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A robust radiomic-based machine
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Introduction: Cardiac amyloidosis (CA) shares similar clinical and imaging
characteristics (e.g., hypertrophic phenotype) with aortic stenosis (AS), but its
prognosis is generally worse than severe AS alone. Recent studies suggest that
the presence of CA is frequent (1 out of 8 patients) in patients with severe AS.
The coexistence of the two diseases complicates the prognosis and therapeutic
management of both conditions. Thus, there is an urgent need to standardize
and optimize the diagnostic process of CA and AS. The aim of this study is to
develop a robust and reliable radiomics-based pipeline to differentiate the two
pathologies.
Methods: Thirty patients were included in the study, equally divided between CA
and AS. For each patient, a cardiac computed tomography (CCT) was analyzed
by extracting 107 radiomics features from the LV wall. Feature robustness was
evaluated by means of geometrical transformations to the ROIs and intra-class
correlation coefficient (ICC) computation. Various correlation thresholds (0.80,
0.85, 0.90, 0.95, 1), feature selection methods [p-value, least absolute shrinkage
and selection operator (LASSO), semi-supervised LASSO, principal component
analysis (PCA), semi-supervised PCA, sequential forwards selection] and machine
learning classifiers (k-nearest neighbors, support vector machine, decision tree,
logistic regression and gradient boosting) were assessed using a leave-one-out
cross-validation. Data augmentation was performed using the synthetic minority
oversampling technique. Finally, explainability analysis was performed by using
the SHapley Additive exPlanations (SHAP) method.
Results: Ninety-two radiomic features were selected as robust and used in the
further steps. Best performances of classification were obtained using a
correlation threshold of 0.95, PCA (keeping 95% of the variance, corresponding
to 9 PCs) and support vector machine classifier reaching an accuracy, sensitivity
and specificity of 0.93. Four PCs were found to be mainly dependent on textural
features, two on first-order statistics and three on shape and size features.
Conclusion: These preliminary results show that radiomics might be used as non-
invasive tool able to differentiate CA from AS using clinical routine available
images.
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TABLE 1 Baseline characteristics of study population.

All
(n = 30)

AS
(n = 15)

CA
(n = 15)

p value

Age, years 78 (70–83) 82 (79–85) 71 (65–77) p < 0.01

Female 13 (43%) 4 (27%) 9 (60%) ns

Body surface area, m2 1.9 (1.8–2.0) 1.9 (1.8–1.9) 1.9 (1.8–2.1) ns

Body mass index, kg/m2 27 (25–31) 29 (26–31) 26 (22–32) ns

LVESVi, ml/m2 19 (13–24) 21 (15–24) 18 (14–24) ns

LVEDVi, ml/m2 47 (37–63) 58 (43–65) 38 (30–57) ns

LVEF, % 58 (46–68) 64 (60–72) 51 (41–58) p < 0.01

IVS thickness, mm 13 (12–16) 13 (13–14) 15 (12–17) ns

Values are expressed as absolute number and percentage or median and

interquartile range. LVEDVi, left ventricle end-diastolic volume index; LVEF, left

ventricle ejection fraction; LVESVi, left ventricle end-systolic volume index; IVS,

intraventricular septum; ns, not significant.
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1. Introduction

Cardiac amyloidosis (CA) is an increasingly diagnosed

condition caused by conformational changes in amyloidogenic

proteins leading to amyloid fibril deposition in the heart (1). The

two predominant amyloid proteins found in the heart are

immunoglobulin light chain (AL) and transthyretin (ATTR) (2).

ATTR-CA occurs in two most common forms: wild-type, or

senile, transthyretin (wtATTR), more prevalent in elderly people,

and hereditary or variable TTR (vATTR), genetic autosomal

dominant disease (3). Clinical presentation associated to CA

shows an increased biventricular wall thickness, myocardial

stiffening and restrictive physiology of the left and right

ventricles (2) caused by amyloid fibril deposition in the

extracellular myocardial space. Similar myocardial remodeling

processes affect the heart of patients with aortic stenosis (AS).

AS is the most common cause of valvular heart disease (4). It is

characterized by a progressive aortic valve narrowing leading to

an increase in afterload and wall stress, compensated with a

gradual hypertrophy of left ventricle (LV) (5). Therefore, as CA

shares several common phenotypical features with AS, and

considering the high prevalence of subclinical CA among AS

undergoing transcatheter aortic valve implantation (TAVI), the

differential diagnosis of these two entities has important

prognostic and therapeutic implications. Patients affected by both

CA and AS have, indeed, worsen prognosis and are less likely to

benefit from aortic valve replacement (AVR) surgery with respect

to lone AS patients. In addition, the recent introduction of new

effective therapies for improving the prognosis of patients with

CA makes early recognition of this pathology even more relevant

than in the past.

In this framework, radiomics can be a non-invasive tool useful

to perform differential diagnosis starting from medical images such

as cardiac computed tomography (CCT), usually used for

interventional planning of AS patients undergoing TAVI.

Radiomics is an emerging research field aimed to improve

diagnosis, characterization, and prognosis using quantitative

features extracted from medical images. Radiomics is widely

employed in oncology for tumors characterization (6, 7),

treatment response (8–10), and overall survival analysis (11, 12).

Recently, it has been proposed in the cardiovascular field to

improve diagnostic accuracy, patients cardiac risk prediction and

stratification (13–22).

As radiomics generates hundreds of features, a crucial step of

radiomic workflow is selecting features according to their

relevance with respect to the clinical question of interest.

Assessing features robustness is a necessary preliminary step in

the process of feature selection (23). The most applied techniques

to evaluate features reliability are test-retest and multiple

delineations of the ROI (15, 17, 18), methods affected by a time-

consuming intrinsic limit: test-retest requires multiple scan

acquisitions, whereas multiple delineations require several ROI

segmentations. To overcome these problems, in the current

study, for the first time in CCT, features robustness was assessed

performing geometrical transformations of the ROIs (23). To

mimic multiple manual delineations, small ROI transformations
Frontiers in Radiology 02
are applied to simulate errors due to manual delineation thus

assessing feature stability. In addition, large ROI transformations

are performed to assess feature discrimination capacity. The

underlying hypothesis is that robust features need to be stable,

i.e., similar for small transformations, and discriminative, i.e.,

different for large transformation. Studies on feature robustness

already exist in oncological field (23–25), whereas a very limited

research is available in cardiovascular radiomics (15, 26).

In this study, we aim to develop a robust and reliable pipeline

to differentiate between hypertrophic phenotype due to CA versus

AS using radiomics and machine learning techniques. The final

goal is to provide early detection of CA patients to administer

specific treatment and improve their prognosis. Radiomic

features will be extracted from the LV muscle in CCT, and

different methods of feature selection and machine learning

algorithm will be tested.
2. Methods

2.1. Study population and baseline
characteristics

Thirty patients were included in the study: 15 with CA and 15

with AS. CA was defined by the presence of ATTR amyloid in a

myocardial biopsy (Congo red and immunohistochemical

staining) or positive DPD scintigraphy, while AL amyloidosis was

proven with biopsies from non-cardiac tissues. In AS patients,

the concomitant presence of CA was excluded by bone

scintigraphy and/or cardiac magnetic resonance (CMR).

All patients underwent comprehensive evaluation with

transthoracic echocardiography using commercially available

equipment (iE33 or Epiq, Philips Medical System, or Vivid-9, GE

Healthcare) measuring LV end-diastolic (LVEDV) and end-

systolic (LVESV) volumes indexed for body surface area, LV

ejection fraction (LVEF) and intraventricular septum thickness

(IVS). Clinical characteristics are shown in Table 1.

The institutional Ethical Committee approved the study, and

all the patients signed the informed consent.
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2.2. CCT scan protocol

CCT examinations were performed using Revolution CT (GE

Healthcare, Milwaukee, WI) or Aquilion ONE VisionTM (Canon

Medical Systems Corp., Tokyo, Japan). Details of the CT image

acquisition parameter are reported in Supplementary Table S1.

No premedication with beta-blockers or nitrates was added

before CT acquisition. Patients received a fixed dose of 50 ml

bolus of contrast medium (400 mg of iodine per milliliter,

Iomeprol; Bracco, Milan, Italy) despite the BMI via an

antecubital vein at an infusion rate of 5 ml s−1 followed by 50 ml

of saline solution at 5 ml·s−1.
2.3. Images segmentation, preprocessing
and radiomics features extraction

For each patient, the LV wall was manually segmented by a

unique operator, and all the segmentations were revised by a

different, blinded, level III, European Association of

Cardiovascular Imaging certified operator (27).

Image preprocessing was performed to reduce the imaging-

related variability: a 3D Gaussian filter with a 3 × 3 × 3 voxel

kernel and σ = 0.5 was used to denoise the images. Then, voxel

size resampling to an isotropic resolution of 2 mm [as in (28)]

was performed with B-spline interpolation.

One-hundred and seven radiomic features were extracted using

Pyradiomics 3.0 (29). The features belong to the following classes:

shape and size (SS, 14 features), first order statistics (FOS, 18

features) and textural features (75 features). See Pyradiomics

documentation for more details (29). A fixed-bin width

histogram discretization (0.5 Hounsfield units per bin) was used

prior to features extraction. Since features were extracted with
FIGURE 1

Example of translations applied to the ROIs. (A) Minimal entity translation: dash
entity translation: dashed red line represents a translation of 30% in the x direc
original ROIs. ROI, region of interest.
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Pyradiomics, they were compatible with the Image Biomarker

Standardization Initiative (30).
2.4. Feature selection

All the feature selection steps were performed on the training

set and then applied on the test set.
2.4.1. Selection of stable and discriminant features
Stability and discrimination capacity were assessed using

geometrical transformations (translations) of the ROIs as in (23).

The entire workflow is implemented in MATLAB 2017a

(Mathworks, Natick, MA, USA) and applied to FOS and textural

features, as SS features do not change with a ROI translation.

Two entity translations were applied to the ROIs, along both

the x (medial-lateral) and y (antero-posterior) directions. The

minimal entity translation was ±0.5% the length of the bounding

box surrounding the ROI in the direction of interest

(Figure 1A), and the maximal entity translation was ±30%

(Figure 1B). Radiomic features were computed on each

translated ROI and compared to the ones obtained from the

original ROI by expert cardiac radiologists. Briefly, for each

feature calculated from a single ROI, 4 intraclass correlation

coefficients (ICCs) with their mean (ICCmean) were calculated.

Following the general guidelines (31), two ICC threshold values

were identified to select robust features: ICC = 0.75, which

indicates good agreement between data, and ICC = 0.5, which

reflects poor similarity. Thus, a feature is considered stable if the

ICCmean for the minimal entity translation is higher than 0.75

and discriminative if the ICCmean for the maximal entity

translation is lower than 0.5. For each translation, the percentage

of overlapping volume was also computed to assess whether most
ed red line represents a translation of 0.5% in the x direction. (B) Maximal
tion. In both figures, continuous black lines represent the contours of the
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of the original ROI was part of the transformed ROI. After this

step, the features were z-scored.

2.4.2. Selection of non-redundant features
The second step consisted of a correlation-based feature

selection, performed to ensure a set of features with low internal

redundancy. When a pair of features had an absolute Spearman

correlation coefficient above a fixed threshold only one of the

two was kept. In particular, the one with lower mean correlation

with all the other n-2 features was selected. Obviously, the higher

the threshold, the fewer features were removed. Five thresholds

were considered (0.80, 0.85, 0.90, 0.95, 1), where a threshold

equal to 1 means no features are removed in this step.

2.4.3. Selection of more relevant features
Six feature selection methods were tested (32), namely: p-value,

least absolute shrinkage and selection operator (LASSO), semi-

supervised LASSO (ssLASSO), principal component analysis

(PCA), semi-supervised PCA (ssPCA) and sequential forwards

selection (SFS). Briefly, the p-value method performs a Wilcoxon

rank-sum test on each feature to identify the ones significantly

different between the two unpaired groups of patients; LASSO

shrinks the coefficients of less important features to zero to keep

only the most important features by mean of penalty factor

lambda; ssLASSO employs statistically significant features

(selected by the p-value method) as input for LASSO algorithm;

the PCA transforms the high-dimensional dataset into a lower-

dimensional space by identifying the most important principal

components capturing the maximum variance in the data, while

minimizing the loss of information; ssPCA employs statistically

significant features (selected by the p-value method) as input for

PCA; SFS iteratively adds the most relevant features to the

model, one at a time, based on their individual contribution to

the model’s performance (until the score improvement exceeds a

threshold, here fixed to 0.02).
2.5. Classification model development

The dataset was divided into training and test sets using a

leave-one-out (LOO) cross-validation method, as a result, for

each iteration, the test set contained only one observation, while

the others were used as training. Since the dataset was balanced

but small, data augmentation was performed on the training set,

that was doubled in size (maintaining the class balance) using

the synthetic minority oversampling technique (SMOTE)

algorithm (33). SMOTE over-samples the minority class by

generating synthetic examples. This is done by selecting each

sample from the minority class and creating new samples along

the line segments that connect the sample to its Q nearest

neighbors within the minority class. For every minority class

sample, we find the Q closest neighbors belonging to the same

class and select one of them randomly. The synthetic sample is

then positioned at a random point along the line that connects

the two original samples. In this study, the value of Q was set

to 5. By applying SMOTE, both classes end up having an equal
Frontiers in Radiology 04
number of instances available for classification. As in this study

the classes were balanced, the samples of a single class were first

duplicated and subsequently, SMOTE was applied: this procedure

was performed separately for both classes and the new samples

were added to the original dataset. As a result, the number of

training samples was increased from 29 to 58 patients.

To find the best classification model, five machine learning

models were trained: k-nearest neighbors (kNN), support vector

machine (SVM), decision tree (DT), logistic regression (LR), and

gradient boosting (GB). Parameters values set for each

classification model are shown in Supplementary Table S2. The

p-value feature selection method was used to select the best-

performing model. Model performance was evaluated based on

sensitivity, specificity and diagnostic accuracy, being the latter

used to identify the best model. The best pair of feature selection

method and correlation threshold was also selected.

The entire workflow is shown in Figure 2. The feature selection

and classification are implemented in Scikit-Learn Python library.
2.6. Explainability analysis

After selecting the best correlation threshold, feature selection

method and machine learning model, the final model was built

by training on the whole original dataset. As during model

development, the training set was oversampled using SMOTE to

double the total number of samples.

To interpret the machine learning model and its prediction, the

SHapley Additive exPlanations (SHAP) method (34) was used on

the best performing model. The SHAP method provides a way to

determine the importance of different features in making a

prediction by measuring how much each feature contributes to

the final prediction. This allows to gain insight into how the

model is making its predictions and which features are most

influential.

The SHAP method is based on the concept of Shapley values,

i.e., the average expected marginal contribution of each feature to

the overall prediction. The Shapley values can be visualized using

a variety of plots, such as a summary plot or a force plot for

single instance, which can help to interpret the results and

identify which features are most important in making a prediction.
3. Results

3.1. Feature selection

The first step of feature selection identified 92 stable and

discriminant features: 6 and 9 features were excluded as they do

not satisfy the criterium for the minimal and maximal entity

translation, as shown in Figure 3.

The correlation-based feature selection identified on average

23 ± 1, 28 ± 1, 35 ± 1, 47 ± 1 and 92 ± 0 features for the five

correlation thresholds (0.80, 0.85, 0.90, 0.95, 1), respectively.

The different feature selection methods selected a number

of features ranging from 7 to 58, as shown in Table 2,
frontiersin.org
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FIGURE 2

Machine learning workflow.
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again depending both on the method itself and the correlation

threshold.
3.2. Influence of the model

The performance of the five models (namely, kNN, SVM, DT,

LR, and GB) in terms of accuracy (averaging the results obtained

from the different correlation thresholds) is shown in Figure 4,

with respect to the feature sets selected by the p-value method. The

analogous figures for the other feature selection methods are shown

in Supplementary Figure S1, while the other performance metrics

are shown in Supplementary Figures S2, S3 for all the feature

selection methods. SVM presents the highest median accuracy for

any feature selection method and a relatively stable behavior over

the correlation thresholds, as highlighted by the small interquartile

range (IQR), outperforming all the other models. Considering that

SVM model achieved the best performances among different

machine learning models with all the feature selection methods, it

was selected as the best model to evaluate the influence of

the correlation thresholds and feature selection methods.
Frontiers in Radiology 05
Thus, with the data at disposal, SVM was indicated as the optimal

model, trading off complexity and performance.
3.3. Influence of the correlation threshold
and feature selection

The impact of the correlation threshold and feature selection

method on accuracy is depicted in Figure 5. In the figure, the

rows represent different feature selection methods while the

columns represent varying correlation thresholds. The bright

colors in the color map indicate higher accuracy, while darker

colors represent lower accuracy. It is evident that PCA-based

methods (both PCA and ssPCA) have higher accuracy across all

correlation thresholds, ranging from 0.83 to 0.93 vs. 0.77 to 0.90

for the other feature selection methods. The best performances

were observed using the PCA feature selection method which

reached an accuracy of 0.90, with no correlation (threshold = 1),

and an accuracy of 0.90 and 0.93 with a correlation threshold of

0.90 and 0.95, respectively. The corresponding sensitivity and

specificity are shown in Supplementary Tables S3, S4.
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FIGURE 3

ICCs for the minimal (0.5%) and maximal (30%) entity translation. Each black circle represents a feature satisfying the criterium, while red asterisks
represent features not satisfying the criteria. The dashed lines represent the threshold values (0.75 and 0.5) for minimal and maximal entity
translations, respectively.

TABLE 2 Number of features selected by the different feature selection
methods as a function of the used correlation threshold (mean ±
standard deviation).

Feature selection method Correlation threshold

0.80 0.85 0.90 0.95 1
p-value 14 ± 2 18 ± 2 22 ± 2 30 ± 2 58 ± 4

LASSO 10 ± 2 10 ± 2 11 ± 1 12 ± 1 13 ± 2

ssLASSO 8 ± 2 9 ± 2 10 ± 1 10 ± 2 12 ± 2

PCA 8 ± 0 9 ± 0 9 ± 0 8 ± 0 8 ± 1

ssPCA 7 ± 0 7 ± 0 8 ± 0 8 ± 0 7 ± 0

SFS 11 ± 0 13 ± 0 17 ± 0 23 ± 0 46 ± 0

LASSO, least absolute shrinkage and selection operator; ssLASSO, semi-supervised

LASSO; PCA, principal component analysis; ssPCA, semi-supervised PCA; SFS,

sequential feature selection.

Lo Iacono et al. 10.3389/fradi.2023.1193046
3.4. Final model and explainability

The final model was built using the model and parameters

which were the best performing ones in the LOO cross-

validation: SVM, PCA, a correlation threshold of 0.95 and

SMOTE. For this model, the explainability by using SHAP

analysis was performed, and results are shown in Figures 6, 7.
Frontiers in Radiology 06
Figure 6A shows the SHAP feature importance for the 9

principal components of the final model. Among them, the first

principal component (PC) contributed the most to the model

(0.25 mean absolute SHAP value), the next highest-ranking

features were the PC 4, 3, 2, 6 and 7, whereas PC1, 5, 8 and 9

contributed less to the model (0.1 mean absolute SHAP value).

Figure 6B shows the overall correlation and directionality

between features and the SHAP value during model training.

Each dot represents one patient, and the color reflects the high

and low values of each feature, with the red color indicating a

higher value and the blue color indicating a lower value. The

x-axis of the graph represents the SHAP value, and a positive

SHAP value indicates that it contributes positively to predicting

CA and vice versa.

In Figure 7, two examples are shown: in panel (A) an example

of a patient with CA is shown, with a prediction equal to 1,

corresponding to CA class. In particular, the values of PC1, 2

and 4 increase its rating, while those of PC3 decreases it. On the

contrary, in panel (B) an example of a patient with AS is shown,

with a prediction equal to 0, corresponding to AS class: here

only the value of PC4 and 5 increases its rating, while that of

PC1, 2, 3, 6, 7 and 8 decreases it.
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https://doi.org/10.3389/fradi.2023.1193046
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 4

Boxplots representing the average accuracy of the five machine learning models, obtained averaging all the correlation thresholds and p-value as feature
selection method. kNN, k-nearest neighbors; SVM, support vector machine; DT, decision tree; LR, logistic regression; GB, gradient boosting.

Lo Iacono et al. 10.3389/fradi.2023.1193046
To conclude the explainability analysis, the class of the most

important features in the different PCs was evaluated. Loadings

of each PC, i.e., the coefficients describing the importance of the

independent variables in each PC were considered and squared.

Squared values, higher than half of the maximum squared

loading, were included in the analysis and divided according to

the feature class and finally summed up. Table 3 reports the

sums of the considered squared PC loadings for each feature

class. It can be noted that the first three PCs are mainly

dependent on textural features while PC4 and 6 on FOS and the

last three PCs on SS features.
4. Discussion

In the present study a robust and reliable radiomic-based

pipeline was developed based on a dataset composed of patients

with CA or AS, to differentiate LV hypertrophy due either of the
Frontiers in Radiology 07
two diseases. The pipeline included three steps of feature

selection to obtain a set of (i) stable and discriminative, (ii) non-

redundant and (iii) more relevant features, followed by the

classification model development. A systematic analysis was

performed in which, the influence of (i) multiple machine

learning algorithms (kNN, SVM, DT, LR and GB),

(ii) correlation thresholds (0.80, 0.85, 0.90, 0.95 and 1) and

(iii) feature selection methods (p-value, LASSO, ssLASSO, PCA,

ssPCA, SFS) were assessed. Specifically, with the data at disposal,

the SVM algorithm, combined with a correlation threshold of

0.95 and PCA feature reduction method, outperformed all the

other machine learning models.

Finally, an explainability analysis was conducted in order to

gain insight in the trained model. In particular, the analysis

revealed that the most impactful features were textural features,

as observed from Table 3, which might reflect the differences

existing between the hypertrophic phenotype caused by CA and

AS. The increase in LV wall thickness caused by CA, is the result
frontiersin.org
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FIGURE 5

Accuracy for the SVM model as a function of the correlation threshold and the feature selection method. Each row represents a feature selection method,
while each column represents a correlation threshold. LASSO, least absolute shrinkage and selection operator; ssLASSO, semi-supervised LASSO; PCA,
principal component analysis; ssPCA, semi-supervised PCA; SFS, sequential feature selection.

Lo Iacono et al. 10.3389/fradi.2023.1193046
of an extracellular deposit of amyloid fibrils within the

myocardium while the hypertrophy characterizing AS patients is

given by the pressure overload on the LV. This difference seems

to be captured by the radiomics analysis CA and AS differences

in the hypertrophic structural pattern also appear to be partly

detected by SS radiomic features.

From a clinical point of view, the main finding of the study is

that radiomics can be used to differentiate CA from AS starting

from CCT image scans whose acquisition is comprised in the

interventional planning of AS patients undergoing TAVI. The

gold standard for CA diagnosis is endomyocardial biopsy.

However, endomyocardial biopsy is invasive, and some risks are
Frontiers in Radiology 08
associated with this technique. Nowadays, it is widely recognized

that bone scintigraphy represents a reliable diagnostic tool for

CA, in particular for the ATTR variant, avoiding endomyocardial

biopsy. However, this diagnostic tool does not appear to be an

optimal approach from logistic and economic standpoints (35).

Regarding other imaging techniques, echocardiographic

appearances seen in the advanced stages of CA are fairly

pathognomonic (36) but most echocardiographic parameters do

not provide CA diagnosis in the early stages of disease and do

not to allow to distinguish CA from other restrictive or

hypertrophic cardiomyopathy (37). CMR imaging offers a high-

definition structural imaging and tissue characterization that are
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FIGURE 6

Mean SHAP values for principal components (PCs) of SVM (A) and SHAP values with feature values (B).

FIGURE 7

SHAP force plots for two patients with (A) cardiac amyloidosis (CA) and (B) aortic stenosis (AS).

TABLE 3 Relevance of the different feature class in the principal
components (PCs): PCs loadings were squared and summed if the
individual squared value is higher than half of the maximum squared
loading.

PC Feature class

SS FOS Textural
1 0.08 - 0.51

2 0.14 0.13 0.31

3 - - 0.55

4 0.16 0.19 0.10

5 0.22 - 0.35

6 - 0.25 0.11

7 0.32 - -

8 0.26 - 0.09

9 0.30 - -

Bold values indicate the class with the highest squared loading for each PC.
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often incremental to information obtained on echocardiography. Some

CMRmarkers, althoughpathognomonic inpatientswithbiopsy-proven

CA, are not specific for CA and can be elevated in other forms of

cardiovascular disease, including reactive or replacement fibrosis and

inflammation (38). Very recently, it has been shown that CMR-

derived right ventricular global strains and various regional

longitudinal strains provide discriminative radiological features for CA

and hypertrophic cardiomyopathy differentiation (39). However,

CMR is expensive and contraindicated in a substantial proportion of

patients (e.g., patients with atrial fibrillation, advanced renal

dysfunction or non-compatible intracardiac devices) (38).

Goto et al. (40) developed two deep learning algorithms using

electrocardiogram (ECG) and echocardiography data coming from

respectively 3 and 5 academic medical centers. The ECG-based

model reached a mean C-statistic of 0.86 in differentiating 587
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CA patients from 8,612 controls while the echocardiography-based

model achieved better performances with a mean C-statistics of 0.95

in distinguishing 609 CA patients from 303 controls. Also, CMR

imaging was employed in different studies: Zhou et al. (41)

classified 139 patients (79 CA positive vs. 60 controls) by employing

CMR radiomics-based machine learning algorithm with a mean

accuracy of 80%, and Martini et al. (42) developed a deep learning

model to diagnose CA in 206 patients achieving an accuracy of 88%.

As compared with the previous experience, several points of

strength could be considered in our study. First, our results based on

CCT radiomics obtained an accuracy of 93%, significantly higher as

compared previous studies. Second, to the best of our knowledge, this

is the first study to employing CCT for amyloidosis identification.

This has several clinical implications. Indeed, several studies showed

that CA is frequent (11.8%) (43) in patients with severe AS referred

for TAVI and the challenge, in this context, is to differentiate a

wooden horse (lone AS) from a Trojan horse (AS with CA) (35).

Nitsche et al. (43) developed in this setting the RAISE (remodelling,

age, injury, system, and electrical) score, to predict the presence of CA

in patients with severe AS, obtaining a sensitivity and specificity of

84% and 94%, respectively. Alternatively, to RAISE score, Oda et al.

(44) proposed the measurement of extracellular volume by using CCT

dataset. However, this approach requires triple scan acquisition

(unenhanced scan arterial phase acquisition and late scan) and higher

volume of contrast agent. On the contrary our approach is easily

performed by using the single arterial phase CCT dataset acquired

during the usual diagnostic work-up of these patients.

There are a few limitations to this study that should be considered.

Firstly, the population sizewas small, whichmeans that thesefindings

should be viewed as preliminary and confirmed with a larger dataset.

Averydifferent approach could be based ondeep learning, however to

the best of our knowledge, no pre-trained 3D deep learning model is

available to consider the LV volume. Moreover the limited size of the

study population does not allow appropriate transfer learning,

necessary to adapt the pre-trained network. Secondly, the patients

included in the study were randomly selected from a cohort of

patients with AS and CA who were referred for CCT. Lastly, the

study examined CA and AS separately and did not include patients

who were affected by both conditions. Thus, these preliminary

results have shown the radiomic features potential to distinguish

CA from AS patients, but future studies will be needed both to

confirm the results on larger dataset and to investigate the

differences between lone AS and its coexistence with CA.
5. Conclusion

In this study, a radiomic-based machine learning model able to

differentiate CA and AS patients was developed. The analysis

investigated the effect that key choices, as the features selection

pipeline and the machine learning algorithm, may have on the

classification performance. These preliminary results show that

radiomics might help in differentiating CA from AS using clinical

routine available images.

Developing a computer-based application able to differentiate

hypertrophic cardiac phenotypes given by diseases such as AS,
Frontiers in Radiology 10
versus those from CA, is clinically relevant as CA plays an

important prognostic role and may adversely affect the prognosis

of patients who are undergoing AVR surgery (either with

traditional or transcatheter surgery, TAVI).

In addition, the current availability of drugs that improve the

prognosis of patients with CA makes the correct and early

detection of this clinical condition, which is often underdiagnosed

and confused with other forms of cardiac hypertrophy, even more

important.

Finally, once automatized the process of LV segmentation, this

radiomic application has the potential to routinely detect sub-

clinical AM from CT scans regularly acquired in clinical practise

for TAVI planning.
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