model was obtained with the t-test selection
method and with a support vector machine (SVM) classifier. Multiomic signature
for PFS classification: The most predictive model had an AUROC of 0.95 on the
training set and 0.99 on the validation set. Radiomic model to predict the HOT/
COLD status: the most predictive model had an AUROC of 0.93 on the training
set and 0.86 on the validation set. HOT/COLD radiomic hybrid model for PFS
classification: the most predictive model had an AUROC of 0.93 on the training
set and 0.90 on the validation set.
Abbreviations

AUC, area under the receiver operating characteristic curve; DC, disease control; PD, progressive disease.
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Conclusion: In conclusion, radiomics could be used to predict the response to
immunotherapy in non-small-cell lung cancer patients. The use of transcriptomics or the
HOT/COLD status, together with radiomics, may improve the working of the prediction
models.
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Introduction

Over the last few years, immune checkpoint inhibitors (ICI)

targeting the PD-1 pathway have changed the prognosis and

survival of patients treated for advanced non-small-cell lung

cancer (NSCLC). PD-1/PD-L1 inhibitors are being increasingly

used as a standard of care in first- and sometimes second-line

therapies, particularly when there is no targetable oncogenic

addiction (1–4). However, not all patients will benefit from a

response to ICI, and biomarkers are needed to select the patient

most likely to benefit from those treatments to improve

treatment efficacy, decrease treatment-associated costs, and

prevent toxicities (5, 6).

The PD-L1 status is currently used to select patients who will

be treated with ICI. In the first-line setting, pembrolizumab is

now a standard of care in PD-L1-positive (≥50%) NSCLC (7),

while combinations of pembrolizumab or atezolizumab with

chemotherapy have shown their superiority over chemotherapy

alone, irrespective of PD-L1 expression level (8–10). However,

an assessment of PD-L1 expression through

immunohistochemical staining is challenging since the

threshold for positive PD-L1 labeling on tissue samples is

questionable. In addition, PD-L1 expression shows spatial and

temporal variability (11). Furthermore, tumors with an overall

activated immune microenvironment marked by a high

infiltration of immune cells, CD8 T cells (TCD8) in particular,

and interferon (IFN)-gamma activation have been described to

be more likely to respond to immunotherapy. This has led our

group to report a HOT status based on a 27-gene expression–

based signature (12, 13).

In parallel, radiomics is a recent discipline that is being

increasingly used to determine imaging biomarkers (14). It shows

great potential in oncology in patient stratification as well as in

predicting the tumor response to treatments (15, 16), overall

survival, and the phenotype of tumors (17, 18). Radiomics has

been used to predict response to anti-PD-L1 immunotherapy and

assess tumor-infiltrating CD8 cells or CD3 cells (18).

Consequently, radiomics appears promising in the development

of biomarkers of tumor response to PD-1/PD-L1 inhibitors as

well as HOT/COLD status prediction. The aim of this study is to

develop a radiomic model from pretherapeutic computed

tomography (CT) to predict disease control at 3 months in

patients treated with nivolumab, pembrolizumab, or atezolizumab

in the second- or third-line treatment of stage IV NSCLC. In this

study, we also aim to build multiomic models on the basis of

transcriptomics and radiomics to predict disease control at 3
02
months in patients treated with the PD-L1 inhibitor and to

predict the HOT/COLD tumor status.
Materials and methods

Patient selection and data collection

Eligible patients were those presenting with previously treated

histology-proven advanced NSCLC and who had received at least

one cycle of either nivolumab, pembrolizumab, or atezolizumab

as a single agent between January 2015 and December 2017 in

the Léon Bérard Cancer Center (Lyon, France) and the

comprehensive Georges-François Leclerc Cancer Center (Dijon,

France). Patient data were collected after institutional review

board approval. Patients not agreeing to the use of their clinical

data for an academic study were excluded according to national

and European laws.

Clinical and pathological data were collected using electronic

medical records. Clinical variables included sex, age at ICI

initiation, and outcome-related data [progression-free survival

(PFS) under ICI, overall survival (OS), radiological tumor

response at 3 months (12 weeks), and best radiological response

according to RECIST 1.1].

To build the models, patients were divided into two classes.

The first class was made up of patients who showed complete

response (CR), partial response (PR), or stable disease (SD) at 3

months and were considered patients with disease control (DC).

The second class was made up of patients with progressive

disease (PD) according to RECIST 1.1 and/or clinical progression

or death before 3 months.

The patients included in the study underwent a CT scan with

available DICOM images 1 month prior to the beginning of the

treatment at most.

The data cutoff date was February 2, 2019.
Patient inclusion

Among the 160 patients treated for NSCLC in Lyon with

nivolumab, pembrolizumab, or atezolizumab as a single agent

as second- or third-line therapies between January 2015 and

December 2017, 110 patients (60 DC and 50 PD) had

exploitable DICOM images and 51 had both genomics and

imaging data.
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Among the 118 patients treated inDijon, 85 patients (61DC and 24

PD) had exploitableDICOM images and three had both transcriptomic

and imaging data. Patient characteristics are summarized in Table 1.
Transcriptomics

In a 54-patient subgroup with formalin-fixed paraffin-

embedded samples, we retrieved targeted-RNA sequencing data

previously reported by our group (GSE161537) (19, 20).

Each tumor was classified as HOT or COLD based on a 27-gene

expression signature. HOT tumors were shown to be characterized by

an overall activated immune microenvironment by (i)-PD-L1 and

IDO1 expression, (ii)-TCD8 infiltrate, and (iii) activation of the

IFN-gamma pathway. Among the 54 patients, 31 and 23 patients

had tumors classified as HOT or COLD, respectively.
Radiomic feature extraction

Patients underwent CT scans using various systems [Siemens

(n = 63), Philips (n = 25), General Electric (n = 85), Toshiba
TABLE 1 Patient characteristics in each dataset.

Patients Lyon
(n = 110)

Dijon
(n = 85)

Gender, n (%)
Female 39 (35.5) 24 (28.2)

Male 71 (64.5) 61 (71.7)

Age: mean (range) 61.7 (36.5–
85)

64.3 (37.7–
83.5)

Histological subtypes, n (%)
Adenocarcinoma 77 (70) 49 (57)

Squamous cell 21 (19) 36 (43)

Other 13 (11) 0

The stage at diagnosis, n (%)
II 4 (3) 10 (12)

III 16 (15) 19 (22)

IV 90 (82) 56 (66)

Performance status, n (%)
0 12 (11) 30 (35)

1 68 (62) 36 (42)

2 30 (27) 19 (22)

PD-L1 expression, n (%)
0% 23 (21) 23 (27)

1%–49% 34 (31) 17 (20)

≥50% 17 (15) 9 (11)

Not available 36 (33) 36 (42)

Molecular alterations, n (%)
EGFR 7 (6) 4 (5)

KRAS 37 (34) 20 (24)

Other 7 (6) 4 (5)

None 51 (46) 57 (52)

Progression-free survival (months): mean (range) 7.4 (0.2–39.1) 4.9 (0.2–51.7)

Radiological tumor response at 3 months (12
weeks)

PD = 61 PD = 59

PR = 13 PR = 7

SD = 34 SD = 16

CR = 1
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(n = 9), Hitachi (n = 2)] with various protocols (voltage range:

100–130 kV, X-ray-tube current: 350–700 mAs, pitch: 0.8–1.5).

Images were reconstructed using a soft kernel for all patients

[range of image thickness (1–3 mm)].

Images were automatically loaded on an in-house software

developed on MATLAB R2019a (The Mathworks, Natick, MA,

USA). The tumor was manually segmented in three dimensions by

an experienced radiologist (AB, nine years of experience in

oncology imaging), and the data were blinded for clinical results.

Tumor segmentation was performed slice by slice to generate the

tumor mask using ITK-SNAP (www.itksnap.org). The radiologist

defined the contours of the tumor on the soft-kernel reconstruction

images (Figure 1). If large vessels or adjacent organs were infiltrated

by the tumor, they were included in the mask. The primary tumor

was preferentially segmented, but if the patient had undergone prior

surgery for the tumor and was treated for recurrence, the largest

lung or mediastinal tumor was included in the study.

Three hundred and forty-two radiomic features were extracted

according to Bouhamama et al. (21). The full list of features is

summarized in Figure 2.

Size and shape features were directly extracted from the binary

mask. Intensity distribution features were extracted from the

masked MR images and from the histogram built using 256 bins.

Before the extractionof texture features, voxelswere resampled tobe

isotropic using an affine transformation and a nearest-neighbor

interpolation and discretized to a smaller number of gray levels. This

operation was done using an equal-probability algorithm to define

decision thresholds in the volume; for instance, the number of voxels

for a given reconstructed level was the same in the quantized volume

for all gray levels. Images were discretized to 8, 16, 24, 32, 40, 48, and

64 grey levels to build four texture matrices; GLCM and GLRLM were

computed for four directions (0°, 45°, 90°, and 135°) with an offset of

one pixel. For GLSZM and NGTDM, 26-pixel connectivity was used.

For the Gabor characteristics, filter responses were computed at

different scales (n = 5), different orientations (n = 6), and with a

minimum wavelength of three.
Feature selection

After the extraction of radiomic features, each database was

separately normalized using the Z-score. An initial step of

dimensionality reduction was performed (Figures 3, 4). Two different

approaches were tested. In the first approach, feature selection was

performed using the ReliefF algorithm, with k = 10 being the nearest

neighbor. In the second approach, we used a statistical method

accounting for relevancy and redundancy. The method ranks the

features by computing a score combining the results of a statistical test

Z (for relevancy) and correlation information to outweigh the Z-value

of potential features (for redundancy) using

S ¼ Z � [(1� a) r]

where ρ is the average absolute value of the cross-correlation coefficient

between the candidate featureandall previously selected features;α is the
frontiersin.org
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FIGURE 1

(A) Lung adenocarcinoma of the upper left lobe with spiculated margins. During the segmentation step (B), the radiologist defined the contours of the
tumor, selecting all the tissue parts and excluding peripheral vessels or non-tumoral lung condensation. The segmentation is performed in three
dimensions.

FIGURE 2

List of radiomic features. Radiomic features include size features, shape features, and texture features [image-based first-order (or histogram) features,
high-order features based on different texture matrices or descriptors, and frequency-domain characteristics].

Bouhamama et al. 10.3389/fradi.2023.1168448
weighting factor—fixed here at 0.7. Different statistical tests were

evaluated to compute the Z-value: the t-test, Wilcoxon test, and

AUROC.

The number of features integrated into the model was adjusted

to the size of the data so that it was consistent with the number of

observations. This number of features is further detailed for each

model.
Predictive model training

Various models were trained with different databases,

different outcomes, and different combinations of feature
Frontiers in Radiology 04
selection methods and classifiers. In each case, we performed a

binary classification (DC vs. PD or HOT vs. COLD). We

compared two different classifiers for each model

(convolutional neural network (CNN) vs. SVM).

For the model trained on radiomic data, since the number of

patients was more than 100, we used an artificial neural network

with a feed-forward multilayer perceptron architecture. For the

three other models (trained on radiogenomic data), the

number of patients was smaller, and we used random forests

with a split of 10. For every model, we also used a support

vector machine trained with a linear kernel and box

constraints set to one as a second classifier. The following

predictive models were built.
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FIGURE 3

Radiomic analysis pipeline for the prediction model of the 3-month PFS, using the Lyon cohort for training and the Dijon cohort for validation. During the
segmentation step, the radiologist defined the contours of the tumor, selecting all the tissue parts and excluding peripheral vessels or non-tumoral lung
condensation. In total, 342 radiomic features were automatically extracted. Each database was separately normalized using the z-score. The training set
was used to build the model. Dimension reduction was performed using one of two feature-selection methods (t-test or ReliefF). Then, machine learning
was performed using two different classifiers: an SVM or an artificial neural network with feed-forward (FF) multilayer perceptron architecture. Internal
validation was systematically performed to evaluate overfitting, using a hold-out cross-validation technique, with 75% of the database used for training
and 25% for validation. Then, the model inference was performed, using the different validation sets, and the performance was evaluated by receiver
operating characteristic (ROC) analysis. Finally, eight models were created with different settings.

FIGURE 4

Analysis pipeline for the multiomic models. The segmentation step and extraction of features are the same as those presented in Figure 1. Since the
number of patients is reduced to 54, it was not possible to build a validation set and only the cross-validation step was performed. Depending on the
outcome to be predicted, the radiomic features were combined with genomics or the HOT/COLD status. Dimension reduction was performed using
one of two feature-selection methods (t-test or Wilcoxon test or ReliefF). Then, machine learning was performed with two different classifiers: an
SVM or random forest, with a split of 10. Internal validation was systematically performed to evaluate overfitting, using a hold-out cross-validation
technique, with 75% of the database used for training and 25% for validation. The performance was evaluated by ROC analysis. Finally, eight models
were created with different settings.

Bouhamama et al. 10.3389/fradi.2023.1168448
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Prediction of PFS at 3 months based on radiomics
To build this model, two classes were considered. The first class

constituted patients who showed CR, PR, or SD at 3 months and

were considered patients with DC. The second class constituted

patients with PD according to RECIST 1.1 and/or clinical

progression or death before 3 months. The training database was

built using the patients treated in Lyon [n = 110 patients (60 DC

vs. 50 PD)]. The number of selected features after feature

reduction was set at n = 30. To evaluate overfitting, a hold-out

cross-validation technique was performed with 75% of the

database used for training and 25% for validation.

Next, the model inference was performed separately on the

Dijon database used as an external validation set [n = 85 patients

(61 DC and 24 PD)]. The diagnostic performance metrics [area

under the receiver operating characteristic curve (AUROC),

accuracy, sensitivity, specificity, misclassification rate, and

misclassified patients] were measured for each dataset and then

iteratively compared to adjust the number of features embedded

in the model (Figure 3).

Prediction of PFS at 3 months based on radiomics
and genomics

Since the number of patients who had both radiomic data and

genomic data was lower than in the previous step, 51 patients

treated in Lyon and three patients treated in Dijon were merged

into a single cohort (39 DC and 15 PD). The population was

dichotomized into two classes of DC and PD as previously. For

each patient, the 342 radiomic features and 2,559 oncology-

related biomarker genes were merged into a single database. The

number of selected features after dimension reduction was set at

n = 20. To evaluate overfitting, a hold-out cross-validation

technique was performed with 75% of the database used for

training and 25% for validation (Figure 4).

Prediction of the HOT/COLD status using
radiomics

To build this model, the 54 patients who had both radiomic

and genomic data available were included. The population was

dichotomized into two classes of HOT status and COLD status,

as previously explained. For each patient, the 342 radiomic

features were included in the database. The number of selected

features after dimension reduction was set at n = 15. To evaluate

overfitting, a hold-out cross-validation technique was performed

with 75% of the database used for training and 25% for

validation (Figure 4).

Prediction of PFS at 3 months based on radiomics
and HOT/COLD status

To build this model, the 54 patients who had both radiomic

data and HOT/COLD status were included. The population was

dichotomized into two classes of DC (n = 33) and PD (n = 21).

For each patient, the 342 radiomic features and the HOT/COLD

status were merged into a single 343-feature database. The

number of selected features after dimension reduction was set at

n = 15 (including the HOT/COLD statuses). To evaluate
Frontiers in Radiology 06
overfitting, a hold-out cross-validation technique was performed

with 75% of the database used for training and 25% for

validation (Figure 4).
Results

Patient survival

The PFS of the whole cohort was 36.9% (95% CI: 30.2%–

43.7%) at 3 months and 24.1% (95% CI: 18.4%–30.3%) at 6

months. The mean PFS was 63 days. The OS of the whole cohort

was 75.4% (95% CI: 68.7%–80.8%) at 3 months and 61.5% (95%

CI: 54.3%–68.0%) at 6 months. The median OS was 314 days.

There was no difference between the PFS of the Lyon patients

and the Dijon patients (p = 0.995). With regard to the HOT/

COLD status, there was no difference between the PFS of HOT

tumor patients and that of the cold tumor patients (p = 0.199).

Kaplan–Meier survival curves are shown in Figure 5.
Diagnostic performance of the predictive
models

Prediction of PFS at 3 months based on radiomics
Two different methods of feature selection were attempted and

combined with two different classifiers, resulting in four different

models. A list of these features is summarized in Table 2.

Features with their respective weight of predictor importance are

listed in Figure 6A.

Thirty features were selected using the ReliefF algorithm:

– 16 shape features: size (n = 4), Zernike features (n = 6), dist

features (n = 4), and skelet features (n = 2)

– 14 texture features: first order (n = 1), GLZLM (n = 3), NGTDM

(n = 1), Fourier transform (n = 7), and lacunarity (n = 1)

Thirty features were selected using the t-test selection method:

– 21 shape features: size (n = 1), Hu moments (n = 8), affine

moments (n = 6), skelet features (n = 4), and Zernike features

(n = 2)

– 9 texture features: first order (n = 3), GLRLM (n = 2), GLZLM

(n = 1), NGTDM (n = 1), SURF features (n = 1), and Harris

features (n = 1)

The most predictive model had an AUROC of 0.94, a

sensitivity of 88.2%, and a specificity of 85.1% on the training

set, which were, respectively, 0.65, 95.8%, and 27.8% on the

external validation set. This model was obtained with the t-test

selection method and with an SVM classifier. The performances

of the four different models are summarized in Table 3, and the

AUC is presented in Figure 7A.
Prediction of PFS at 3 months based on radiomics
and genomics

During the feature selection, 16 genes and four radiomic

features were selected using the ReliefF algorithm and 19 genes
frontiersin.org
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FIGURE 5

Kaplan–Meier curves of (A) overall survival in the whole cohort, (B) progression survival of the patients treated in Dijon and Lyon, and (C) progression
survival of HOT tumors (“Yes”) patients vs. COLD tumor patients (“No”).

TABLE 2 List of the features included in each model after the dimension reduction step.

Prediction model Feature selection method
1- Prediction of PFS at 3
months based on radiomics

t-test ReliefF

21 shape features: Size (n = 1), Hu moments (n = 8), affine moments
(n = 6), Skelet features (n = 4), Zernike features (n = 2).
9 Texture Features: first order (n = 3), GLRLM (n = 2), GLZLM (n =
1), NGTDM (n = 1), SURF features (n = 1), Harris features (n = 1)

16 shape features: size (n = 4), Zernike features (n = 6), dist features (n
= 4), skelet features (n = 2) 14 Texture Features: first order (n = 1),
GLZLM (n = 3), NGTDM (n = 1), Fourier transform (n = 7),
lacunarity (n = 1)

2- Prediction of PFS at 3
months based on radiomics
and transcriptomics

t-test Wilcoxon AUROC ReliefF

–1 shape feature: Zernike features (n = 1)
–19 genes

–1 shape feature:
Zernike features (n
= 1)

–19 genes

–1 shape feature: Zernike features
(n = 1)

–19 genes

–2 shape feature: size
(n = 1), Zernike features
(n = 1)

–2 Texture Features: grad
features (n = 2)

–16 genes

3- Prediction of HOT/COLD
status using radiomics

t-test Wilcoxon AUROC ReliefF

–3 shape features: size (n = 3)
–12 Texture Features: first order (n = 1),

GLCM (n = 1), GLZLM (n = 3),
Fourier transform (n = 2), grad
features (n = 2), Losib features (n = 2)

–4 shape features: size
(n = 4)

–11 Texture Features:
first order (n = 2),
GLZLM
(n = 5), grad features
(n = 3), Losib
features
(n = 1)

–6 shape features: size (n = 3), Affine
moment features (n = 3)

–9 Texture Features: first order
(n = 1), GLZLM (n = 4), grad
features (n = 3), Losib features
(n = 1)

–9 shape features: size
(n = 2), Zernike features
(n = 1), dist features
(n = 6)

–6 Texture Features:
GLRLM (n = 3), GLZLM
(n = 1), Fourier
transform (n = 2)

4- Prediction of PFS at 3
months based on radiomics
and HOT/COLD status

t-test Wilcoxon AUROC ReliefF

–14 shape features: Size (n = 1), Zernike
features (n = 3), dist features (n = 9),
skelet features (n = 1)

–HOT/COLD status

–9 shape features: size
(n = 1), Zernike
features (n = 2),
skelet features
(n = 6)

–5 Texture Features:
grad features (n = 3),
Losib features (n = 2)

–HOT/COLD status

–8 shape features: Zernike Features (n
= 2), skelet features (n = 2), affine
moment features (n = 1), dist
features (n = 3)

–6 Texture features: Grad features
(n = 3), Losib features (n = 2),
Fourier transform (n = 1)

–HOT/COLD status

–4 shape features: size
(n = 1), Zernike features
(n = 3)

–10 texture features:
GLRLM (n = 6), Fourier
transform (n = 4)

–HOT/COLD status

Bouhamama et al. 10.3389/fradi.2023.1168448
and one radiomic feature were selected using statistical tests. A list

of these features is summarized in Table 2. Features with their

respective weights of predictor importance are listed in

Figures 6B and C.
Frontiers in Radiology 07
The most predictive model had an AUROC of 0.95, a

sensitivity of 87.1%, and a specificity of 100% on the training set;

which were respectively 0.99, 94.1%, and 100% on the validation

set. This model was obtained by combining the t-test selection
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FIGURE 6

List of features according to their predictor importance weight. Thirty features were selected using the t-test and included in the first predictive model
(progression-free survival at 3 months). (B,C) Features selected to train the second predictive model of PFS at 3 months, based on radiomics and
genomics, after feature selection using the ReliefF algorithm and Wilcoxon test, respectively. Sixteen genes and four radiomic features were selected
using the ReliefF algorithm (B); and 19 genes and one radiomic feature using the statistical test (C). Note that when using ReliefF, the gene encoding
for PD-L1, CD274, was selected among the 2,559 genes tested, and when using the Wilcoxon test, gene CXCL9 was included. Those two genes are
described as common and prominent biomarkers of response to immunotherapy. Comparing the two selection methods, one Zernike moment was
selected by the two techniques, and two genes (ID3 and ATF6) were selected by both methods, highlighting that some shape features and some
genes may be used as biomarkers of the clinical response to immunotherapy.
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method and an SVM as a classifier. The performances of the eight

different models are summarized in Table 4, and the AUC of the

best model is presented in Figure 7B.
Prediction of HOT/COLD status using radiomics
A list of the features included in the models is summarized in

Table 2.

The most predictive model had an AUROC of 0.93, a

sensitivity of 86.2%, and a specificity of 88.3% on the training

set, which were, respectively, 0.86, 84%, and 80% on the

validation set. This model was obtained by using a t-test as a

selection method and with decision trees as a classifier. The

performances of the eight different models are summarized in

Table 4, and the AUC of the best model is presented in

Figure 7C.
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Prediction of PFS at 3 months based on radiomics
and HOT/COLD status

A list of the features included in the models is summarized in

Table 2.

The most predictive model had an AUROC of 0.93, a

sensitivity of 86.2%, and a specificity of 81% on the training set,

which were, respectively, 0.90, 88%, and 88.2% on the validation

set. This model was obtained with AUROC as a selection

method and with decision trees as a classifier. The performances

of the eight different models are summarized in Table 4, and the

AUC of the best model is presented in Figure 7D.
Discussion

In this work, we have demonstrated that radiomics extracted

from pretherapeutic CT scans were useful for predicting different
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clinical outcomes such as response to treatment and the HOT/

COLD status in NSCLC.

Size and shape features were highly represented in the list of

selected features while performing the dimensionality reduction

step. Patients with a higher tumor volume had a worse

prognosis. This finding shows how prominent the tumor volume

is for the prognosis, but it may be an important source of bias,

and it is no surprise that patients with advanced cancer had a

shorter PFS. However, it may show how relevant feature selection

methods are. Therefore, a discussion on a better selection of the

patients included in a further study is warranted and different

prediction models may be designed for different ranges of tumor

sizes. Here, the number of subjects has restricted the creation of

various subgroups.

In our study, among the radiomic features included in the

model, contrast NGTDM and Gray Level Non-Uniformity had

lower values for patients responding to immunotherapy, on the

one hand, and a higher value of Long Run High Gray Level

Emphasis, on the other hand. This means that tumors that will

respond to immunotherapy were more homogeneous than

tumors that did not respond to immunotherapy, and those that

had a coarse texture had higher runs of high gray level, meaning

a higher contrast enhancement. Some other features showed

different behaviors, such as Large Zone Size Emphasis, which

had higher values in PR patients, or Zone Size Non-Uniformity,

which was lower in PR patients, but most features showed more

homogeneity in GR patients.

The texture features selected in the prediction model of the

HOT/COLD status have shown interesting findings. For example,

Gray Level Non-Uniformity, which was selected by both the t-

test-based and ReliefF methods showed that HOT lesions were

more homogeneous. HOT tumors are characterized by a high

infiltration of CD8 T cells and GLNU may be correlated with T-

cell infiltration, tumor homogeneity, and 3-month PFS.

These results are consistent with those of Sun et al. (18), who

reported that lesions with a high CD8 cell score—the more likely

to respond to immunotherapy—were the most homogeneous,

considering gray-level run-length matrix features. In this study,

the authors suggested that homogeneous and hypodense

patterns could be representative of inflammatory infiltrates,

whereas heterogeneity and high gray levels might be more

representative of heterogeneous and intertwined processes, such

as chaotic vascularization and necrosis. In contrast, Trebeschi

et al. (17) found that lesions with more heterogeneous

morphological profiles and non-uniform density patterns were

more likely to respond to immunotherapy, irrespective of organ

and/or cancer type. However, such different results between Sun

et al.’s study, on the one hand, and Trebeshi et al. and our

study, on the other hand, are highly disturbing. This enhances

the need to create a link between radiomic patterns and tumor

phenotype. Indeed, the explanation for the biological

phenomenon that leads to heterogeneous imaging or some

radiomic patterns is highly hypothetical (22). A better

knowledge of the correlation between histology and imaging

may help to avoid a misunderstanding of the mechanisms that

lead to treatment resistance.
frontiersin.org

https://doi.org/10.3389/fradi.2023.1168448
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 7

ROC analysis of four different models. (A) The Lyon population was used as a training set. A t-test was used to select the 30 most relevant features and an
SVM was used as the classifier to classify patients with DC and PD. Then, the model inference was performed using the Dijon validation set. The area
under the ROC curve (AUC) in red shows the performance on the training set (green for the cross-validation set); the curves in blue show the
performance on the Dijon validation cohort. (B) The model was built with the 54 patients who had both radiomic and genomic data. A t-test was
used to select the 20 most relevant features among 342 radiomic features and 2,559 genes, and an SVM was used as the classifier to classify patients
with a DC and PD. The AUC in red shows the performance on the training set; the AUC in green is intended for the cross-validation set. It was not
possible to build a validation set since the number of patients was lower than in procedure A. (C) The same 54 patients as in B were included in this
study. The 20 most relevant radiomic features were selected using the t-test as a selection method and decision trees using a split of 10 were used
as the classifier. The aim of this study was to use radiomics to predict the HOT/COLD status. (D) This model was built by merging radiomic features
with the HOT/COLD status. The 19 most relevant features were selected, using their AUROC among 342 radiomic features, and the HOT/COLD
status was added. Decision trees using a split of 10 were used to classify patients with DC and PD.

Bouhamama et al. 10.3389/fradi.2023.1168448
The use of the HOT score in our study may provide some

additional data. Indeed, it is known that the HOT score

correlates with PD-L1 (23, 24) and IDO1 expression (24) as well

as a higher TCD8 infiltration and activation of the IFN-gamma

pathway (25). The fact that radiomics can predict the HOT/

COLD status is an interesting issue because it implies that the

tumor images may reflect specific information about PD-L1 and

IDO1 expression as well as TCD8 infiltration and activation of

the IFN-gamma pathway. Furthermore, the HOT status is

correlated with a better response rate to immunotherapy and

better survival. This means that radiomics indirectly predict the

3-month PFS by capturing some phenotypical characteristics in

the tumors. This sustains the hypothesis that radiomics may be

the link between the microscopic and the macroscopic scales of

the tumor (26, 27).
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In this study, we have built a multiomic model based on

genomics and radiomics. It seems that combining radiomics with

genomic data increases the models’ diagnostic performances.

Unfortunately, we cannot fairly conclude that the multiomic

model outperforms the radiomic model because the number of

subjects is significantly lower in the genomic + radiomic group.

Indeed, the sequencing of 2,559 oncology-related biomarker

genes is not done in current practice, and we lacked genomic

data for most patients. The combination of the HOT/COLD

status with radiomics also resulted in this model’s high

performance. This approach is particularly interesting because

the HOT/COLD status results from the expression of genes that

are predictive of the response to immunotherapy (19).

Unfortunately, there was no significant difference in PFS between

HOT tumors and COLD tumors in this study, which included a
frontiersin.org

https://doi.org/10.3389/fradi.2023.1168448
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


T
A
B
LE

4
D
ia
g
n
o
st
ic

p
e
rf
o
rm

an
ce

s
fo
r
(i
)
th
e
p
re
d
ic
ti
o
n
o
f
P
FS

at
3
m
o
n
th
s
b
as
e
d
o
n
ra
d
io
m
ic
s
an

d
g
e
n
o
m
ic
s,
(i
i)
p
re
d
ic
ti
o
n
o
f
th
e
H
O
T
/C

O
LD

st
at
u
s
u
si
n
g
ra
d
io
m
ic
s,
an

d
(i
ii)

p
re
d
ic
ti
o
n
o
f
P
FS

at
3
m
o
n
th
s
b
as
e
d
o
n

ra
d
io
m
ic
s
an

d
H
O
T
/C

O
LD

st
at
u
s.

S
in
ce

o
n
ly

5
4
p
at
ie
n
ts

h
ad

b
o
th

g
e
n
o
m
ic

an
d
ra
d
io
m
ic

d
at
a,

th
e
va

lid
at
io
n
o
f
th
e
m
o
d
e
ls

w
as

m
ad

e
w
it
h
h
o
ld
-o

u
t
cr
o
ss
-v
al
id
at
io
n
.

Tr
ai
ni
ng

se
t

Va
lid

at
io
n
se
t
(c
ro
ss
-v
al
id
at
io
n)

Re
du

ct
io
n

m
et
ho

d
Le
ar
ni
ng

m
et
ho

d
A
U
C

A
cc
ur
ac
y

(%
)

Se
ns
iti
vi
ty

(%
)

Sp
ec
ifi
ci
ty

(%
)

A
U
C

A
cc
ur
ac
y

(%
)

Se
ns
iti
vi
ty

(%
)

Sp
ec
ifi
ci
ty

(%
)

M
is
-c
la
ss
ifi
ca
tio

n
ra
te

(%
)

N
o.

m
is
cl
as
si
fi
ed

pa
tie

nt
s

P
FS

at
3
m
on

th
s,
ba
se
d
on

ra
di
om

ic
s
an
d
tr
an
sc
ri
pt
om

ic
s

A
U
R
O
C

D
ec
is
io
n
tr
ee
s

1.
00

96
.8

95
.2

10
0

0.
91

80
94
.4

57
.2

20
6

R
E
LI
E
FF

D
ec
is
io
n
tr
ee
s

0.
94

96
.8

10
0

88
.9

0.
91

88
82
.3

10
0

12
3

t-
te
st

D
ec
is
io
n
tr
ee
s

0.
98

96
.8

95
.2

10
0

0.
85

84
83
.3

85
.7

16
4

W
ilc
ox
on

D
ec
is
io
n
tr
ee
s

0.
99

96
.8

95
.5

10
0

0.
92

80
94
.1

62
.5

20
6

A
U
R
O
C

SV
M

0.
97

90
.3

10
0

80
.0

0.
95

84
94
.4

85
.7

16
4

R
E
LI
E
FF

SV
M

0.
95

80
.6

95
.2

10
0

0.
93

84
83
.3

10
0

16
4

t-
te
st

SV
M

0.
95

87
.1

10
0

88
.9

0.
99

84
94
.1

10
0

16
4

W
ilc
ox
on

SV
M

0.
98

93
.5

95
.5

88
.9

0.
95

92
10
0

75
8

2

H
O
T
/C
O
LD

st
at
us

us
in
g

ra
di
om

ic
s

A
U
R
O
C

D
ec
is
io
n
tr
ee
s

0.
93

86
.2

93
.8

79
.3

0.
87

84
80

90
16

4

R
E
LI
E
FF

D
ec
is
io
n
tr
ee
s

0.
81

79
.3

81
.2

76
.9

0.
82

72
80

90
28

8

t-
te
st

D
ec
is
io
n
tr
ee
s

0.
93

86
.2

80
.0

90
.0

0.
87

84
80

90
16

4

W
ilc
ox
on

D
ec
is
io
n
tr
ee
s

0.
92

86
.2

88
.3

83
.3

0.
86

84
85
.7

81
.8

16
4

A
U
R
O
C

SV
M

0.
81

79
.3

94
.1

66
.7

0.
86

60
85
.7

91
.1

40
12

R
E
LI
E
FF

SV
M

0.
81

75
.9

10
0

53
.8

0.
81

76
86
.7

60
24

7

t-
te
st

SV
M

0.
80

69
.0

68
.8

92
.4

0.
84

68
86
.7

80
32

9

W
ilc
ox
on

SV
M

0.
81

72
.4

10
0

53
.8

0.
85

68
86
.7

90
32

9

P
FS

at
3
m
on

th
s,
ba
se
d
on

ra
di
om

ic
s
an
d
H
O
T
/C
O
LD

st
at
us

A
U
R
O
C

D
ec
is
io
n
tr
ee
s

0.
93

86
.2

81
.0

10
0

0.
90

88
88
.2

87
.5

12
3

R
E
LI
E
FF

D
ec
is
io
n
tr
ee
s

0.
93

93
.1

10
0

0.
0

0.
50

60
60

40
40

12

t-
te
st

D
ec
is
io
n
tr
ee
s

0.
90

86
.2

85
.7

87
.5

0.
85

72
10
0

50
28

8

W
ilc
ox
on

D
ec
is
io
n
tr
ee
s

0.
91

82
.8

80
.0

88
.9

0.
88

84
83
.3

85
.7

16
4

A
U
R
O
C

SV
M

0.
88

79
.3

90
.5

75
.0

0.
87

84
82
.4

87
.5

16
4

R
E
LI
E
FF

SV
M

0.
83

79
.3

10
0

66
.7

0.
82

76
94
.4

42
.9

24
7

t-
te
st

SV
M

0.
86

79
.3

80
.0

88
.9

0.
86

76
88
.9

71
.5

24
7

W
ilc
ox
on

SV
M

0.
88

82
.8

95
.2

75
.0

0.
87

76
10
0

50
24

7

Bouhamama et al. 10.3389/fradi.2023.1168448

Frontiers in Radiology 11 frontiersin.org

https://doi.org/10.3389/fradi.2023.1168448
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Bouhamama et al. 10.3389/fradi.2023.1168448
subgroup of patients, but the HOT/COLD status was demonstrated

to be predictive of a better response to treatment than in our

previous study (19), which included all patients. The

transformation of the complete genomic database of 2,559 genes

into one single phenotype can be compared with selecting the

most relevant features, and this contributes to limiting the risk of

overfitting.

However, with regard to some of the genes selected in our

models, we may assume that the feature selection method is

relevant and is able to capture genomic signatures together with

radiomic features. Indeed, using the ReliefF methods—among the

total of 20 features, chosen to be included in the models—four

were radiomic features and 16 were genomic features. That the

genomic features were overrepresented was to be expected

because the algorithm has to select features among 2,559 genes

and 342 radiomic features. Among genes, CD274 has to be

highlighted since this gene encodes PD-L1. As previously

explained, PD-L1 currently remains the main biomarker of the

immunotherapy response. When the Wilcoxon test was used for

the dimensionality reduction step, we did not manage to build a

hybrid model since the algorithm selected only one single

radiomic feature and 19 genes. However, among those genes, the

expression of CXCL9 has to be highlighted. Indeed, CXCL9 is a

potential biomarker of immune infiltration (28–31) associated

with favorable prognosis in many cancers and has been reported

to be one of the most predictive. The fact that this gene was

selected from among the 2,559 genes also warrants the

consistency of this dimensionality reduction method in our data

mining pipeline.

Indeed, tumor size is a bad prognostic factor in itself, and

showing that size features are related to a lower PFS indicates no

new finding.

The strength of radiomics and imaging is the capacity to study

the whole body and the whole tumor volume, whereas biopsies

enable the study of only a small sample of tumors. A tumor’s

spatial heterogeneity is a well-known problem, particularly

considering the expression of PD-L1/PD-1 (11). Possibly,

radiomics is able to capture the spatial heterogeneity of the

tumor. For this reason, it may be challenging to identify

correlations between radiomic patterns and histological patterns,

unless the radiomic features are correlated to the whole tumor

after tumor resection. However, for the same reason, it may be

relevant to use radiomics to predict clinical outcomes,

particularly for the stratification of patients treated with PD-1/

PD-L1 inhibitors. Indeed, only 20%–30% of patients treated

with PD-1/PD-L1 inhibitors will show a response to treatment.

Although durable responses can occur in patients treated with

ICIs (32–34), there is currently no predictive factor of durable

response. So, a longer follow-up in a larger cohort may help

us create other radiomic predictive models. The emergence of

single-photon CT scans is another trail to make more

reproducible and more relevant radiomics. Indeed, the ability

of single-photon CT scans to provide quantitative data and

quantitative maps may help to build the link between

physical effects such as photon absorption and the biology of

the tumors.
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This study has several limitations. First of all, the number of

subjects is relatively small. We managed to build a training set

with the population from Lyon and an external validation set

with the population from Dijon. Although the number of

patients treated with PD-L1/PD-1 inhibitors is increasing, the

use of ICI is relatively recent, and we could not build a larger

cohort. On top of this, the imbalance between long survivors

and patients with a poor response did not let us build a

predictive model at a time point other than 3 months. In

clinical use, it would be more useful to predict a 6- or 12-

month survival and the length of patient disease control. Since

only 20% to 30% of the patients treated with PD-1/PD-L1

inhibitors will respond to treatment, the number of included

patients must be larger to use machine-learning methods in

this context. The number of patients was even lower when we

used the genomic data since this genomic analysis is not

conducted systematically in current practice. The combination

of genomics with radiomics did increase the number of

features embedded in the model but decreased the number of

observations. It is quite interesting to show that the variety of

data may improve the quality of the prediction model, but

further work in larger cohorts is mandatory to confirm our

results.

Second, a retrospective study such as ours implies highly

varying imaging protocols. Statistical harmonization methods

such as ComBat (35, 36) could be useful in this context to

address potential batch effects linked to acquisition protocol

heterogeneities. In order to perform a batch correction, other

studies have to be done to select the batch effect criterion. On

the other hand, the model might well learn acquisition protocol

heterogeneity. When the bias/variance dilemma is well-balanced,

the classifier learns a general law rather than dataset specificities.

Another limitation of our study pertains to the manual

segmentation of the lesion. Reproducibility and repeatability

could not be tested in this study because tumors were segmented

by a single radiologist. Indeed, the segmentation of grade III/IV

patients’ lesions is challenging because of their varying

localization, shape, and margins (37). In the same way, the effect

of segmentation could not be studied. Semiautomatic volumetric

segmentation in the future may help to increase inter- and

intraobserver reproducibility (38) and may be the key to the

routine use of radiomic models.

Third, the fact that the population studied in this work

displayed a large range of tumor sizes and tumor volumes is

recognized as a bad prognostic factor itself. In this context,

further studies including patients with a comparable tumor

volume—so as to evaluate its potentially confounding effect—are

mandatory.

In conclusion, this pilot study showed that it is possible to use

pretreatment CT scan radiomics to train prediction models for the

response of stage III/IV NSCLC to PD-1/PD-L1 inhibitors. The use

of genomics to enrich radiomics may increase the performance of

radiomic models. The correlation between radiomics and HOT/

COLD status may explain the capacity of radiomics to predict

clinical outcomes. However, multicentric data sharing will be

required to increase the number of data and more carefully
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evaluate overfitting and batch effects linked to the use of data

acquired from non-standardized acquisition protocols.
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