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Automated tumor segmentation tools for glioblastoma show promising
performance. To apply these tools for automated response assessment,
longitudinal segmentation, and tumor measurement, consistency is critical. This
study aimed to determine whether BraTumIA and HD-GLIO are suited for this
task. We evaluated two segmentation tools with respect to automated response
assessment on the single-center retrospective LUMIERE dataset with 80 patients
and a total of 502 post-operative time points. Volumetry and automated bi-
dimensional measurements were compared with expert measurements
following the Response Assessment in Neuro-Oncology (RANO) guidelines. The
longitudinal trend agreement between the expert and methods was evaluated,
and the RANO progression thresholds were tested against the expert-derived
time-to-progression (TTP). The TTP and overall survival (OS) correlation was used
to check the progression thresholds. We evaluated the automated detection and
influence of non-measurable lesions. The tumor volume trend agreement
calculated between segmentation volumes and the expert bi-dimensional
measurements was high (HD-GLIO: 81.1%, BraTumIA: 79.7%). BraTumIA achieved
the closest match to the expert TTP using the recommended RANO progression
threshold. HD-GLIO-derived tumor volumes reached the highest correlation
between TTP and OS (0.55). Both tools failed at an accurate lesion count across
time. Manual false-positive removal and restricting to a maximum number of
measurable lesions had no beneficial effect. Expert supervision and manual
corrections are still necessary when applying the tested automated segmentation
tools for automated response assessment. The longitudinal consistency of current
segmentation tools needs further improvement. Validation of volumetric and bi-
dimensional progression thresholds with multi-center studies is required to move
toward volumetry-based response assessment.
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1. Introduction

Glioblastoma (GBM) is an intrinsic brain tumor ranking highest at grade IV on the

World Health Organization’s malignancy scale. GBM patients have a median survival of

only 16 months (1), making close monitoring of the disease path crucial. A patient’s

response to therapy is evaluated based on the Response Assessment in Neuro-Oncology
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(RANO) criteria. RANO relies on a qualitative and quantitative

evaluation of follow-up studies against a reference time point.

The quantitative analysis focuses on the size of the contrast-

enhancing tumor on post-contrast T1-weighted magnetic

resonance imaging (MRI) (2–4). The qualitative assessment

considers the T2/fluid-attenuated inversion recovery (FLAIR)

abnormality on MRI. This text refers to the standard radiological

RANO guidelines and does not consider variants such as

immunotherapy RANO (iRANO) (5,6).

The gold standard of quantifying the tumor volume by manual

segmentation is prohibitively time-consuming in clinical practice.

That is why the two-dimensional (2D) Macdonald criteria (7) are

used; they require the longest diameter on axial slices inside the

enhancement, and, subsequently, the largest perpendicular

diameter has to be determined. The measurement is performed

for a maximum of five target lesions and then summed up to

form the sum of product of perpendicular diameters (SPD). The

SPD is compared to the smallest previous tumor measurement

(nadir) or the baseline. This 2D Macdonald measurement is a

surrogate of the actual tumor size. How representative this

surrogate is for the tumor volume is highly shape-dependent and

affected by different head placements during image acquisition

between follow-up scans (8–13). The current method of interval

imaging lacks evidence, and further research is needed regarding

the imaging biomarkers derived from this imaging practice (14).

Furthermore, the current RANO guidelines have known

weaknesses, e.g., with respect to pseudo-progression, which can

occur until 6 months after completion of radiotherapy (15).

Advances in the field of Machine Learning (ML, e.g., Deep

Learning, Artificial Intelligence) have led to a quality of

automated tumor segmentation that is on par with that of expert

human raters (16–19). In other words, these automated methods

promise a fast and consistent assessment of the tumor volume

compared to the currently used two-dimensional measurements.

A large body of work has been published comparing automated

methods to manual segmentations on pre-operative MRI [e.g.,

(19–21)]. This study focused on publications and experiments

regarding the longitudinal aspect. Most prior work on automated

measurements was performed on a population level. It showed

high agreement between the automated 2D SPD and volumetric

measurements with expert segmentation and measurements on

individual time points. In a large multi-center study, tumor

volumes from HD-GLIO-AUTO segmentations showed a high

agreement regarding the overlap and a promising estimate of

derived time-to-progression compared to expert readings (22).

Similarly, the inter-rater variability of Macdonald measurements

and volume differences of a computerized method and expert

raters showed a high agreement between automated and manual

segmentations (23). The latter study included an automatic 2D

measurement, emulating the current practice based on automated

segmentation. Another similar study for pediatric brain tumors

showed high agreement between automated segmentation

volumes and 2D measurements and human raters on a

population level (24). BraTumIA was tested by comparing its

outputs to multiple expert readers on data from 14 GBM patients

by evaluating the longitudinal trend disagreement (16). Another
Frontiers in Radiology 02
study using BraTumIA compared automated 2D measurements

with volumetry on pre-operative and immediate post-operative

MRI; no significant differences were found between manual and

automated SPD measurements on pre-operative scans. However,

for immediate post-operative use, blood depositions and reactive

enhancement of structures neighboring the resection cavity

degraded the quality of the SPD measurements (17).

The high agreement between the human raters and automated

methods and between 2D measurements and volumetry found in

these studies is encouraging regarding the applicability of

automated response assessment. To transition from two-

dimensional measurement to automated volumetry, accurate,

robust, and longitudinally consistent, automated methods are

needed alongside proven volumetric response assessment

thresholds. The current RANO guidelines already contain

estimated volumetric criteria, i.e., a �40% increase for

progression (2). Since they assume isotropic growth of the

lesions, they likely need further refinement and clinical

validation. Furthermore, the current practice needs to be

thoroughly re-evaluated regarding the lesion measurability

threshold and the necessity of limiting the number of target

lesions. The current guidelines are sensitive to the overall tumor

burden and the lesion count of the longitudinal time points,

which previous studies did not address.

We built on previous research and moved toward a view on a

patient level with additional evaluations. We assessed two

automated segmentation tools on the retrospective longitudinal

single-center GBM dataset LUMIERE (25), which was rated

according to the RANO criteria by a neuroradiologist. Based on

the segmentation, we automated the calculation of the 2D SPD.

To offer an alternative measurement approach to the 2D SPD

measurements on axial slices, we also tested an approach where

the perpendicular diameters were not restricted to the axial plane

(named “2.5D” in this study).

We contribute toward automated response assessment in the

following areas:

1. Longitudinal consistency is critical for reliable response

assessment. Compared to expert measurements, we evaluated

the patient-level trend agreement between 2D and volume

measurements from automated segmentation tools.

Furthermore, we assessed how the performance changes if

false-positive (FP) lesions are manually excluded after

automatic segmentation.

2. Tool-specific thresholds may be necessary to account for

different sensitivity levels when moving from Macdonald

measurements to volumetry. According to Reardon et al.

(26), an appropriate threshold for progression biomarkers

should be set by maximizing the correlation between the

time-to-progression (TTP) and the outcome, such as the

overall survival (OS). We put the current 2D progression

threshold and recommended volumetric thresholds to the test

for automated segmentation tools. We evaluated the TTP

derived from the automated measurements, compared it to

the TTP extracted from the expert rating, and evaluated the

TTP–OS correlations.
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3. Considering lesions below the measurability threshold is a key

criterion of RANO. We assessed the ability of automated tools

to find non-measurable lesions reliably.

4. The underlying segmentation technique may confound the

automated 2D quantification. We checked the influence of

the segmentation on the automated 2D quantification with an

experiment using multi-rater segmentations.

This paper aims to answer the following questions: (a) Which

aspects of response assessment already work with current

automated segmentation tools? (b) Are the current progression

thresholds appropriate for the tested segmentation tools? (c) Is it

indicated to limit automated segmentation to five target lesions

and disregard lesions below the measurability threshold? Can the

automated methods reliably detect non-measurable lesions? (d) Is

it clinically feasible to use these systems in a supervised mode

with relatively fast correction times? The homogeneous

evaluation across time and studies is an advantage of the RANO

criteria. This study was also motivated by the potential for

further homogenization of the response assessment using

automated tools.
2. Materials and methods

We investigated two automated brain tumor segmentation

tools: BraTumIA, a software first published in 2014 with a

graphical user interface (GUI) (16–18), and HD-GLIO-AUTO, a

more recently released Deep Learning–based tool, evaluated in

a large multi-center study (22,27,28). A newer Deep Learning–

based version of BraTumIA (DeepBraTumIA) was only trained

on pre-operative MRI and would not reflect the main focus on

post-operative longitudinal data in this study. Both tools use the

same MRI sequences as input (T1-weighted pre- and post-

contrast, T2-weighted, and T2 FLAIR), include skull-stripping

and co-registration. BraTumIA segments contrast-enhanced,

non-enhancing tumor, necrosis, and edema. It relies on

engineered features and a Random Forest (29) model to perform

a voxel-wise classification, and the output is post-processed with

a dense conditional random field (30). HD-GLIO-AUTO uses a

modern deep neural network approach with a U-Net

architecture (31). It outputs labels for contrast-enhancing

tumors and T2/FLAIR abnormalities. Both were trained on pre-

and post-operative MRI and clinically validated to match the

inter-rater variability between trained neuroradiologists. The

decision to consider HD-GLIO-AUTO was based on its highly

successful underlying architecture (U-Net) and large training

dataset and the reported good generalization to other centers.

Among different approaches using the same neural network

structure [e.g., the winning methods of the Brain Tumor

Segmentation Challenge (BraTS) in recent years and the study

by Chang et al. (23)], this tool had the largest multi-center

training dataset. BraTumIA uses slightly older technology but is

still used for studies [e.g., (32–34)]. Its training included data

from the same center we use for this work, indicating how

important it is to have training data from a specific center. The
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advantage in the context of this study but may be relevant for

future imaging-based biomarker research. HD-GLIO-AUTO

provides a faster output of the segmentation masks and a more

robust deep learning–based skull-stripping algorithm. The

selection of these two tools should offer insight into the

relevance of center-specific training data vs. vast multi-center

data and a comparison between two underlying machine

learning techniques.
2.1. Data

The ethics committee approved the study and waived written

informed consent. We retrospectively reviewed the records of 91

patients with newly diagnosed GBM who underwent pre-

operative MRI between August 2008 and December 2013 and

were treated with resection, followed by temozolomide-based

chemoradiation, according to the Stupp protocol (35) at the

Inselspital (Bern University Hospital). Patient inclusion criteria

were as follows: (1) pathologically confirmed primary GBM and

(2) MRI follow-up with postcontrast T1-weighted (T1c),

T1-weighted (T1), T2-weighted (T2), and T2-weighted FLAIR

images. Follow-ups with missing MRI sequences or heavy

movement artifacts and patients without follow-up data were

excluded, resulting in a study population of 80 patients with a

total of 502 time points. All follow-up scans were rated adhering

to the RANO criteria by an experienced neuroradiologist. A total

of 129 time points contained target lesions and were measured

by the expert. These 129 follow-ups were subsequently used to

determine the trend agreement between measurement methods.

We used all available follow-up scans for experiments that did

not require expert measurements (details in Section 2.3). An

anonymized version of the dataset used in this study was

published as the LUMIERE dataset (25).

For automated processing, the T1, T2, and FLAIR sequences

were resampled to 1 mm iso-voxels matching the resolution of

the T1c images. Skull-stripping was performed within both

assessed tools separately. The range of relevant MRI parameters

is reported in the study by Suter et al. (25). The subsets of this

data and the measurement method used in this study are

described below.
2.2. Lesion size measurements

The size of the contrast-enhancing lesions was measured with

the following four methods: (1) expert 2D measurements on axial

slices according to the RANO guidelines, summed up to form

the SPD, (2) automated 2D measurement, (3) automated

volumetry, and (4) automated SPD measurement without the

constraint for the diameters to lie on the axial plane, as an

intermediate step between 2D and volumetry (2.5D). The

following sections detail these measurements performed on the

MRI data (by the expert) and the two automated segmentation

methods.
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2.2.1. Expert measurements
The full dataset was rated by a neuroradiologist (14 years of

experience) according to the RANO guidelines. Measurable lesions

were quantified for all time points by calculating the 2D product of

perpendicular diameters for the contrast enhancement on axial

slices. The sum of all measured lesions per time point (up to five

target lesions) was used to form the SPD. This evaluation resulted in

a total of 129 time points with measurable lesions and complete

imaging data. Each follow-up was classified as progressive disease,

stable disease, partial response, or complete response. The time from

the first resection to the first time point rated as progressive disease

was used as the expert TTP. The expert did not use any prior

information regarding the automated segmentation and performed

the assessment based on the original un-processed MRI data. The

following sections on automated measurements are based on the

outputs of the two segmentation tools.

2.2.2. Automated 2D measurement
The contrast-enhancing tumor segmentation was first

converted into a contour on axial slices. These contours were

resampled to achieve sub-voxel resolution, and the longest

diameter inside the segmentation was determined through an

exhaustive search across all slices. The longest perpendicular

diameter was calculated with a tolerance of 90+ 2�, being more

restrictive than Chang et al. (23). This measurement was

repeated for all separate lesions, slices with the segmentation, and

found diameters were saved for inspection, and the SPD was

calculated. A lesion was considered separated if its segmentation

voxels did not touch the faces, edges, or other lesions’ corners.

2.2.3. Automated volumetry
We quantified the contrast enhancement volume by counting

the voxels of the segmentation label, considering the volume of

an individual voxel.

2.2.4. Automated 2.5D measurement
This measurement was a mix between the current two-

dimensional method and full three-dimensional evaluation. We first

found the longest diameter that lays completely inside the contrast-

enhanced segmentation through an exhaustive search, not restricting

this diameter to the axial plane. Afterward, a plane perpendicular to

this longest diameter was moved through the segmentation. The

longest diameter between any two points on the intersection curve

between this perpendicular plane and the segmentation boundary

fully inside the enhancement was measured. As with the 2D

measurement, this was repeated for all lesions, and the 2.5D SPD

was calculated. We performed these measurements on the whole

dataset for both tested segmentation tools.

Technical details about the implementation are available in the

Supplementary material. The code used can be found on https://

github.com/ysuter/gbm-longitudinaleval.git.
2.3. Experiments

This study focused on the feasibility of segmentation tools for

automated response assessment. This sets the primary interest on
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accurately tracking the contrast-enhancing tumor size and lesion

count across time for individual patients. Concerning

methodological tradeoffs related to vendor- and sequence-specific

aspects, a segmentation method with a consistent bias could be

favored over other methods that may produce more accurate

labels on single time points but over- or under-segment less

consistently. Hence, our evaluation was centered on evaluations

showing the ability to model relative differences consistently and

how the automated measurements performed within the current

RANO recommendations.

As a first evaluation method, we followed a similar approach as

in Meier et al.(16), calculating the trend agreement for the tested

measurement methods. In short, for all patients, the measured

tumor size trend was evaluated and rated as increasing,

decreasing, or constant between two adjacent time points. We

defined the trend agreement as the percentage of these trends

that have a consensus for the tested methods across the whole

dataset. We furthermore calculated Spearman’s rank correlation

coefficient to evaluate the ability of a method to accurately model

the ordering of values without assuming a linear relationship. In

our case, this assessment focused on the tumor size ranking

consistency across time points. This trend agreement and

correlation were evaluated on the 129 time points where the

expert rater quantified a measurable tumor burden.

The same analysis was repeated after manually curating 30

patients by removing false-positive lesions from BraTumIA

segmentations. This patient subset was selected by considering

only the patients with the highest number of complete follow-up

scans. This allowed us to evaluate the trend agreement across the

longest possible timespan. The measurements by the expert differ

from the automated techniques in the critical point that they were

not performed on a prior segmentation but by visual assessment.

We, therefore, wanted to disentangle this confounding factor from

the analysis by using expert segmentations as a starting point and

run the automated segmentation and measurement methods for

an additional comparison. We relied on data from Meier et al.(16)

to perform this experiment. This multi-rater dataset consists of 14

GBM patients with 64 time points, each manually segmented by

the same two experts. Furthermore, skull-stripping was manually

corrected, removing another confounding effect. Due to the prior

skull-stripping, we used HD-GLIO instead of HD-GLIO-AUTO,

avoiding an additional brain extraction. The remaining processing

steps omitted by using HD-GLIO were performed separately, such

as enforcing a consistent image orientation. For the remainder of

the document, we will use HD-GLIO-AUTO and HD-GLIO

interchangeably for brevity. Example segmentations with the 2D

and volume measurements for the automated methods and two

expert raters are displayed in Figure 1.

We additionally report the multi-rater data’s intraclass

correlation coefficient (ICC) (36), with a two-way, single-

measurement model assessing consistency. We aimed at

consistency and not absolute agreement since only relative

changes are evaluated in response assessment. A constant offset

of either an automated tool or an expert rater does not have an

adverse effect on the response assessment. We assessed the TTP–

OS correlation for the current RANO-defined progression
frontiersin.org
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FIGURE 1

Examples of 2D and volumetric contrast-enhanced quantification. The basis for all two-dimensional quantification is a segmentation (by a human expert
or automated segmentation tool) calculated automatically. 2D: the differences in the two perpendicular diameter locations show the method’s sensitivity
to slight changes in tumor shape. Note that different slices are shown since the slice containing the largest diameter must be selected for the Macdonald
measurement. Large differences often arise due to differences along the resection cavity. The longest line is often found touching the cavity walls and,
therefore, sensitive to segmentation differences and segmenting scattered individual lesions instead of a connected boundary. Comparing the shapes in
the lower row shows a smoother surface for the HD-GLIO segmentation, leading to a higher agreement between the volumetric and two-dimensional
measurements (see also Figure 2).
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thresholds for all measurement methods and segmentation tools to

evaluate the current progression thresholds. Furthermore, we

report the difference between the automatically obtained TTP

and the expert TTP.
3. Results

This section presents the results and a brief discussion for each

aspect tested with an experiment.
3.1. Longitudinal trend agreement with 2D
expert SPD

Figure 2 shows the results for the trend agreement analysis

and Spearman’s rank correlation. The HD-GLIO segmentations’

volume reached the highest trend agreement of 81.1% with the

expert SPD measurements, followed by the BraTumIA volume.

The 2.5D measurement was a better surrogate for the volume

than the 2D method for BraTumIA, but not HD-GLIO. The

agreement considering a specific tool was high for all tested
Frontiers in Radiology 05
measurement methods. If only the agreement within a given

software was considered, all measurement methods agreed on

89.2% of the trends. The results for Spearman’s rank

correlation show the same pattern. The correlation between the

expert SPD and an automated method was highest for

BraTumIA’s volume, followed by the 2.5D SPD from HD-

GLIO. Visual assessment of the 2.5D longest diameter’s

direction showed inconsistent orientations between follow-up

time points, leading to unstable results. This variability

indicates that using axial slices for the 2D SPD has a

regularizing effect by reducing the degree of freedom, even

though the head placement may differ across scans.

HD-GLIO showed a higher agreement between the 2D SPD and

lesion volume. This 2D–volume correspondence is closely linked to

the lesion shape. The bottom of Figure 2 shows the sphericity for

individual lesions. We observed more spherical lesions for HD-

GLIO than for BraTumIA. For BraTumIA, lesions were often

divided into smaller lesions, especially during recurrence along the

resection cavity wall. Spearman’s rank correlation between 2D and

volumetric measurements was 0.97 for HD-GLIO and 0.89 for

BraTumIA. In addition, HD-GLIO segmented fewer separate

lesions (note the number of data points in the plot).
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FIGURE 2

Top row: Longitudinal trend agreement (left) and Spearman’s rank correlation coefficient (right) for the studied automated measurement methods and
measurements by an expert. The trend agreement is calculated by comparing the slope between consecutive follow-ups. The highest trend agreement
between the expert SPD and an automated measurement was achieved for the volume derived from the HD-GLIO segmentation (81.1%). Overall, the
highest trend agreement observed was between the 2.5D measurement and volume of the BraTumIA segmentation. The agreement between the expert
rater and both automated tools was generally lower than between the automated methods. Spearman’s rank correlation shows a very similar pattern. The
volume from the BraTumIA segmentation had the highest correlation to the expert measurement. Bottom: Correspondence between 2D measurements
and the volume of individual lesions. Dashed line: 2D size and volume of a sphere with 10mm diameter (2D RANO measurability threshold). Lesion
segmentations from HD-GLIO were more spherical, explaining the better 2D–volume correspondence and high agreement between the 2D and
volumetric trend. In addition, HD-GLIO segments show fewer unconnected lesions when compared to BraTumIA, visible by the fewer data points in the plot.

Suter et al. 10.3389/fradi.2023.1211859
The results for the 2.5D measurements are listed in the

Supplementary material.
3.2. Time-to-progression based on
automated segmentations

Figure 3 and Table 1 compare the TTP derived from the expert

ratings and apply the current 2D SPD and volume progression

thresholds from the RANO guidelines (�25% 2D, �40% volume

increase). We report the results as the difference between the

automated TTP and expert TTP. BraTumIA segmentations’

volume reached the closest mean match between the expert TTP

and automated measurements (�9.75 days), followed by the 2D

SPD from the same tool. The same software and measurement

method reached the lowest interquartile range (144.5 days).

Extreme outliers where the automated TTP was far longer than

the expert TTP were caused by under-segmentations not
Frontiers in Radiology 06
reaching the progression threshold at any time point, and the

TTP was set to equal the OS time. We note that, on average, the

volume progression threshold was detected before the 2D SPD

for both segmentation methods. We used the follow-up time

points identified as the nadir/baseline for these results since

severe under-segmentation would have led to wrongly reassigning

the reference time point when relying on the automated

segmentation. Spearman’s rank correlation between TTP and OS

was highest at 0.55 (p ¼ 8� 10�7) for the HD-GLIO 2D SPD

and lowest for the BraTumIA volume at 0.31 (p ¼ 0:008). The

expert TTP–OS correlation was 0.4 (p ¼ 6� 10�4).
3.3. Data-driven progression thresholds

Based on the findings of the differences in the TTP between the

expert and the automated tools, we evaluated if the progression

thresholds could be adapted to the sensitivity of a given tool.
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FIGURE 3

TTP calculated based on the automated segmentation and the RANO progression thresholds, compared to the expert rater. Negative range: under-
estimation of the TTP by the automated methods. Outliers in the positive range were caused by under-segmentation of the contrast enhancement,
preventing some patients from reaching the progression threshold. The TTP was set to the overall survival time for these cases.

TABLE 1 Comparison of the TTP based on automated segmentations and the expert-rated TTP.

Automated TTP—Expert TTP TTP+-OS correlation

Method Mean + SD (days) Median (days) IQR (days) Correlation p-value
HD-GLIO volume 93:0+ 273:8 45.0 241.5 0.48 3� 10�5

HD-GLIO 2D SPD 142:5+ 290:3 95.5 274.0 0.55 8�10�7

BraTumIA volume �9:8+ 267:4 �14.5 114.5 0.31 0.008

BraTumIA 2D SPD 92:5+ 304:5 20.0 233.3 0.44 1:7� 10�4

Expert 2D SPD — — — 0.40 6:3� 10�4

IQR, interquartile range.

This table shows the difference between automated and expert TTP. Both the volumetric and 2D progression thresholds were applied. Figure 3 shows the same data as a

boxplot. The BraTumIA measurements showed the highest agreement with the expert TTP, but all tested methods showed considerable variability. 2D SPD from the HD-

GLIO segmentation had the highest correlations between TTP and OS.

Suter et al. 10.3389/fradi.2023.1211859
Figure 4 shows the mean TTP difference to the expert for both tools

and measurement methods for different thresholds. For HD-GLIO,

progression would have been detected, on average, too late even for

an arbitrarily low progression threshold. The volume measurement

by BraTumIA was the only method where progression could have

been caught on time, on average, with a slightly lower threshold.

For both HD-GLIO and BraTumIA, the 2D measurements would

have resulted in a delayed progression classification.
3.4. Longitudinal trend agreement with
manual FP removal

Weobservedmany false-positive lesions, especially for BraTumIA

(in 64.5% of inspected time points), primarily for images with

insufficient brain extraction. Figure 5 shows examples of false-

positive lesions encountered during inspection of the results. For the

un-processed BraTumIA measurement, the agreement with the

expert 2D SPD was 82.1% for the 2D measurement and 92.0% for

volumetry. For both quantification methods, agreement with the

expert decreased after FP removal to 78.6% for the 2D SPD and

89.3% for the volume. So even for a more sensitive method, manual

FP removal was insufficient to boost the performance regarding the

trend agreement, calling for manual corrections of missed lesions.

Figure 6 (left) displays these results.
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3.5. Longitudinal trend agreement
emulating RANO requirements—effect of
measurability threshold and number of
quantified lesions

We always considered all segmented lesions for the results

presented up to this point. The current RANO guidelines limit to a

maximum of five measurable lesions and a 2D measurability

threshold of 10 mm of both bi-dimensional diameters for 1mm

iso-voxels. Especially for lesions recurring at resection cavity walls,

the automated tools often split lesions into smaller parts; a human

rater would consider a single connected lesion. This impacted the

automatic measurements in two ways: smaller lesions may fall

below the measurability threshold. If not, multiple lesions are

considered to build the SPD, leading to a different value. We

repeated the same trend agreement analysis in Figure 6 (right),

excluding lesions below the 2D measurability threshold and

limiting the maximum measurable lesion count to the five largest

lesions. When comparing the automated segmentations to the

expert 2D SPD, excluding non-measurable lesions had a

detrimental effect on the HD-GLIO output measurements but did

not change the trend agreement for BraTumIA. The trend

agreement with the expert was lowered by 1.4% for the 2D SPD

and by 5.4% for the volume from HD-GLIO after removing non-

measurable lesions. This indicates that, for automated
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https://doi.org/10.3389/fradi.2023.1211859
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


FIGURE 4

The mean difference of the automated TTP to the expert rater for different progression thresholds. The solid lines visualize the data for the volumetric
measurements based on the HD-GLIO (blue) and BraTumIA (red) segmentations. The dashed lines show the automated 2D measurements. The current
progression thresholds are shown in green for 2D measurements (dashed line, at 25%) and volumes (solid line, at 40%).
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segmentation, filtering out small lesions can be detrimental

compared to the currently established 2D expert measurements.
3.6. Longitudinal trend agreement for
multi-rater data

Two apparent factors have confounded the previous

experiments: (a) The expert 2D measurement was performed

without prior segmentation of the contrast enhancement, while
Frontiers in Radiology 08
the basis for the automated measurements was a segmentation;

and (b) only time points with measurable lesions were

considered. Therefore, the following results are a more targeted

analysis of the impact of measurement techniques. The starting

point was a segmentation, either by a human expert or the

output of an automation tool. The results show that the

automated segmentations had a similar trend agreement within

themselves as the inter-rater agreement for both volume and 2D

SPD. The volume trend agreement between the human raters lay

at 72% and 78% for the automated tools. The 2D SPD derived
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FIGURE 5

Examples of false-positive segmentations by BraTumIA that were removed during the manual correction, shown together with the post-contrast T1-
weighted image. Top left: false positives potentially caused by image artifacts; top middle and right: false positives along the resection cavity; bottom
left and middle: distant false positives including vessels; bottom middle and right: false positives caused by incomplete skull-stripping.

FIGURE 6

(Left) Trend agreement for a subset of 30 patients for measurements based on BraTumIA segmentations, where FP were removed manually. Original:
unedited segmentation; cleaned: false-positive lesions removed. The trend agreement for automated methods compared to the expert
measurements slightly decreased, indicating that this correction step is not sufficient. (Right) Trend agreement between the expert and automated
methods, where non-measurable lesions were automatically removed and limited to a maximum of five.
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from the segmentations agreed with 76% for the human raters and

78% for the automated methods. Rater 1 had a low agreement for

both volume and 2D SPD to all automated methods. Visual

inspection showed that the high 2D disagreement stemmed from

scattering lesions into unconnected parts the other rater and

automated tools had detected as one connected lesion. The

results are shown in Figure 7.
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3.7. Non-measurable lesions

To add another element toward automated response

assessment, we compared the number of time points with

non-measurable lesions detected by the expert rater to

BraTumIA and HD-GLIO. The expert recorded non-measurable

lesions in 45 out of 385 post-operative follow-up scans. Out of
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FIGURE 7

(Left) Trend agreement for automated methods and measurements of segmentations by two human raters. This experiment is based on data from an
earlier study, including 14 patients with a total of 64 time points. The trend agreement between automated methods was higher than between the
two experts. The agreement between the first rater and both automated methods was lower than the inter-rater trend agreement. (Right) ICC for the
same data. The ICC was calculated based on consistency, two-way mixed-effects and a single-measurement model.
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these 45 time points, HD-GLIO also found non-measurable lesions

in 20 time points and BraTumIA in 30 time points. For the 340

time points without non-measurable lesions according to the

expert rating, HD-GLIO still segmented non-measurable lesions

for 94 time points and BraTumIA for 200 time points. To check

for a constant offset of the automated segmentation tools, we

compared the fraction of non-measurable lesion size of the full

tumor burden for the automated 2D and volume measurements

for time points with and without expert-rated non-measurable

lesions but did not find a significant difference (Wilcoxon

signed-rank test).
4. Discussion

The tested tools reached high trend agreements with an expert

rater following the RANO guidelines. Even the highest reported

trend agreement with the human rater of 81.1% (HD-GLIO

volume) is still insufficient to be used without expert input for

clinical decision support. Failure to detect a large lesion would

lead to a wrongly updated nadir time point.

Since the current RANO guidelines list the appearance of new

non-measurable lesions as a progression criterion, the lesion

count needs to be accurate. Still, it was highly inconsistent

across time, especially for post-operative time points. The main

issue is the automated methods segmenting recurrence along

resection cavity walls as many separate lesions when a human

rater would identify a single lesion. This was especially

problematic when the 2D SPD was calculated from automated

segmentations since many smaller lesions were measured

instead of a single lesion. This heavily distorted the 2D

measurements but not the automated volumetry. Both

automated segmentation tools failed to detect all expert-rated
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non-measurable lesions. The issue of fractioning leads to

many time points where the expert recorded only measurable

lesions, but the automated tools segmented small non-

measurable lesions.

The simple removal of false-positive lesions even had an

adverse effect, making more complex corrections necessary.

BraTumIA produced more false-positive lesions than

HD-GLIO but had a clear edge when individual lesions had to

be tracked longitudinally. The tested segmentation tools’ main

challenge remained false positives due to incorrect skull-

stripping on post-operative scans, an observation made in

other studies (19).

The training set of BraTumIA contained GBM data from our

center. So despite relying on less recent technology, it can

compete closely with HD-GLIO, trained on a large multi-center

dataset. We hypothesize that center-specific training can

remarkably lift the performance of such tools, and a balance

has to be found between center-specific performance and

generalizability. With these results, we would like to encourage

developers of automated segmentation tools to include the

ability for users to continue training with their data at the

target center while still benefitting from a more extensive and

diverse training data set.

Picking up the listed research questions from the introduction,

we conclude with the following.
4.1. Suitability of automated segmentation
tools for response assessment

Despite the relatively high trend agreement, the automated

tools under- and over-segmented few time points. Apart from a

falsely detected progression or response, this may lead to a nadir
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re-assignment if we rely entirely on the automated output.

Therefore, we recommend the current automated tools as a time-

saving aid for neuroradiologists with close monitoring and

manual corrections where needed.
4.2. Progression thresholds

The results indicate good applicability of the current

thresholds for 2D SPD and volumetry for BraTumIA. For

HD-GLIO, progression was detected too late on average. We

recommend adjusting progression thresholds to the sensitivity

and specificity of each segmentation method. This adjusted

tool-specific method should be validated on large multi-center

datasets and could be complemented by maximizing the

TTP–OS correlation as proposed by Reardon et al. (26). A

challenge will be the confounding factor that current

progression ground truth RANO ratings rely on 2D SPD

measurements, being a poor surrogate for the actual tumor

burden for complex tumor shapes. In our first analysis, we

found that it was possible to match the expert TTP with a

custom progression threshold for volumetric assessment with

BraTumIA.
4.3. Lesion measurability for automated
segmentations

Our experiments showed a lower trend agreement with the

expert measurements when only lesions above the 2D

measurability threshold and a maximum of five target lesions

were considered. While the 2D measurements have a

practical lower size limitation to 10 mm in both axes, we

recommend considering all detected lesions for both tested

automated tools.
4.4. Manual corrections

Removing false-positive lesions on the BraTumIA output was

insufficient, and human input should correct for under- and

over-segmentation. This analysis was omitted for HD-GLIO

since it produced very few false positives. Our findings show

that automated segmentation can be a time-saving aid to

enable clinicians to move toward response assessment based on

the contrast-enhancing volume. Automatically calculating the

2D SPD from segmentations may help facilitate the transition

to volumetry to understand differences, especially in the

context of well-established progression thresholds and careful

evaluation of irregularly shaped or scattered recurrence along

resection cavity walls. Further development is needed to enable

automated evaluation of treatment response beyond tumor

size, particularly for robust and longitudinally consistent

segmentation of non-measurable lesions. Human correction and

safeguards remain key when used in clinics with the currently

available methods.
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We note that we did not test any automated post-processing

methods outside of the tested tools to assess their current capabilities.
4.5. Limitations

Our study has a few limitations, requiring more validation and

research. First, our findings are based on a single-center retrospective

analysis with a small sample size, and further confirmation from

independent cohorts and different centers with varying acquisition

and follow-up protocols are needed. While the imaging adhered to the

current International Standardized Brain Tumor Imaging Protocol

(2), the acquisition parameters were heterogeneous, and how this

compared to the distribution of the training data used for the

investigated tools is unclear. Treatment differences and group

differences in molecular markers may confound the correlation

analysis of tumor measurements with the overall survival time. Due to

the time-consuming nature of manual tumor measurements, only one

expert rater performed the Macdonald/RANO measurements, except

for the multi-rater data, where we could rely onmanual segmentations

from two experts. Chang et al. (23) report an ICC of 0.704 between

two independent raters for the 2D measurements. This is similar to

the ICC values we found between the automated methods and the

human rater and between the automated tools. We, therefore, would

not expect considerable changes in our findings if more experts were

included or if a consensus read had been sought.

We did not include evaluation confidence intervals since we

relied on simple aggregated scores such as the trend agreement.

Studies with a larger sample size and more elaborate analysis should

already consider confidence metrics in the study design.
4.6. Outlook

We see the longitudinal consistency regarding lesions identified,

accurately counted, and tracked as the key development step needed

for automated segmentation tools. A potential research direction

could include information on previous follow-ups or pre-operative

scans in the segmentation pipeline. An intermediate step could be

to incorporate post-processing steps, e.g., based on distance

metrics from the pre-operative segmentation and follow-up

information. For wide clinical adoption, automated segmentation

tools should ideally offer tools for easy manual correction and

review of previous time points. Making co-registration of follow-up

imaging a standard for the 2D measurement can alleviate

inconsistencies and improve the measurement homogeneity. Tools

should include basic checks if the input images are of sufficient

quality and fit within the training data distribution. Our

performance comparison suggests that re-training models trained

on multi-center imaging on center-specific data should be

considered and facilitated. Once sufficient longitudinal consistency

is achieved, tool-specific progression thresholds should be

evaluated on ideally publicly available multi-center benchmarks.

Further research should go into providing confidence indicators to

the users when these tools are adopted in clinical decision support

and uncertainty on longitudinal data.
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