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From coarse to fine: a deep 3D
probability volume contours
framework for tumour
segmentation and dose painting in
PET images
Wenhui Zhang* and Surajit Ray

School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom

With the increasing integration of functional imaging techniques like Positron
Emission Tomography (PET) into radiotherapy (RT) practices, a paradigm shift in
cancer treatment methodologies is underway. A fundamental step in RT
planning is the accurate segmentation of tumours based on clinical diagnosis.
Furthermore, novel tumour control methods, such as intensity modulated
radiation therapy (IMRT) dose painting, demand the precise delineation of
multiple intensity value contours to ensure optimal tumour dose distribution.
Recently, convolutional neural networks (CNNs) have made significant strides in
3D image segmentation tasks, most of which present the output map at a
voxel-wise level. However, because of information loss in subsequent
downsampling layers, they frequently fail to precisely identify precise object
boundaries. Moreover, in the context of dose painting strategies, there is an
imperative need for reliable and precise image segmentation techniques to
delineate high recurrence-risk contours. To address these challenges, we
introduce a 3D coarse-to-fine framework, integrating a CNN with a kernel
smoothing-based probability volume contour approach (KsPC). This integrated
approach generates contour-based segmentation volumes, mimicking expert-
level precision and providing accurate probability contours crucial for optimizing
dose painting/IMRT strategies. Our final model, named KsPC-Net, leverages a
CNN backbone to automatically learn parameters in the kernel smoothing
process, thereby obviating the need for user-supplied tuning parameters. The
3D KsPC-Net exploits the strength of KsPC to simultaneously identify object
boundaries and generate corresponding probability volume contours, which can
be trained within an end-to-end framework. The proposed model has
demonstrated promising performance, surpassing state-of-the-art models when
tested against the MICCAI 2021 challenge dataset (HECKTOR).
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image segmentation, PET imaging, probability volume contour, dose painting, deep
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1. Introduction

Fluorodeoxyglucose Positron Emission Tomography (PET) has been widely recognized

as an essential tool in oncology (1). Its applications in areas such as staging, monitoring,

follow-up radiotherapy (RT) planning and therapy response assessment are rapidly

growing in popularity (2–4). RT is an essential treatment method for malignant tumours.

The process of delineating the gross tumour volume (GTV) in RT planning and
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radiomics analysis relies on manually annotating volumes of

interest (VOIs) in three-dimensions, which allows extracting

semi-quantitative metrics such as mean or maximum

standardized uptake values (SUVs) (5).

PET has the potential to improve cancer therapy outcomes by

enabling the identification and characterization of tumours based

on their metabolic properties, which are closely linked to cancer

biology (6). The quantitative assessment of the metabolically

active tumour volume offers independent prognostic and

predictive information, as evidenced by compelling data in

various malignancies such as locally advanced esophageal cancer

(7), lung cancer (8), cervical and head and neck cancers (9),

non-Hodgkin lymphoma (10) and pleural mesothelioma (11).

These promising results underscore the critical need to develop

and validate robust algorithms for segmenting PET metabolic

volumes before and during treatment.

The advent of multi-modality imaging technology has

introduced combined PET-CT (computed tomography) and

PET-MRI (magnetic resonance imaging), enabling the acquisition

of both anatomical/morphological and functional information in

a single imaging session. Nevertheless, the registration process of

PET-CT or PET-MRI imaging modalities is often limited in its

accuracy due to the differences in scanner, image acquisition,

and reconstruction protocol (6). PET scans can be prone to

various artifacts, such as respiratory motion, patient movement,

and metal artifacts from implanted devices (12). These artifacts

can affect the accuracy of the registration process and introduce

uncertainties in aligning PET images with CT or MRI. Therefore,

it is important to note that the primary objective of our research

is to investigate the potential of utilizing metabolic information

from PET scans to improve the accuracy of target delineation. By

focusing on the metabolic characteristics provided by PET
FIGURE 1

An case example of 3D PET scan from axial, coronal and sagittal angles on hea
segmentation.
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imaging, we aim to contribute to the development of novel

methodologies that enhance the precision and interpretability of

tumour segmentation in radiotherapy planning.

In the realm of 3D techniques, there exist various approaches

for determining VOI, which can be categorized as either manual

or automatic. Manual delineation for boundary definition is a

time-consuming and subjective process (2), which can be prone

to operator error and often leads to large inter-observer and

intra-observer variations across different images and operators

(13). An example of PET scan is shown in Figure 1. The task of

automatic object segmentation in PET is more challenging, due

to various factors such as low resolution, low contrast, and noise

that can arise from radioactive decay or reconstruction methods

(1). Therefore, developing highly accurate automatic

segmentation algorithms for PET images is an urgent necessity

to enable faster and more reproducible GTV definition, thus

reducing the workload on experts and speeding up RT planning

while reducing intra-observer variability. In addition, the

utilization of fully automatic segmentation algorithms can greatly

facilitate the practical application of validated models to patients’

images within standard clinical workflows. Beyond tumour

delineation, another important use of functional images, such as

PET images is their use for designing modulated radiation

therapy (IMRT) dose painting. IMRT dose painting requires the

accurate calculation of multiple nested contours of intensity

values to optimise dose distribution across the tumour. Despite

various segmentation strategies, there is a need to develop

optimal image segmentation approaches that reproducibly and

accurately identify the high recurrent-risk regions (14).

To address these issues, we propose a coarse-to-fine deep

learning (DL) framework that can provide accurate

segmentation results and produce probability volume contours
d and neck tumour. The orange annotations are provided by expert’s hand
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designed to optimise dose painting/IMRT strategies as a

byproduct. The rest of the paper is organized as follows.

Section 2 covers the related work in PET image segmentation

and corresponding dose painting strategies first. Then it

highlights the motivations and novelties of the proposed model.

The framework and network architecture of our proposed

model with training details is described in Section 3. Section 4

presents the data information and the evaluation metrics used

for model performance. At the beginning of Section 5, the

experimental results of the proposed model are presented and

discussed with comparisons to some state-of-art models.

Following this, several visualization examples of the application

of our proposed model in dose painting/IMRT are displayed

and explained. The summary and conclusion are discussed in

Section 4.
2. Related work and motivation

2.1. Related work

Despite the difficulties described above, many studies in the

literature have recently used PET data to automatically segment

tumours (15). Techniques range from simple thresholding to

advanced machine learning methods (6, 16). “Thresholding,”

popular before the deep learning era, relies on clinical experience

to define thresholds and can vary greatly between cases, making

full automation difficult (2). More refined techniques have been

proposed to enhance automation in this process. The majority of

these techniques use the distribution of SUV values, like

Gaussian Mixtures Models (17) and fuzzy C-means algorithms

(18, 19). Others have focused on minimizing a Markov random

field (20). However, these models are limited to pixel/voxel-wise

segmentation. Another common approach is Active Contour

(AC) models, which offer contour-based segmentation and

accurate boundary localization (21). Although AC models have

the advantage of having the flexibility of topology changes

followed by mathematical morphology, these techniques lack a

way to work with labelled images in a supervised machine

learning framework and often suffer from dealing with noise and

occlusions, difficulty in choosing too many parameters, and slow

convergence (22).

Recent advancements were influenced by the success of deep

Convolutional Neural Networks (CNNs), specifically the U-Net

(23) applied to biomedical image segmentation. This is primarily

due to their exceptional ability to learn informative hierarchical

features directly from data. PET tumour segmentation has also

benefited from these developments, for example by using a 3D

U-Net to segment brain tumours in PET images (24) and lung

tumour segmentation (25–27). However, as illustrated in (28, 29),

while skip connections in the U-Net architecture play a role in

preserving and integrating detailed information, it does not

completely eliminate the inherent challenges in precise boundary

recognition due to the information loss in the successive

downsampling layers. Despite the headway made in using CNNs

for 3D medical image segmentation, their application has been
Frontiers in Radiology 03
restricted to the generation of voxel-wise segmentation outputs

instead of smooth contours. Although CNNs may yield

satisfactory segmentation results, low values of the loss function

may not always indicate a meaningful segmentation (30). For

instance, when there is noise in the input, the resulting

background contours may not be accurate. Additionally,

classifying voxels near object boundaries can be challenging,

particularly in PET images that have low resolution and contrast.

Consequently, the boundary delineation may appear fuzzy and

imprecise.
2.2. Motivation

The task of image segmentation has been closely related to

cluster analysis. Clustering methods have become a standard tool

for image segmentation due to their ability to group similar

image pixels or regions together. Within the clustering

framework, the nonparametric or modal formulation is a

promising approach for image segmentation. There have been a

lot of algorithms developed for the identification of modal

regions, which are applied for image segmentation. For example,

the mean-shift methods have been applied for a variety of 2D

and 3D image segmentation tasks (31–33). Li et al. (34), building

on the work by Ray and Lindsay (35) have developed a modal

clustering to cluster high dimensional random variables and

applied it in natural-scene image segmentation. Compared to

most clustering methods, which rely on heuristic similarity

measures between objects, nonparametric methods assume that

image data is generated from an underlying smoothing process

that can be estimated nonparametrically by a probability density.

The resulting clusters are defined as the domains of attraction of

the density modes.

Nonparametric methods and their ability to identify modal

regions have several advantages for PET image segmentation.

They are able to handle diverse and complicated image data

without making any assumptions about any pre-defined

probability density function, which lets them appropriately

capture the distribution of the data. In addition, they can identify

modal regions of varying shapes and sizes effectively, which

aligns with the geometric intuition of clusters, as they are not

restricted to a particular shape. This feature makes them useful

for segmentation tasks. More specifically, the SUV in PET image

often represents the voxel intensity, which can be naturally

modelled by probability densities and therefore the tumour

regions correspond to the modal regions. Furthermore, the

outputs of segmentation are characterized by their spatial

continuity, resulting in shapes that may manifest as 2D contours

or 3D surfaces. In this work, the 3D spatial structure of the

voxels is introduced when building the nonparametric density

function – smoothing kernels, to reduce the impact of noise and

improve the visual continuity of the SUV distribution. This can

aid in identifying and delineating tumour boundaries more

accurately, facilitating a more reliable and accurate segmentation

process. On the other hand, when two modes are close in

proximity relative to the kernel bandwidth, the application of a
frontiersin.org
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smoothing kernel might intuitively suggest that the valleys would

be further diminished. However, it is important to note that the

goal of the smoothing kernel is not solely to separate modes, but

rather to improve the overall appearance and compactness of the

SUV distribution. The motivation lies in the desire to mitigate

the impact of noise and improve the interpretability of the SUV

values, leading to more robust and clinically relevant tumour

segmentation results.

Another important use of nonparametric methods in PET

imaging is the development of IMRT dose painting. In particular,

dose painting requires optimising dose distribution based on

functional information of the image and can enhance the efficacy

of tumour control (14). The notion behind “dose painting” (36)

is that functional images can differentiate spatially varying

radiation sensitivities of tumours as a basis to “paint”

heterogeneous dose prescriptions. One of the popular DP

strategies is dose painting by contours (DPBC), which assigns a

homogeneous boost dose to the subregions defined by SUV

thresholds. As mentioned, the nonparametric methods can model

the SUVs as probability densities, which can further aid in

capturing the probability mass associated with different

metabolic activity levels, enabling a more effective and automated

segmentation of the subregions. This probabilistic interpretation,

when combined with the level sets, enhances the capability to

differentiate and delineate different activity regions in a more

robust and informative manner, which in turn can be used to

design the IMRT dose painting strategy.

With these motivations, a kernel smoothing-based probability

contour (KsPC) approach was proposed in our prior work (37).

Instead of a voxel-wise analysis, we assume that the true SUVs

come from a smooth underlying spatial process that can be

modelled by kernel densities. Further, as the task of segmentation

in this case is to distinguish between the tumour and non-

tumour region, rather than identifying the modal regions

through standard cluster analysis, we have opted to construct an

ideal threshold surface to segment out the modal region. The

KsPC can provide a manifold over 3D images that naturally

produces contour-based results rather than voxel-wise results,

thus mimicking experts’ hand segmentation. However, the

performance of KsPC depends heavily on the tuning parameters

of bandwidth and threshold in the model, and as it is performed

per patient, information from other patients cannot be integrated

by default. We propose to address these limitations by

integrating KsPC in a 3D deep learning framework, which we

will call “KsPC-Net.”
3. Methodology

In this section, we first illustrate the methodology of our 3D

non-parametric density-based segmentation with its 3D

probability volume contour development, which formulates the

KsPC module in Sections 3.1 and 3.2, respectively. Then we

present an integrated CNN framework to embed the KsPC

module into a 3D Unet-based architecture with training details

in Sections 3.3 and 3.4.
Frontiers in Radiology 04
3.1. 3D non-parametric density-based
segmentation

In this work, we propose to model the 3D voxel-specific SUVs

as a discretized version of the underlying unknown smooth process

of some “metabolic activity.” The smooth process can then be

estimated as the kernel-smoothed manifold of the SUVs over the

domain of the entire 3D volumetric images. In particular, let

I ¼ {p1, p2, . . . , pN } be a 3D volumetric image data, where the

ordered set of voxels pi ¼ ((xi, yi, zi), si), i ¼ 1, . . . , N , is

described by the vector (xi, yi, zi) [ V , R3 denoting the

coordinates of the voxel’s location, and by the scale quantity si
denoting the SUV or image intensity. We can define a region-of-

interest as an open subset V1 of V (i.e. V1 , V), where V is the

entire 3D data domain.

We assume that for each voxel pi the SUV represents the

frequency that each position vector appears in the corresponding

grid. The SUVs can therefore be modelled as kernel density

estimate (KDE) (38, 39) of each voxel pi based on the 3D spatial

coordinates in a higher dimension as manifoldC, which is defined as

f̂ (p; h) ¼ 1
hxhyhz

XN
i¼1

si

 !�1 Xs1þ���þsN

t¼1

K
x � xt
hx

� �
K

y � yt
hy

� �
K

z � zt
hz

� �
,

(1)

where K is a kernel function and h ¼ (hx , hy , hz) is the smoothing

tuning parameters, called bandwidth which controls the amount of

smoothing in each spatial dimension. On the other hand, since

(xi, yi, zi) is counted si times at the same position, Equation 1 can

be further simplified as

f̂ (p; h) ¼ 1
hxhyhz

XN
i¼1

si

 !�1XN
i¼1

K
x � xi
hx

� �
K

y � yi
hy

� �
K

z � zi
hz

� �
si:

(2)

The estimation of the density as in Equation 2 would potentially

overcome the limitation of lacking valleys that occur at the border

of segments (40). With the spatial coordinates involved in f̂ , the

density of a generic voxel depends on voxels that are spatially close

to each other. Consequently, at the edge of a segment, where a

portion of adjacent voxels exhibits dissimilar SUVs, the resulting

density is lower than that of voxels located in the interior of the

segment.

Then, in order to achieve an accurate estimation of the density

function f̂ , it is necessary to account for two additional factors: the

selection of an appropriate kernel function K and the smoothing

parameter vector h. With respect to the former, prior research has

established that the selection of the kernel function K has a limited

influence on the density estimate (41, 42). Hence, for the purposes

of this study, we opted for a Gaussian kernel which is denoted as:

K(u) ¼ 1ffiffiffiffiffiffi
2p

p e�
1
2u

2
:

Therefore, we can interpret f̂ in Equation 2 as the probability mass of

voxel p which is estimated by smoothing the SUV values of the local
frontiersin.org
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FIGURE 2

A visualization example of (A) a set of raw 3D PET images and (B) the resulting kernel smoothed density manifold.

W. Zhang and S. Ray 10.3389/fradi.2023.1225215
neighbourhood using the Gaussian kernel. Figure 2 presents an

example of the original 3D data and its estimated kernel-smoothed

manifold. The manifold C is now formed by the estimated density

f̂ , and a section of f̂ at a given threshold l [ R separates out the

region-of-interest as

S(l) ¼ {x [ R3 :C(x)� l ¼ 0}, (3)

where the S [ R3 is the final segmentation surface, which can be

viewed as the boundary of the region-of-interest region subset V1

(i.e. S ¼ @V1). An example of the segmented surface can be seen in

Figure 3 (B) in comparison with the ground truth provided by

experts in (A). Thus, the area inside S denotes the tumour region

and the area denotes the background. Note that the tumour region

subset V1 can be connected or disconnected.
FIGURE 3

A visualization example of (A) ground truth by experts, (B) the 3D segmented
contours.
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3.2. 3D probability contours

After delineating the gross tumourvolume, a follow-upapplication

of the kernel smoothed surface is to construct probability

volume contours. Mathematically, a 100v% region of a density f is

defined as the level set S(lv) ¼ {x [ R3 :C(x)� lv ¼ 0} with its

corresponding threshold level lv such that P(x [ S(lv)) ¼ 1� v,

where x is a random variable and S(lv)) has a minimal

hypervolume (43). In other words, for any v [ (0, 1), the 100v%

surface refers to the region with the smallest area which

encompasses 100v% of the probability mass of the density function

(43). In practice, lv can be estimated using the following

result.Result 1

The estimated probability threshold level lv can be computed

as the vth quantile of f̂v of f̂ (x1; h), . . . , f̂ (xn; h) (Proof in

Supplementary Materials).
volume after thresholding and (C) its corresponding probability volume
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The primary advantage of utilizing probability volume

contours is their ability to assign a clear probabilistic

interpretation on the defined volume contours, which are scale

invariant (42). This provides a robust definition of probability

under the perturbation of the input data. In addition, these

contours can be mapped to the IMRT dose painting contours,

thus providing an alternative prescription strategy for IMRT.

Examples on the application of probability volume contours will

be demonstrated and explained in Section 5.
3.3. The 3D KsPC-Net architecture

In the KsPC module, the most crucial parameter that

determines the performance is the bandwidth (or smoothing

parameter) h, as it provides essential information about the

locations of high density. In this context, a variety of bandwidth

selection techniques have been proposed in the literature on

kernel density estimation, including cross-validation and plug-in

strategies (42). In our previous work (37) in using 2D KsPC, the

bandwidth was determined by cross-validation, being assumed to

be the same across spatial dimensions and patients. However, the

optimal bandwidth may differ on spatial dimensions and on the

patient level, in which scenario the bandwidth selection process

can be time-consuming and computationally intensive.

Additionally, although the training cost is relatively low in our

previous KsPC-only framework, the segmentation process is not

fully automated in the sense that prior knowledge of the

threshold is learnt specifically for each patient. Furthermore, in

regions with low SUV values, the impact of noise and the limited

availability of metabolic activity can pose challenges for

segmentation algorithms. Therefore, the tumour’s position
FIGURE 4

The architecture of 3D LiteSE-Net backbone. The input consists of PET patche
are described in each block.

Frontiers in Radiology 06
information plays an important role in accurately locating the

relevant regions.

Concerning all these limitations, we propose to integrate the

KsPC module with CNN architecture into a unified framework,

namely KsPC-Net. Our method is a two-progressive-phase

framework for tumour segmentation, which is divided into two

stages: coarse segmentation from the CNN backbone and fine

segmentation from KsPC. In the coarse segmentation stage, a 3D

U-Net architecture-based CNN is employed to provide the

bandwidth vector h, tumour position and the threshold needed

in the 3D KsPC module. We aimed to leverage the feature

extraction capabilities of CNNs to estimate the bandwidth

automatically, thereby reducing the need for manual bandwidth

selection. In scenarios where the SUV values are very low, the

accuracy of the CNN-based segmentation might be compromised

while the bounding box information obtained from the coarse

segmentation remains valuable. With this bounding box

information, we can apply the kernel smoothing method to

model the low SUV values within the bounded tumour region.

In the fine segmentation stage, the images are segmented in the

cropped area and the corresponding probability volume contours

are generated through the KsPC procedure.

3.3.1. CNN backbone
Inspired by the Squeeze-and-Excitation Normalization and

nnUNet model (44), we have designed this LiteSE-Net model as

our CNN backbone in the coarse segmentation stage. We also

denote the original model in (44) as SE-Net, since our proposed

LiteSE-Net backbone has a reduced number of channels

compared to the original SE-Net. The network structure is

shown in Figure 4. The model is built on a classic U-Net

architecture (23) with the use of SE Norm layers (45). The input
s of 144� 144� 144 voxels. Kernel sizes and numbers of output channels
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consists of PET patches of 144� 144� 144 voxels. The encoder

consists of residual blocks with identity and project shortcuts.

The decoder is formed by convolution blocks. The number of

channels in the middle feature map is 6, 12, 24, 48, 96, 48, 24,

12 and 6 respectively. Additional upsampling paths are added to

transfer low-resolution features further in the decoder. The

details of the definition of the SE Norm layer and projection

shortcuts are described in (44).
3.3.2. Coarse-to-fine framework
The framework is split into two main phases and illustrated in

Figure 5. At the coarse segmentation phase, the initial coarse

segmentation prediction and a voxel-level bandwidth feature

volume are learned and output by the CNN backbone. The

position and size of the tumour along with a threshold in

quantile can be obtained from the initial segmentation. More

specifically, a cropped bounding box containing the tumour is

produced, and the threshold in quantile is computed by

identifying the quantile corresponding to the minimum 10%

SUV of the tumour region in the initial segmentations. The

choice of the minimum 10% SUV is to avoid the influence of

any predicted outliers in the coarse segmentation. Additionally,

to strike a balance between computational efficiency and

performance, we averaged out the bandwidth feature volume in

each spatial dimension as the predicted smoothing vector

h ¼ (hx , hy , hz). Then, at the fine segmentation phase, we input

only the bounding box of PET images into the KsPC module

with the predicted smoothing vector and quantile threshold to
FIGURE 5

The illustration of our framework. Coarse segmentation phase: a patch of PE
volume is obtained to provide the tumour’s position and a threshold in qua
volumes to estimate the smoothing vector in each spatial dimension. Fine se
to the KsPC module with other hyperparameters to get the final segmentatio
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get the final segmentation volume with its corresponding

probability volume contours.
3.3.3. Training scheme overview
As shown in Figure 6 the proposed KsPC-Net integrates KsPC

approach with a CNN backbone in an end-to-end differentiable

manner. The resulting output from KsPC is then compared to

experts’ labels, referred to KsPC loss. Additionally, the initial

coarse segmentation can produce another loss function, called

CNN loss, which serves as an auxiliary supervision for the CNN

backbone. The final loss can then be constructed as the weighted

sum of CNN loss and KsPC loss. By minimizing the final loss,

the error can be back-propagated through the entire KsPC

architecture to guide the weights updating the CNN backbone.
3.4. Model training

3.4.1. Loss function
In order to separate the tumour region completely in the coarse

segmentation stage, we hope to increase the recall rate while

ensuring the basic segmentation shape to obtain a reasonable

threshold. Inspire by Yang et al. (46), We utilize the F-loss

function to optimize the model performance during training. The

F-loss is defined as followed:

‘F(y, ŷ) ¼ 1� (1þ b2)
PN

i¼1 ŷiyiPN
i¼1 ŷi þ b2PN

i¼1 yi þ e
, (4)
T images is input into the LiteSE-Net model, and a course segmentation
ntile. In the meanwhile, we take the average of the bandwidth feature
gmentation phase: the part of the bounding box in PET images is input
n results along with its probability volume contours.
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FIGURE 6

The training scheme of KsPC-Net, an end-to-end trainable framework with KsPC module.
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where e is set as 1e-8 to avoid the risk of being divided by 0. ŷ is the

predicted label and y is the ground truth. N is the total number of

voxels. The recall rate can be controlled on a reasonable

segmentation effect by adjusting the b. When b ¼ 1, F-loss is

equivalent to Dice loss (47). b is set to be 2 in this paper.

As shown in Figure 6, we construct the weighted loss of two-

stage prediction to train the model as follows:

‘final ¼ a�‘KsPC þ (1� a)�‘CNN (5)

where a is a balancing parameter and is set to be 0:7 in this work.
3.4.2. Implementation details
We used Python and a trained network on a Dual Quadro RTX

8000 with 64 GB RAM using the PyTorch package, an open-source

deep-learning framework. We applied a batch size of 1 and the

Adam algorithm. The cosline annealing schedule was applied to

reduce the learning rate from 10�3 to 10�5 within every 10

epochs. The proposed model was trained for 100 epochs for best

performance and all the comparison state-of-art models were

trained for 300 epochs.
4. Data and evaluation metrics

4.1. Dataset

The dataset is from the HECKTOR challenge in MICCAI 2022

(HEad and neCK TumOR segmentation challenge). The

HECKTOR training dataset consists of 224 patients diagnosed

with oropharyngeal cancer. The data were acquired from 5

centers with variations in the scanner manufacturers and

acquisition protocols (15). In the training dataset, for each

patient, FDG-PET input images and corresponding labels in
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binary description (0 and 1 s) for the primary gross tumour

volume are provided and co-registered to a size of

144� 144� 144 with 1mm� 1mm� 1mm pixel spacing.

The five-cross-validation is used to generalize the performance

of models, where the first step is to split into 5 sets each comprising

of 20% of the dataset. The dataset is then systematically tested and

evaluated by repeatedly splitting it into training (4 folds comprising

80% of the data) and test sets (1 fold comprising of remaining 20%)

multiple times, each time with a different fold as the test set. It is

important to note that the validation dataset was independent

and not used for model or parameter selection and thus is

equivalent to a holdout dataset as it was not seen during the

training process. The five-fold cross-validation enhances the

robustness of our findings through ensemble models and

aggregating results across multiple folds.
4.2. Evaluation metrics

For evaluating the performance of the model, we employed the

Dice similarity score and Hausdorff distance (HD), which are

commonly used as standard ranking criteria in the HECKTOR

challenge in MICCAI. Additionally, we reported other metrics

such as Precision and Recall for further analysis. The Dice

similarity score is a commonly used evaluation metric to assess

the performance of segmentation algorithms by evaluating the

overlap of the four cardinalities of the confusion matrix, which is

defined as

Dicesimilarityscore ¼ 2TP
2TPþ FPþ FN

,

where TP, FP and FN are the number of true positive, false positive

and false negative pixels, respectively. We also compute precision
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as TP=(TPþ FP) and recall TP=(TPþ FN) to investigate whether

the method was rather providing a large FP or FN rate.

Assessing the performance of a model often hinges on

quantifying the differences between contour measures, a task

which this paper undertakes by employing the Hausdorff

distance (HD) as another key metric. HD is typically

characterized as the greatest separation between two distinct

structures. Despite its efficacy in capturing the maximal distance

between two constructs, the Hausdorff distance is notably

affected by minor outliers. To counter this sensitivity, the 95%

Hausdorff distance is often employed (15, 48, 49), serving as a

more stable estimation of the maximum discrepancy. The 95%

Hausdorff distance is generally accepted to represent the 95th

percentile of the sorted distance measures as

HD95(A, B) ¼ P95 sup inf dða; bÞ; sup inf dða; bÞ
a [ Ab [ B a [ Ab [ B

8<
:

9=
;;

where A is the set for ground truth and B is the predicted volumes.

d(a, b) is the Euclidean distance between points a and b, sup and

inf are the supremum and infimum respectively. P95 is the 95th

percentile.
5. Results and discussion

5.1. Comparisons with other models on
Hecktor 2021 dataset

To evaluate the performance of our KsPC-Net, we compared it

with results of five-fold cross-validation against three widely-used

UNet variant models, namely, the standard 3D UNet (50), the

3D Residual-Net (51) and 3D Dense-Net (52). We also included

the original SE-Net model (44), which won first place in the

HECKTOR challenge 2020. We evaluated the models using

multiple performance metrics, including Dice similarity score,

Hausdorff distance, Precision and Recall. The Dice similarity

score and Hausdorff distance were the main focus of our

assessment, as they provide valuable insights into the accuracy

and robustness of methods. The precision and recall were also

reported for further analysis. Table 1 shows the quantitative

comparison of different models on HECKTOR dataset.

The results clearly demonstrate that the proposed KsPC-Net is

effective in segmenting H&N tumours, achieving a mean Dice
TABLE 1 Mean segmentation results of 3D Unet, Res-Net, Dense-Net, SE-Net

Method Dice score Hausdf. dist.
3D-UNet 0.614 18.029

Res-Net 0.625 7.450

Dense-Net 0.624 5.767

SE-Net 0.646* 6.139

KsPC-Net(Ours) 0.646* 5.456*

Note that the best-performing model for each metric is indicated in bold*.
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score of 0.646. This represents a substantial improvement over

standard state-of-art approaches, including 3D-UNet (0.614),

Residual-Net (0.625) and Dense-Net (0.624). Our KsPC-Net

demonstrates similar levels of Dice scores compared to the

SE-Net. However, in terms of Hausdorff Distance, KsPC-Net

outperforms all other methods and achieves the best

performance, which indicates that KsPC-Net exhibits a stronger

capacity for accurately localizing the boundaries of objects. This

is consistent with the mechanisms of KsPC, which leverages

neighbouring weights to yield outputs with enhanced

smoothness. For statistical analysis, our KsPC-Net is significantly

better than the standard UNet regarding both Dice scores

(p�value ¼ 0:023) and Hausdorff distance (p�value , 0:00001)

while no statistical significance was found compared to the

second best-performing method. However, it is important to

emphasize that our research objective does not solely focus on

attaining the highest level of accuracy in the field. We strive to

develop a segmentation framework that not only achieves

comparable performance to state-of-the-art models but also

enhances stability and interpretability.

Besides the Dice scores and Hausdorff distance, KsPC-Net

outperforms all other models with respect to Recall. In

comparison to the original SE-Net model, KsPC-Net yields a

higher Recall (0.74) with a significant improvement (9:5%),

indicating that KsPC-Net generates fewer false negatives (FN).

On the other hand, KsPC-Net demonstrates a decrease in

precision compared to other methods, potentially leading to

over-contouring. This decrease can be attributed, in part, to the

utilization of the F-loss function during our experiment. We

emphasized recall during the coarse segmentation stage to

effectively capture the basic shape of the segmentation. Besides,

the presence of false positives (FPs) in areas where PET shows

activity but no tumours are present, such as the benign tonsil,

can be attributed to physiological activities, inflammatory

responses caused by biopsy, and various etiologic causes of

infection (53, 54). Additionally, PET’s inherent low spatial

resolution can contribute to FPs in the surrounding regions of a

tumour (48). Achieving a perfect balance between recall and

precision is challenging yet critical to ensure optimal treatment

outcomes.

It is also worth mentioning that our goal of the coarse CNN

stage is mainly to identify the tumour’s position so the number

of channels needed is much lower than in the original SE-Net

and all other models. As shown in the last column in the table,

our KsPC-Net has a significantly fewer number of learnable

parameters than other DL models, which greatly reduces the
and the proposed KsPC-Net, respectively.

Precision Recall Learnable parameters
0.664 0,644 6.41M

0.685 0.690 8.76M

0.698* 0.634 3.04M

0.675 0.676 9.65M

0.637 0.740* 1.36M
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FIGURE 7

Five cross-validation results on (A) Dice scores and (B) Hausdorff distance for 3D Unet, Res-Net, Dense-Net, SE-Net and the proposed KsPC-Net,
respectively. The average mean is indicated by stars.

W. Zhang and S. Ray 10.3389/fradi.2023.1225215
model’s complexity and training cost. This is due to the much

lower number of channels (the maximum is 96) in the feature

map in our designed CNN backbone when compares to, for

example, the 3D-Unet, Res-Net and Dense-Net are of 256

channels as the maximum in the feature map and SE-Net is of

384 channels.

In addition, Figure 7 shows the boxplots of the five-fold cross-

validation results of each method on Dice score (A) and Hausdorff

distance (B). The median value for each model is represented by

the horizontal line inside the box. We can see that our proposed
FIGURE 8

Four representative examples of 3D Segmentation Volumes from 3D Unet, Re
experts’ segmentations are in blue.
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KsPC-Net has the highest median Dice score and is slightly

higher than the SE-Net though they present the same level of

mean. The box represents the interquartile range (IQR), which is

the range between the 25th and 75th percentiles of the data. It

can be seen that the IQR for our proposed KsPC-Net is relatively

small when compared to SE-Net, suggesting less variability.

Regarding the comparisons of Hausdorff distance, our KsPC-Net

demonstrates a lower median Hausdorff distance. Note that

although Dense-Net and SE-Net have slightly less spread-out

Hausdorff distance across validation sets, both of them have
s-Net, Dense-Net, SE-Net and the proposed KsPC-Net, respectively. The
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FIGURE 9

Illustrations of the 3D Probability volume contour and its 2D visualizations on three examples: (A) the constructed 3D Probability volume contour (in 10%,
30%, 50%, 70%, 90%). The three orange arrows indicate the upper, middle and lower slicing positions respectively. (B–D) are the 2D visualizations of the
probability contours.
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outliers. This indicates that there might be some extreme cases

where the Hausdorff distances are very high in all other methods

while the proposed KsPC-Net is able to produce stable and

consistent results across different sets.

In Figure 8, four representative segmented 3D volumes from

different models are presented against the expert-segmented

ground truth. It can be observed that among all the methods,

KsPC-Net consistently outperforms the others across all four test

volumes. Specifically, KsPC-Net achieves a more unified

segmented volume and a more accurate boundary, particularly in

regions with varying shapes. This efficacy stems from the

integration of the 3D spatial organization of voxels when

formulating the nonparametric density function. Such integration

augments the connectivity of modal density regions, thereby

enhancing the ability to tackle common challenges in PET

images, such as low resolution, low contrast, and noise.
5.2. 3D probability volume contours

One of the byproducts of using the 3D kernel-smoothed

densities to model the SUVs are the associated probability
Frontiers in Radiology 11
volume contours, which can be readily used to develop a

comprehensive inferential framework and can also be used for

uncertainty quantification. For example, Figure 9 provides an

example of a 3D probability volume contours along with its 2D

visualization at different slicing positions, which are denoted by

the orange arrows. There are 5 contours in each case which are

linear in probability space, in the sense that each contour

encloses 10%, 30%, 50%, 70% and 90% probability mass

respectively (from inner to outer), thus dividing the density

surface into subregions with attached probability mass.

These probability contours can provide a rigorous framework

for designing the number and magnitude of SUV thresholds in

the optimal dose painting strategies. Since the SUVs are

smoothed by the kernel density heights, the inner 10%

probability contour corresponds to the subregion with relatively

higher SUVs. In other words, there is an inverse mapping

between the probability contours and the amount of dose boost

assigned to subvolumes. A more detailed example visualized in

2D Region-of-Interest can be seen in Figure 10, where the 2D

raw slice is given in Figure 10A. Figure 10B demonstrates the

segmentation maps output by KsPC-Net (in red) and the ground

truth by experts (in green). Then the obtained probability
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FIGURE 10

An application of overlaying probability contours onto a raw image. (A) The 2D raw slice in SUVs. (B) The segmentation contours by KsPC-Net (Red) and
expert’s ground truth (Green). (C) The corresponding probability contours obtained by KsPC-Net on density space. (D) The probability contours (along
with segmentation contour) overlaid on the raw slice.
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contours on the density space Figure 10C are superimposed onto

the 2D raw slice in SUV scale in Figure 10D.
6. Conclusion

In this paper, we present a novel network, KsPC-Net, for the

segmentation in 3D PET images with application to Head and

Neck tumours, which integrates KsPC (Kernel smoothing-based

Probability Contours) into a 3D UNet architecture in an end-to-

end differential manner. The KsPC-Net utilizes the benefits of

KsPC to deliver both contour-based and grid-based segmentation

outcomes, leading to improved precision in segmentation of

contours. Promising performance was achieved by our proposed

KsPC-Net compared to the state-of-the-art approaches on the

MICCAI 2021 challenge dataset (HECKTOR). In terms of

computation costs, the proposed model demonstrates a greatly

reduced model complexity with a much lower number of

channels needed in the DL network. Furthermore, it is crucial to

highlight that the main objective of this study is not to develop a

new DL method that significantly outperforms existing models in

terms of accuracy in measurements. Rather, our primary

objective is to provide probability contours as a byproduct

alongside the segmentation result while reserving comparable

accuracy, which can serve a broader range of applications.

It is worth mentioning that the architecture of our KsPC-Net is

not limited to H&N cancer type and can be generalized to a variety

of cancer types. Additionally, an important byproduct application

of our KsPC-Net is to construct probability contours, which

enables probabilistic interpretation of contours. The subregions

created by probability contours allow for a strategy planning for

the assigned dose boosts, which is a necessity for the treatment

planning of radiation therapy for cancers.

There are potential limitations to this work. For example, the

segmentation of PET images is often hindered by their low

resolution, low contrast, and the presence of noise. Incorporating

complementary information is important to obtain a better

segmentation. In particular, CT imaging, which is often captured

along with PET images can provide additional structural
Frontiers in Radiology 12
information that can help to define boundaries in PET

segmentation more clearly. In light of this, we plan to further

develop our model to enable joint segmentation of PET and CT

images. By integrating information from both imaging

modalities, we aim to improve the accuracy and robustness of

our segmentation approach, and ultimately enhance its clinical

utility.
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