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AI in the Loop: functionalizing fold
performance disagreement to
monitor automated medical image
segmentation workflows
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Introduction: Methods that automatically flag poor performing predictions are
drastically needed to safely implement machine learning workflows into clinical
practice as well as to identify difficult cases during model training.
Methods: Disagreement between the fivefold cross-validation sub-models was
quantified using dice scores between folds and summarized as a surrogate for
model confidence. The summarized Interfold Dices were compared with
thresholds informed by human interobserver values to determine whether final
ensemble model performance should be manually reviewed.
Results: The method on all tasks efficiently flagged poor segmented images
without consulting a reference standard. Using the median Interfold Dice for
comparison, substantial dice score improvements after excluding flagged images
was noted for the in-domain CT (0.85 ± 0.20 to 0.91 ± 0.08, 8/50 images
flagged) and MR (0.76 ± 0.27 to 0.85 ± 0.09, 8/50 images flagged). Most
impressively, there were dramatic dice score improvements in the simulated
out-of-distribution task where the model was trained on a radical nephrectomy
dataset with different contrast phases predicting a partial nephrectomy all
cortico-medullary phase dataset (0.67 ± 0.36 to 0.89 ± 0.10, 122/300 images
flagged).
Discussion: Comparing interfold sub-model disagreement against human
interobserver values is an effective and efficient way to assess automated
predictions when a reference standard is not available. This functionality
provides a necessary safeguard to patient care important to safely implement
automated medical image segmentation workflows.
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Introduction

Automated medical image segmentation techniques offer a wide range of benefits to

healthcare delivery. Deep learning–based image segmentations have already shown

application in many different areas of the body as well as image modalities (1–4).

Segmentations can be used directly to measure organ volume or can be used for 3D

modeling and printing, demonstrating to patients the anatomical basis of diseases as well

as educating surgical trainees through high-fidelity simulations (5). Automated

segmentations can also be one part of a workflow where segmentation predictions are
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TABLE 1 Internal dataset demographics.

CT dataset MR dataset
No. of subjects 350 350

Males 229 217

Females 121 133

Age* 63 ± 13 (19–88) 59 ± 14 (20–88)

Height (m2)* 1.72 ± 0.1 (1.43–2.04) 1.73 ± 0.1 (1.49–2.04)

Weight (kg)* 92.79 ± 25.02 (45–200) 90.17 ± 22.33 (46–190)

BMI (kg/m2)* 31.00 ± 7.34 (16–62) 30.13 ± 6.52 (17–57)

*Mean ± standard deviation.
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further fed into additional models to classify pathology and to

inform medical decision-making. A challenge of implementing

such a workflow is the need for robust quality control of

automated segmentations without the potentially infeasible

burden of continuous human monitoring (6).

Given the potential value of medical image segmentation, the

topic of model development has been intensely studied on

internal datasets as well as in open-sourced challenges (7–9).

Recently, the “no new U-Net model” (nnU-Net) framework has

consistently produced winning submissions in a number of

these open challenges (10). A contribution of nnU-Net is to

automate many of the neural network design choices and

training strategies, allowing researchers to focus on other

barriers to clinical implementation. One significant barrier to

clinical implementation of automated workflows is in cases

where implemented models encounter data that are not

represented well in the training set, otherwise referred to as

“out-of-distribution” data. This is particularly an issue for

models that belong in the U-Net family, since they will always

make predictions on properly formatted input data without a

measure of certainty in its output, potentially leading to

catastrophic results in research or clinical decision-making

unless there exists some oversight of automated processes. For

example, a model trained on cross-sectional CT images would

still yield a prediction if magnetic resonance (MR) data were

accidentally used, despite not having seen MR image data

before. This potential for mismatch between training and task

data is a significant issue for clinical implementation of

automated deep learning models that are unable to flag poor

predictions (11, 12).

Epistemic uncertainty refers to the lack of knowledge of a

model’s own limitations due to limited training data (13–15).

Researchers have proposed several approaches to address issues

of out-of-distribution task data, including proactively identifying

out-of-distribution data before a model is applied by using

separate machine learning classification models and/or Monte

Carlo methods (14–17). These methods are a form of “AI in the

Loop” where separate automated model processes are inserted

into workflows to automatically check predictions and flag where

human intervention may be needed. A drawback of the previous

works is that they add significant complexity to the clinical

implementation of machine learning workflows by requiring a

separate training and monitoring of these upstream models. Our

team investigated how to achieve the same benefit of automatic

clinical workflow monitoring using data available in

segmentation models without needing for a separate model or

reference segmentations.

In this paper, we propose an easily implemented framework

to equip conventionally trained fivefold cross-validation models

with the ability to monitor real-time predictions when reference

standards are not available, similar to a clinical workflow. This

AI in the Loop method is novel in being easily understandable

and quickly computable while powerfully enabling a clinically

implemented image segmentation workflow to have some form

of discrimination in determining whether a prediction

segmentation needs human review.
Frontiers in Radiology 02
Materials and methods

Dataset

This multi-dataset retrospective study was approved by our

institutional review board, was HIPAA compliant, and performed

in accordance with the ethical standards contained in the 1964

Declaration of Helsinki. We used two internal data sets: (1) an

MR abdomen dataset with labeled kidney and tumor and (2) a

CT abdomen dataset with labeled kidney and tumor. In addition,

the open-sourced KiTS21 dataset as described in the publication

by Heller et al. (8) was used to demonstrate the out-of-

distribution task data. Our internal datasets are described in

detail with demographic data in Table 1.
MR kidney tumor dataset

As part of a previously published study, 350 T2-weighted

images with fat-saturation, coronal, abdominal/pelvis MR images

were randomly sampled from a dataset of 501 patients, where

313 of the patients had undergone partial nephrectomy, and 188

of the patients had undergone radical nephrectomy between 1997

and 2014 (18). The segmentation of these images was performed

in two parts. In the first step, the right and left kidneys were

segmented using a previously trained U-Net-based algorithm

(19, 20). Then, two urologic oncology fellows manually refined

these automatic segmentations and segmented renal tumors. A

total of 50 images were randomly selected from this dataset to

comprise a test set that will be used to evaluate the model.
CT kidney tumor dataset

Also a part of the previously referenced study, 350 images were

randomly sampled from a collection of 1,233 non-contrast and

different contrast phases of abdomen/pelvis CT images as part of

the Mayo Clinic Nephrectomy Registry (18, 21). The images were

from patients without metastatic lesions or positive lymph nodes

at the time of radical nephrectomy between 2000–2017. Two

urologic oncology fellows segmented the kidney and tumor

masks using the segmentation software ITK-snap RRID:

SCR_002010 (version 2.2; University of Pennsylvania,

Philadelphia, PA, USA) (22). Processing of these images included
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cropping around both kidneys and three slices above the slice of the

upper pole of the kidney and three slices below the lower pole of

the kidney. The scans were resampled to a coronal plane width

of 256-pixel and a medial plane depth of 128-pixel, employing

zero padding if images were smaller than this standard size. A

total of 50 images were randomly selected from this dataset to

comprise a test set that will be used to evaluate the model.
Algorithm

nnU-Net specifications

The nnU-Net preprocessing involves designating “T2” or “CT”

default processing for each dataset. nnU-Net offers four different

default model configurations: 2d, 3d_fullres, 3d_lowres, and

3d_cascade_fullres. The 3d_lowres and 3d_cascade_fullres

configurations are designed to be run sequentially for image data

that are too large for the 2d or 3d_fullres configurations to

handle. We opted to use the 3d_fullres configuration since we

found that it performs better than the 2d configuration based on

the findings from our previous work (18).

Following nnU-Net’s public GitHub RRID:SCR_00263 (23), a

standard fivefold cross-validation process was utilized using the

3d_fullres configuration. In this process, the final predictions are

derived by averaging the five sub-model outputs, which are the

voxel-wise softmax probabilities, into one ensemble prediction

(10). In addition, each sub-model prediction was evaluated to

assess fold disagreement.
Self-informed models

The main goal of this study is to utilize the information

encoded in models generated during the fivefold cross-validation

process to investigate whether information extracted during the

inference stage can inform the end user of the segmentation

quality of the final ensemble model.

During training, a fivefold cross-validation approach was utilized,

generating five sub-models. In this paper, we define a sub-model as a

fully trained model that has a unique training and validation set split.

In nnU-Net’s implementation of the fivefold cross-validation process,

the predictions from thefive sub-models on a test image are ensembled

by averaging the voxel-wise softmax probabilities, in which the

averaged voxel value is rounded to the nearest prediction value for

predicting the final ensemble. In our method, we calculated Dice

scores between each sub-model prediction, i.e., Dice between sub-

model 1 and sub-model 2, between sub-model 1 and sub-model 3,

and so on. Dice score is a commonly used metric to compare 3D

image segmentations, where a score of 1 indicates complete overlap

between the two segmentations and a score of 0 indicates two

segmentations with no overlap (24). This process produced 10 Dice

metrics referred to as “Interfold Dices” that were summarized by

employing different first order summary statistics to compare

against published human–human interobserver thresholds described

below. As part of our investigations of metrics that can be used to
Frontiers in Radiology 03
flag cases that the ensemble model’s prediction might be suboptimal

on, the following first order statistics were evaluated: mean, median,

minimum, and maximum of the Dice index.

We compared the summarized Interfold Dices with previously

published human interobserver thresholds to evaluate whether

disagreement between the folds was within the expected variance

of a task or indicative of a lack of representative training data. We

used a threshold of 0.825 for the MR kidney tumor task based on

the work of Muller et al. (25). In this publication, the researchers

reported human interobserver values of 0.87 and 0.78 in a dataset

of a series of MR imaging from 17 patients with Wilms tumor

before and after undergoing chemotherapy, respectively. We

averaged these values arriving at the 0.825 threshold employed in

our work. For the CT kidney tumor task, we used two studies to

inform our threshold. In a study analyzing the effect of contrast

phase timing on texture analysis to predict renal mass histology

from CT scans, Nguyen et al. (26) reported an interobserver

variability of 0.91–0.93 in a dataset of 165 patients. In a study

including renal, liver, and lung pathologies (including the 300

sample KiTS19 dataset), Haarburger et al. (27) reported a median

interobserver threshold of 0.87. We averaged these values deriving

the 0.90 threshold employed in our study. In a sensitivity analysis

for the KiTS21 task, we also investigated how the process of

changing the threshold would affect the results of the method. In

general, it was found out that a higher threshold will flag more

images, both true and false positives, and can be tuned to a

specific task in the model training phase.

To validate our method, we compared the summarized Interfold

Dice with the final test ensemble Dice score to investigate whether an

association existed. We first created scatter plots, where the y-axis

was a given summary metric of the Interfold Dice and the x-axis

was the Dice score of the final ensemble model. Intuitively, we

also used confusion matrices to display the results, where true

positives were flagged images based on the summary of Interfold

Dice of the ensemble model with poor performance, true negatives

were non-flagged segmentations of the ensemble model with good

performance, false positives were flagged images of the ensemble

model with good performance, and false negatives were non-

flagged images of the ensemble model with poor performance. Of

these categories, false negatives were considered the worst failure

since they represented non-flagged poor segmentations that might

not be reviewed before being utilized in a clinical workflow. False

positives were undesirable but not evidently worrisome in small

quantities since they would represent flagged images that had

good performance and could be quickly reviewed. We also

calculated how the overall test Dice set score would change if the

flagged segmentations were removed.
Simulating out-of-distribution task data

To test the generalizability of our framework in identifying

“out-of-distribution” data, we used our internally trained model

to predict segmentations on the open-sourced KiTS21 dataset

(17), knowing that key differences existed between the datasets.

The CT images in the KiTS21 dataset were all acquired from
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TABLE 2 Dataset voxel and volume characteristics.

MR kidney
tumor

CT kidney
tumor

KiTS21

In-plane voxel width × height (mm)
Mean 1.34 × 1.34 1.03 × 1.03 0.79 × 0.79

Median 1.56 × 1.56 1.01 × 1.01 0.78 × 0.78

Range 0.59–1.95 × 0.59–
1.95

0.49–1.85 × 0.49–
1.85

0.44–1.04 ×
0.44–1.04

Slice thickness (mm)
Mean ± SD 6.26 ± 1.65 4.03 ± 1.38 3.18 × 1.75

Median 6.00 5.00 3.00

Range 2.00–15.00 0.65–8.00 0.50–5.00

Number of slices
Mean ± SD 32.27 ± 11.64 44.50 ± 23.91 314.67 ± 37.83

Median 30.00 37.00 320.00

Range 6.00–116.00 20.00–211.00 257.00–478.00

Volume of labels (ml)
Tumor minimum
volume

0.01 0.513 1.86

Tumor 25th percentile
volume

29.61 55.95 18.71

Tumor mean ± SD 541.33 ± 1,244.35 428.61 ± 654.27 253.59 ± 476.38

Tumor median volume 97.33 212.71 66.77

Tumor 75th percentile
volume

454.70 497.67 219.46

Tumor maximum
volume

11,946.84 7,742.26 2,894.02

Gottlich et al. 10.3389/fradi.2023.1223294
contrast-enhanced CT scans during the corticomedullary contrast

phase, and these images contained generally smaller tumors

including those from partial nephrectomies. In contrast, our

internal dataset contained a mix of different contrast phases and

had larger tumors being solely from a radical nephrectomy

database. The difference in voxel dimensions and distribution of

tumor size between the KiTS21 dataset and our internal dataset

can be found in Table 2.
Results

MR kidney tumor results

In our study, the performance of the ensemble model on

the holdout test set without flagging for MR kidney tumor

was 0.76 ± 0.27. As described in the description of our

method above, we used a flagging threshold of 0.825, where

images with summarized Interfold Dices below this value
TABLE 3 Different summary metrics of interfold Dice flagged cohort—MR
kidney tumor.

Summary
metrics

Number of
flagged
images

Flagged images
mean ±
standard
deviation

Non-flagged
images mean ±

standard
deviation

Mean 17 0.53 ± 0.37 0.87 ± 0.07

Median 8 0.28 ± 0.36 0.85 ± 0.09

Max 4 0 ± 0 0.82 ± 0.15

Min 20 0.57 ± 0.36 0.87 ± 0.08

Frontiers in Radiology 04
were flagged. The full results of the impact of flagging with

different summary metrics can be found below in Table 3

and Figure 1. All unflagged cohorts mean ensemble Dice

values were above the human interobserver value with small

standard deviations.
CT kidney tumor results

The mean ensemble ± standard deviation Dice model

performance for CT kidney tumor on the holdout test set was

0.85 ± 0.20. As described in the description of our method

above, we used a threshold of 0.90, where images with

summarized Interfold Dices below this value were flagged. The

full results of the impact of flagging with different summary

metrics can be found in Table 4 and Figure 2. Almost all the

mean ensemble Dice values of the non-flagged cohorts were

above the human interobserver value with small standard

deviation values.
Predictions on KiTS21 results

The mean test Dice score for tumor was 0.67 ± 0.36 with a

significant improvement after removing the flagged cohort. As

described above, we used a threshold of 0.90, where images

with summarized Interfold Dices below this value were

flagged. We also conducted a sensitivity analysis of two

different arbitrary thresholds of 0.86 and 0.81, representing

90% and 95% of the original threshold. The full results of

the impact of flagging with different summary metrics can

be found in Table 5 and Figure 3. The confusion matrices

of the three different thresholds can be found in Figure 4.

As expected, a lower threshold will result in a smaller

number of overall images being flagged and more false

negatives, while a higher threshold will result in more

images being flagged and more false positives. All the mean

ensemble Dice values of the non-flagged cohorts were near

the human interobserver value with small standard

deviations values.

As seen in Figure 5, the flagged images tended to be of

tumors smaller than what was observed in the training set

models:
Qualitative assessment of flagged images

In addition to how out-of-distribution tumor size affected

whether the model would have higher epistemic uncertainty

and the impact on final ensemble test performance, we also

qualitatively assessed flagged outliers. An important finding for

the CT kidney and tumor internal data test set is that outliers

tended to represent more difficult segmentation cases as

opposed to corrupted images, which can be seen below in

Figure 6.
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FIGURE 1

MR kidney tumor characteristics of flagged and non-flagged images. (A) Mean, median, maximum, and minimum Interfold Dice score plots. The blue
dashed line indicates the interfold cutoff at the human threshold interobserver value (IO) (images below the line are flagged). The red dashed
line indicates the ensemble IO performance (images to left of the line have low performance). (B) Confusion matrix for median Interfold Dice. True
positive (upper left) is defined as when flagged images (summary Interfold Dice < threshold) performed poorly (test ensemble < threshold).
True negative (lower right) is defined as when non-flagged images (summary Interfold Dice > threshold) performed well (test ensemble > threshold).
False positives (upper right) defined as when flagged images (summary Interfold Dice < threshold) performed well (test ensemble > threshold). False
negatives (lower left) defined as when non-flagged images (summary Interfold Dice > threshold) performed poorly (test ensemble < threshold).

TABLE 4 Different summary metrics of interfold Dice flagged cohort—MR
kidney tumor.

Summary
metrics

Number of
flagged
images

Flagged images
mean ±
standard
deviation

Non-flagged
images mean ±

standard
deviation

Mean 9 0.57 ± 0.35 0.91 ± 0.08

Median 8 0.52 ± 0.34 0.91 ± 0.08

Max 4 0.32 ± 0.37 0.89 ± 0.10

Min 12 0.61 ± 0.31 0.92 ± 0.05

Gottlich et al. 10.3389/fradi.2023.1223294
Discussion

The main goal of this paper was to leverage a state-of-the-art

convolutional neural network framework to create a self-

informed model that can be used to inform the user about the
FIGURE 2

CT kidney tumor characteristics of flagged and non-flagged images. (A) Mea
dashed line indicates the interfold cutoff at IO (images below the line are
(images to left of the line have low performance). (B) Confusion matrix for m
images (summary Interfold Dice < threshold) performed poorly (test ensemble
images (summary Interfold Dice > threshold) performed well (test ensemble >
(summary Interfold Dice < threshold) performed well (test ensemble > thresh
(summary Interfold Dice > threshold) performed poorly (test ensemble < thres
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quality of the segmentation without comparing with any

reference standard (i.e., applicable in scenarios where no

reference standard exists). To identify poor-performing

predictions, we compared sub-model predictions with each other

and summarized them with different metrics to a single Interfold

Dice score. This score was compared against published human

interobserver thresholds to determine which images should be

flagged in our hypothetical workflow. For segmentation tasks of

tumors, flagged images tended to be the poorest-performing

images, and the non-flagged predictions had significantly

higher mean Dice values, showing less variability than the

flagged predictions or the total predictions without flagging.

Furthermore, we demonstrated by applying our internal model to

the KiTS21 dataset that despite overall poor model performance,

the non-flagged cohort still performed comparable with human

interobserver values, while the images in the flagged cohort were
n, median, maximum, and minimum Interfold Dice score plots. The blue
flagged). The red dashed line indicates the ensemble IO performance
edian Interfold Dice. True positive (upper left) is defined as when flagged
< threshold). True negative (lower right) is defined as when non-flagged
threshold). False positives (upper right) defined as when flagged images
old). False negatives (lower left) defined as when non-flagged images
hold).
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TABLE 5 Different summary metrics of interfold Dice flagged cohort—CT
kidney tumor model on KiTS21 data.

Summary
metrics

Number of
flagged
images

Flagged images
mean ±
standard
deviation

Non-flagged
images mean ±

standard
deviation

Mean 130 0.41 ± 0.38 0.89 ± 0.11

Median 122 0.37 ± 0.37 0.89 ± 0.10

Max 74 0.155 ± 0.251 0.85 ± 0.17

Min 162 0.49 ± 0.39 0.91 ± 0.07

Gottlich et al. 10.3389/fradi.2023.1223294
generally of a smaller tumor size distribution than what was

observed in the training dataset.

An intuitive understanding of why this method works relies

on how cross-validation uses different distributions in training
FIGURE 3

Internal CT kidney tumor model on KiTS21 data. (A) Mean, median, maxi
indicates the interfold cutoff at IO (images below the line are flagged). The
of the line have low performance). (B) Confusion matrix for median Interf
(summary Interfold Dice < threshold) performed poorly (test ensemble < th
images (summary Interfold Dice > threshold) performed well (test ensemble >
(summary Interfold Dice < threshold) performed well (test ensemble > thresh
(summary Interfold Dice > threshold) performed poorly (test ensemble < thres

FIGURE 4

Confusion matrices for the three different median interfold dice score thresh
as when flagged images (summary Interfold Dice < threshold) performed po
when non-flagged images (summary Interfold Dice > threshold) performed
when flagged images (summary Interfold Dice < threshold) performed well
non-flagged images (summary Interfold Dice > threshold) performed poorly (t
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and validation folds to minimize overfitting on a single

distribution. Despite seeing different distributions of data, we

still expect predictions from different folds to resemble each

other if the distribution of the test data is represented

adequately so that examples are well distributed throughout

the training and validation sets. However, in cases of out-of-

distribution or near out-of-distribution, we expect greater

prediction variance between folds, depending on the split of

the limited relevant data in the training and validation sets.

This prediction variance is a consequence of the folds not

having adequate examples to converge to a ground truth

prediction, resulting in a less sure prediction and, as

demonstrated in the trials above, lower performance of the

final ensemble model.
mum, and minimum Interfold Dice score plots. The blue dashed line
red dashed line indicates the ensemble IO performance (images to left
old Dice. True positive (upper left) is defined as when flagged images
reshold). True negative (lower right) is defined as when non-flagged
threshold). False positives (upper right) defined as when flagged images
old). False negatives (lower left) defined as when non-flagged images
hold).

olds of (A) 0.9, (B) 0.86, and (C) 0.81. True positive (upper left) is defined
orly (test ensemble < threshold). True negative (lower right) is defined as
well (test ensemble > threshold). False positives (upper right) defined as
(test ensemble > threshold). False negatives (lower left) defined as when
est ensemble < threshold).
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FIGURE 5

Distribution of tumor sizes in internally trained dataset vs. KiTS21, showing which KiTS21 data are flagged. (A) Boxplot graph demonstrating different tumor
size distributions in CT datasets while (B) demonstrates how flagged images tended to be smaller tumor volumes.

Gottlich et al. 10.3389/fradi.2023.1223294
This application is a contribution to addressing the issue of

epistemic uncertainty in the implementation of automated

medical image segmentation models. Past quantitative work to

detect out-of-distribution task data includes creating separate

classification models to identify out-of-distribution data and

quantifying uncertainty using Markov chain Monte Carlo

methods (15, 16). Lakshminarayanan et al. (14) published a

method most similar to the one presented here in comparing

different ensemble models combined with adversarial training to

identify out-of-distribution examples. Our study builds on this

work by demonstrating a way to implement out-of-distribution

detection in a medical image workflow using human

interobserver values as thresholds for flagging. This real-time
FIGURE 6

Qualitative assessment of outliers in internal CT tumor test set shown in the

Frontiers in Radiology 07
monitoring not only offers workflow implementers the ability

to correct flagged examples, but it also alerts them to investigate

and identify the causes of out-of-distribution data. In some

cases, the out-of-distribution data may be due to corrupted input

data or in fact represents a scenario of the need to update the

model (e.g., data drift scenarios requiring continuous learning or

other model update paradigms). Importantly, our method does

not require the separate training or maintaining of separate

upstream models, greatly simplifying its integration into clinical

workflows.

A key limitation of this method is that it cannot correct for

poor in-distribution training data. For example, the model may

create a poor prediction with high certainty based on the
lowest left quadrant of Figure 4.
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training data that it sees. This problem is especially important to

address in terms of entrenched biases that might be present in

datasets (11, 28). Another limitation of our work is in deriving

the thresholds used to evaluate whether the summarized

Interfold Dices represent normal variability or lack of

representative training data for the model to make a confident

prediction. We used averaged published human interobserver

values in this study to derive the thresholds. However, these

values were derived from datasets with significant differences

from the datasets that we were using. When implementing this

method into a clinical pipeline, we advocate for researchers to

conduct interobserver studies that are specific to their tasks and

data to derive thresholds. Researchers may also consider

investigating sensitivity analyses of different thresholds similar

to what we have done in this study in order to balance the

number of flagged images with the amount of false positive

flagged images.

Regarding future directions, we plan to explore methods to

determine ways to identify less obvious causes of higher

epistemic uncertainty. In addition, we believe a prospective

validation study demonstrating the method in real time is

essential to assessing its utility for clinical implementation.

Another direction that we are interested in is expressly stratifying

flagged images by known concerning sources of bias, for

example, ethnicity, to expressly investigate whether this bias may

be present in our training data. Lastly, we have made our

analysis code open-sourced and easily accessible for other

investigators to determine its utility in different applications at

the following link: https://github.com/TLKline/ai-in-the-loop.
Conclusions

Comparing interfold sub-model predictions is an effective and

efficient way to identify the epistemic uncertainty of a

segmentation model, which is a key functionality for adopting

these applications in clinical practice.
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