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Introduction: Image segmentation is an important process for quantifying
characteristics of malignant bone lesions, but this task is challenging and
laborious for radiologists. Deep learning has shown promise in automating
image segmentation in radiology, including for malignant bone lesions. The
purpose of this review is to investigate deep learning-based image segmentation
methods for malignant bone lesions on Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), and Positron-Emission Tomography/CT (PET/CT).
Method: The literature search of deep learning-based image segmentation of
malignant bony lesions on CT and MRI was conducted in PubMed, Embase,
Web of Science, and Scopus electronic databases following the guidelines of
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
A total of 41 original articles published between February 2017 and March 2023
were included in the review.
Results: The majority of papers studied MRI, followed by CT, PET/CT, and PET/
MRI. There was relatively even distribution of papers studying primary vs.
secondary malignancies, as well as utilizing 3-dimensional vs. 2-dimensional
data. Many papers utilize custom built models as a modification or variation of
U-Net. The most common metric for evaluation was the dice similarity
coefficient (DSC). Most models achieved a DSC above 0.6, with medians for all
imaging modalities between 0.85–0.9.
Discussion: Deep learning methods show promising ability to segment malignant
osseous lesions on CT, MRI, and PET/CT. Some strategies which are commonly
applied to help improve performance include data augmentation, utilization of
large public datasets, preprocessing including denoising and cropping, and
U-Net architecture modification. Future directions include overcoming dataset
and annotation homogeneity and generalizing for clinical applicability.

KEYWORDS

bone cancer, CT, deep learning, image segmentation, MRI, PET/CT
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fradi.2023.1241651&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fradi.2023.1241651
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fradi.2023.1241651/full
https://www.frontiersin.org/articles/10.3389/fradi.2023.1241651/full
https://www.frontiersin.org/articles/10.3389/fradi.2023.1241651/full
https://www.frontiersin.org/articles/10.3389/fradi.2023.1241651/full
https://www.frontiersin.org/articles/10.3389/fradi.2023.1241651/full
https://www.frontiersin.org/journals/radiology
https://doi.org/10.3389/fradi.2023.1241651
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Rich et al. 10.3389/fradi.2023.1241651
1. Introduction

Bone is the third most common site of metastasis in the human

body across all cancers, with an incidence of 18.8 cases per 100,000

each year and survival rates ranging from months to a few years

(1, 2). The most common origins of bone metastases include

breast, prostate, lung, and hematologic malignancies (1). Primary

bone sarcomas are uncommon, with an incidence of 0.9 cases

per 100,000 each year and higher survival rate (3).

Magnetic Resonance Imaging (MRI), Computed Tomography

(CT), and Positron-Emission Tomography/CT (PET/CT) are

commonly used to diagnose and track malignant bone lesions

(Figure 1). MRI has higher sensitivity to detecting lesions in both

the marrow and surrounding soft tissue structures and does not

expose the patient to ionizing radiation. However, MRI requires a

more expensive and laborious imaging process when compared with

CT (4). CT is more sensitive to detecting changes in bone

morphology and has higher spatial resolution, although it involves

radiation and has poorer performance with soft-tissue and marrow

imaging (5). PET/CT combines techniques of both CT (three-

dimensional x-ray scanning with high spatial resolution) and PET

(injection of radioactive tracer to quantify cellular metabolism),

providing high sensitivity and specificity for imaging skeletal

malignancies (6). These benefits make PET/CT the standard of care

in bone lesion imaging, although there are still the drawbacks of

higher cost and use of radiation. PET/MRI similarly offers combined

benefits of both MRI and PET. Malignant bone lesions often appear

as blastic (hyperdense regions indicating bone formation), lytic

(hypodense regions indicating bone resorption), or a mix.

Early diagnosis of malignant bone lesions is critical for improving

prognosis and treatment response. Image segmentation, in which the
FIGURE 1

Appearance of malignant bone lesions on different imaging modalities. (A) Sag
femur in a 32-year-old female with biopsy-proven osteosarcoma of the dista
showing diffuse osseous metastatic disease (arrows) in a 72-year-old male
prostate-specific membrane antigen (PSMA) PET/CT fusion image showing d
months previously. Note that in (Β) and (C), not all metastatic lesions have be

Frontiers in Radiology 02
boundaries of a lesion are precisely delineated, allows radiologists to

determine the extent of disease and accurately provide quantitative

measurement for disease tracking, treatment response, and

management (7). Additionally, accurate segmentation is essential

for performing clinical research using radiologic images. The task of

image segmentation is typically performed manually by radiologists,

but this is a labor-intensive and time-consuming process, thus

limiting its applicability in clinical workflows.

Machine learning has the potential to automate lesion

segmentation. Some early image segmentation methods include

thresholding, region-growing, edge-based segmentation, active

contour models, watershed transforms, and snakes (8). All of

these methods involve identifying simple features of an image

such as thresholded intensity values, edges, or neighboring

homogeneous regions, but are limited in analyzing more complex

features (9). The progress of deep learning methods in particular,

especially Convolutional Neural Networks (CNNs) (10), provides

the ability to segment complex images with increasing accuracy

(8, 11, 12). CNNs are deep neural networks in which

convolution operations are applied as sliding filters over an

image, reducing dimensionality, and identifying image features

through selection of filter weights. A particularly popular CNN

architecture is U-Net, which consists of an initial encoding

section of convolution operations and a subsequent decoding

section of transpose-convolution operations to reconstruct an

image with the same dimensions as the input (13) (Figure 2).

Deep learning has shown promise in image segmentation of

lesions in CT and MRI scans in a wide range of contexts

including lesions of the breast (14), kidney (15), and brain (16, 17).

Deep learning model performance generally improves

with larger dataset sizes, with the minimal acceptable size
ittal T1-weighted post-contrast MR image with fat suppression of the right
l femoral metadiaphysis (arrow). (B) Sagittal chest CT with bone windows
with castration-resistant prostate cancer. (C) Sagittal vertex-to-pelvis

iffuse osseous metastatic disease (arrows) in the same patient an in (B) 6
en annotated with arrows.
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FIGURE 2

U-Net applied to bone radiology image segmentation. Input is the medical image, and output is the segmentation mask applied to the lesion. Boxes
represent vectorized outputs of convolutional and pooling operations. Arrows represent mathematical operations applied to each layer. Blue arrows
are skip connections, red arrows are upsampling, yellow arrows are maxpool, black arrows are Convolution-rectified linear units (ReLU).
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typically being on the order of hundreds of subjects. However,

this is a challenging task in the realm of medicine where

the input involves patient data due to concerns regarding

privacy and sharing (18). While there are some major public

databases that can assist with data augmentation or transfer

learning for certain clinical queries (19–22), there are many

pathologies that are specific or unique enough where such

datasets are not readily available. Some techniques to try to

overcome this deficit include working with large pretrained

models (23), data-generation techniques such as Generative

Adversarial Networks (14, 24, 25), or applying domain

knowledge to data preprocessing and augmentation (26, 27).

There are very few public datasets or models which capture

primary or metastatic skeletal lesions on CT, MRI, PET/CT, or

PET/MRI.

The purpose of this systematic review and meta analysis is to

describe how effective deep learning-guided image segmentation

techniques are in accurately identifying and delineating

malignant bone lesion on major radiologic imaging studies (CT,

MRI, PET/CT, and PET/MRI), as well as to compare methods

and performance across studies. We describe all algorithms and

neural network architectures reported in the included studies, as

well as characteristics of the datasets and additional techniques

used for successful segmentation. We also note any publicly

available datasets or models.
2. Materials and methods

2.1. Literature search

Our systematic literature review is in compliance with the

guidelines outlined by the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses 2020 (PRISMA). We
Frontiers in Radiology 03
performed a keyword search for papers which studied deep

learning-based image segmentation of cancerous lesions of the

bone on CT, MRI, PET/CT, and PET/MRI scans. Searches were

performed on Pubmed, Embase, Web of Science, and Scopus. All

searches were performed on May 8, 2023. The exact search

criteria were as follows:

“(CT OR CTs OR MRI OR “MR Imaging” OR “PET-CT” OR

“PET/CT” OR “PET-MRI” OR “PET/MRI”) AND

(Segmentation) AND (“machine learning” OR “deep

learning” OR “artificial intelligence” OR “neural network”

OR “neural networks” OR “auto-segmentation” OR “auto

segmentation”) AND (bone OR skeleton OR bones OR

osseous OR blastic OR lytic) AND (cancer OR cancers OR

metastases OR metastasis OR neoplasm OR neoplasms OR

metastatic OR tumor OR tumors OR malignant OR tumour

OR tumours)”

Other inclusion criteria included a publication date range of

2010–2023, use of English language, full text availability, and

only primary literature (i.e., other review articles were excluded).

Exclusion criteria included segmentations performed on other

imaging modalities (e.g., x-ray, bone scintigraphy, PET), other

types of tissues or organs, segmentation of non-malignant

features (e.g., whole bone segmentation, fracture segmentation),

and non-segmentation techniques (e.g., synthetic data creation,

boundary-box generation, outcome classification).

We used the Covidence platform for paper importing and

screening (28). All unique papers which fit these criteria were

passed through a primary screening of titles and abstracts by a

single reviewer. All papers which passed the primary screen were

then passed through a secondary screen involving full text review

for inclusion criteria by two reviewers.
frontiersin.org
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2.2. Data extraction

Categories for data extraction were chosen to describe imaging

modality, model type, dataset, lesion type, and part of body in more

detail. Data was extracted from each paper with the following

categories (Supplementary Table S1):

(1) Publication date

(2) Imaging modality (CT, MRI, PET/CT, or PET/MRI)

(3) Imaging dimensionality (2-Dimensional [2D], 3-

Dimensional [3D])

(4) Primary cancer type

(5) Quality of lesion (blastic, lytic, or mixed)

(6) Soft tissue component

(7) Model architecture

(8) Dataset publicity

(9) Dataset size (patients, images)

(10) Patient population (demographics)

(11) Treatment received

(12) Ground truth establishment

(13) Training-cross validation-test split

(14) Cross validation method

(15) Additional methods

(16) Metrics.

3. Results

3.1. PRISMA flowchart

The results of our literature search are shown in the PRISMA

flowchart (Figure 3). In brief, our initial search yielded 784

papers. Covidence automatically eliminated 363 duplicates. An

additional 4 duplicates were eliminated manually, leaving 421

unique manuscripts. After primary screening of titles and

abstracts, 292 papers were further excluded. From the 129

papers which passed through full-text review, 41 studies were

ultimately eligible for inclusion in this study (Supplementary

Table S1) (29–69). Some of the most common reasons for

exclusion included wrong tissue type, segmentation of a non-

malignant feature (e.g., whole bone segmentation or fracture

segmentation), wrong study design (e.g., prognosis classification,

boundary box), and wrong imaging modality (e.g., bone

scintigraphy, PET, x-ray).
3.2. Categorization of included studies

Of the 41 total studies, the most popular publication year was

2022 (n = 18 studies, 43.90% of the cohort), followed by 2023 (up

until May) (n = 9, 21.95%). While our search criteria ranged

from 2010, the oldest paper included was from 2017. The most

common imaging modality studied was MRI (n = 21, 51.22%),

followed by CT (n = 12, 29.27%). The most common image

dimensionality method used 3D data alone (n = 21, 51.22%),

followed by 2D alone (n = 11, 26.83%). Osteosarcoma was the
Frontiers in Radiology 04
most common cancer primary bone malignancy (n = 18, 43.90%).

Prostate cancer was the most secondary bone malignancy (n = 7,

17.07%) (Figure 4).
3.3. Synthesized findings of included
studies

Studies were categorized primarily by dimensionality, modality,

publication year, and lesion characteristics (i.e., blastic vs. lytic). All

performance metrics reported by each paper, including dice

similarity coefficient (DSC), F1-measure, Jaccard, accuracy,

sensitivity, and specificity, were included in Supplementary

Table S1. DSC was by far the most popular metric, recorded in

35 papers (85.3%). In order to determine statistical significance

between groups, a simple two-sample t test was conducted with a

power level of 95% being established prior to analysis. While

there was a higher median DSC for studies which used 2D data

(0.901, n = 11) compared to 3D data (0.856, n = 17), the

difference was not statistically significant (Figure 5C,

Supplementary Table S2). In the years 2017 through 2019, there

was only a single paper published each year across the 3 years,

which reported both the dimensionality method used and a DSC.

Although the years 2022 and 2023 accounted for a majority of

the papers within the cohort (n = 27, 65.85%), there was no

statistically significant difference in median DSCs (Figure 5A).

With regards to image modality, studies utilizing CT imaging

generally reported higher median 2D DSCs (0.94, n = 4)

compared to MRI (0.924, n = 7). In contrast, MRI generally

yielded a higher 3D DSCs (0.895, n = 10) than studies which

evaluated 3D data by CT (0.856, n = 5) (Supplementary

Table S2). However, neither difference for 2D vs. 3D data was

statistically significant (Figure 5C). Aggregating all data

dimensionality, CT had a slightly higher median DSC (0.92,

n = 9) than MRI (0.85, n = 17); however, there was no statistically

significant difference in mean dice score between the two

imaging methods (p = 0.5469). Papers studying lytic lesions

reported higher median 2D and 3D DSCs, at 0.94 (n = 2) and

0.922 (n = 5), respectively, when compared to segmentation of

blastic lesions, though this difference was similarly not

statistically significant (Figure 5D, Supplementary Table S2).

Papers which did not include cross-validation showed an average

higher DSC (0.923, n = 13) than those which did (0.840, n = 22)

(p = 0.0038). There was no statistically significant relationship

between using data augmentation in workflow and increased

DSC (p = 0.1156).
4. Discussion

In this systematic review and meta-analysis, we have attempted

to aggregate the literature describing automated segmentation

methods for primary and metastatic bone malignancies on CT

and MRI. We found that most models achieved objectively good

performance (DSC >0.7) on this task, with some of the

most common methods including data augmentation, U-Net
frontiersin.org
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FIGURE 3

PRISMA flowchart of systematic literature review.
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architecture modification, and preprocessing to reduce noise. We

clarify the frequency of reported studies that fall into specific

criteria regarding imaging approaches and lesion quality, which

helps identify which problems still need to be most studied and

how much precedent work exists for a specific type of problem.

Overall, while small numerical differences were seen between

segmentation DSCs when comparing across imaging modality,

publication year, dataset dimensionality, and lesion quality

(blastic vs. lytic), none of these were found to be statistically
Frontiers in Radiology 05
significant. The similarity in performance across these attributes

indicates that these segmentation models have the capability to

perform well across a range of conditions. The statistical

significance in DSC improvement for papers which excluded

cross validation compared to those which included it indicates

the potential of an overfitting problem in these cases,

highlighting the importance of test sets and external validation

for generalizability. While other reviews have investigated similar

segmentation performance tasks applied to various lesions or
frontiersin.org
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FIGURE 4

Visualization of characteristics of included studies, showing distribution according to (A) publication year; (B) imaging modality; (C) image dimensionality;
(D) type of cancer.
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whole organs, to the best of our knowledge, ours is the first to

focus on deep learning techniques applied specifically to lesions

of the bone (70–77). Additionally, ours is the first which

specifically evaluates differences in segmentation performance

specifically as they relate to imaging modality, imaging

dimensionality, and predominant lesion characteristic. Future

directions include comparing further characteristics of papers

(e.g., model architecture, type of cancer, dataset size, etc.) to

determine which types of problems or approaches yield the best

results, as well as expanding the scope of analysis to other

imaging modalities or targets of segmentation to increase

statistical power.
4.1. Metrics

Comparison of metrics across various studies can be difficult.

Different problems or datasets may possess inherently different

technical challenges even when problems appear similar,

making performance comparison with metrics across studies

difficult. Additionally, different metrics capture different

qualities of success (Table 1). For instance, specificity is high
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when there are minimal false positives (i.e., minimal areas of

predicted lesions where none is present); since most lesions

make up a small percentage of an image, an algorithm will

achieve high specificity by predicting no lesions on an image,

even though this requires no learning. Within our cohort, Zhao

et al. reported an estimated DSC of 0.60, which is considerably

lower than most DSCs which lie approximately within the

0.85–0.95 range (69). However, they also reported sensitivity

and precision to each be 0.99, which would indicate an element

of good performance. While each metric has its strengths and

limitations, DSC was the most commonly reported metric by

far, reported in nearly every included study. DSC’s ubiquity in

image segmentation is due to a few factors including its use by

many others studying image segmentation techniques, its

balance of precision and recall, its intuitive appeal as an

approximator of percentage of overlap between ground truth

and prediction, its history of being used for measuring

reproducibility of manual segmentation, and its adaptability to

logit transformation since its values lie between 0 and 1

(78–81). All reported metrics from each study were recorded in

Supplementary Table S1. While a uniform dataset-agnostic

success criterion cannot be established as a result of the
frontiersin.org
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TABLE 1 Popular metrics for image segmentation.

Metric Equation

Dice similarity coefficient
jP> Lj
jPj þ jLj ¼

2TP
2TP þ FPþ FN

F1-measure 2�precision�recall
precision þ recall

Jaccard index, intersection over
union

jP> Lj
jPj< jLj ¼

TP
TPþ FPþ FN

Accuracy TPþ TN
TPþ TNþ FPþ FN

Sensitivity, true positive rate, recall TP
TPþ FN

Specificity, true negative rate TN
FPþ TN

False positive rate 1� specificity

False negative rate 1� sensitivity

Precision, positive predictive value
TP

TPþ FP

Negative predictive value TP
TNþ FP

Area under curve (AUC) Ð
(Receiver Operating Characteristic Curve)

P, Prediction; L, Label; TP, true positive; TN, true negative; FP, false positive; FN,

false negative.

FIGURE 5

Performance comparison with DSC by (A) publication year; (B) imaging modality; (C) image dimensionality; (D) quality of lesion (blastic vs. lytic).
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challenges described earlier, a general objective threshold for

what is considered a reasonable model is to achieve a DSC

around 0.7 (80), which most papers in this review surpass.
Frontiers in Radiology 07
4.2. Imaging modality and dimensionality

The overwhelming majority of imaging modalities utilized

throughout the paper cohort were either CT or MRI. Both CT

and MRI are reasonably amenable to automated segmentation,

with median DSCs between 0.85–0.95 for both modalities

(Figure 5B, Supplementary Table S2). Models analyzing

PET/CT and PET/MRI data demonstrate lower median DSCs

than CT and MRI-trained models. PET/CT and PET/MRI

combine spatial and metabolic information, providing useful

context for radiologists. However, there can be noise in

radioactive tracer uptake involved in PET, and errors in spatial

alignment of the two scans, making data more difficult to train

(82). Additionally, malignant lesions display heterogeneous

metabolic activity, adding further noise to the imaging process.

In order to overcome this, Hwang et al. utilized maximum-

likelihood reconstruction of activity and attenuation (MLAA)

algorithm as input for a CNN to improve accuracy and

convergence with good results (40).

Models were able to perform well on both 2D and 3D data,

with 2D data achieving slightly higher median DSCs

(Figure 5C), although the results were notably not statistically

significant. Both types of dimensionalities have pros and cons.

Computer vision models were historically trained with two-
frontiersin.org
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dimensional images, and 2D data is inherently generally less

complex than 3D. However, given that radiologists almost always

rely on 3D data for image interpretation, modern deep learning

frameworks in radiology, such as nnU-Net (11), have been

developed to primarily evaluate with 3D data. The third

dimension adds additional spatial and contextual information

that may otherwise be lost in two dimensional analysis. As a

compromise, one model in our dataset utilized 2.5D data by

employing two 2D encoder-decoder modules and one pseudo-3D

fusion module, which extracted features from the 2D outputs

(53). For clinical applications with unknown cases, considerations

for determining data dimensionality for a model include spatial

and contextual information, model choice, and difficulty of the

segmentation problem.
4.3. Dataset size

Dataset size ranged drastically among included papers, with

image count ranging from 37 (54) to 80,000 + . Generally, most

papers included dataset sizes in the hundreds to low thousands

of images or scans. Most studies utilized private and relatively

small datasets, making generalizability of algorithms difficult.

However, the one large publicly available dataset containing over

80,000 MRI scans of osteosarcoma was utilized by numerous

studies (43, 45, 52, 55, 59–64). Dataset size was not a significant

predictor of model performance in our cohort, as most models

achieved DSCs above 0.7, and many above 0.9, at all ranges of

dataset sizes.

This good performance in spite of small dataset size could be

attributed in part to data augmentation techniques utilized by

many papers. Some of the most popular employed techniques

include random cropping, flipping, rotation, zooming, and

mirroring (30–32, 35, 38, 43, 50, 52, 54, 56, 60, 67, 68). Of the

14 additional methods found within our review, 7 involved some

form of data augmentation. However, as described earlier, there

was no correlation between data augmentation workflow and DSC.

Transfer learning was utilized in some cases. Transfer learning

is generally thought to be most effective when the transferred data

is large and similar to the pathology being studied. Due to the

limited nature of public radiology images, models trained on very

large datasets of non-radiologic images, such as Microsoft Coco

(83), may be reasonable candidates for transfer learning even for

image analysis in radiology (66). Similarly, other studies utilized

generative methods to create phantom images for their training

sets that resembled real images (65). Data preprocessing can

incorporate steps to improve model performance, such as whole-

bone segmentation to allow the algorithm to have a smaller

region to analyze when segmenting an osseous lesion (47).

With small datasets comes the increased risk of overfitting.

There was no consensus on training-cross validation-test splits.

Generally, most studies dedicated approximately 60%–80% of

data to the training set, 10%–30% of data to the test set, and

0%–20% to the cross-validation set (Supplementary Table S1).

Nearly half of all papers did not include a cross validation set,

meaning that any hyperparameter tuning or architecture
Frontiers in Radiology 08
adjustment that resulted from testing could have resulted in

overfitting. The higher average DSC of papers without cross-

validation (0.92) compared to those with it (0.79) supports the

likelihood of overfitting in some of these cases. Only two papers

utilized external validation (testing of the model on an additional

dataset acquired separately from other sets used to initially train

or evaluate the model), making generalizability especially difficult

(47, 48). However, for both papers, the DSC on the external

validation set was the same as that of the test set (at 0.79 and

0.84, respectively), demonstrating model generalizability in these

cases (47, 48).
4.4. Model architecture

Most studies employed a U-Net CNN architecture for

automated image segmentation. U-Net is a popular architecture

type because of its ability to accurately segment small targets and

fast training speed (84). Image segmentation, as opposed to

classification, is especially helpful for extracting objects of

interest. In particular, bone segmentation of lesions correctly

identifies the spatial location of a tumor. What distinguishes

U-Net from other CNNs are the encoder-decoder networks as

well as the implementation of skip connectors. The encoder-

decoder network ensures that the output image has the same

dimensionality as the input image while skip connections ensure

full recovery of details and features that may have been lost or

forgotten as information passes through successive layers. This

preservation of dimensionality is essential for image

segmentation, where the output is a binary mask which must

resemble the outlined feature on the input image (84). Another

attractive feature of the U-Net is the fact that each layer of the

network extracts features from a different spatial scale of

the image, and by collecting results from each of these layers, the

network is able to transform an input image at multiple

spatial scales.

Many modifications of U-Net were created to boost model

performance. For instance, dilated convolutional U-Net, which

involves multiple dilated convolutions following a standard

convolution, was employed in a modified U-Net with recurrent

nodes in order to preserve contextual information and spatial

resolution (36). Some models employed combinations of

transformer models and modified U-Nets, allowing for

preservation of contextual features such as edge enhancement

(45, 49). Cascaded 3D U-Net likewise employ two U-Net

architectures in series, with the first trained on down-sampled

images and the second trained on full-resolution images,

allowing for a combination of granularity and refinement of the

features of choice (39).

While a majority of the papers utilized a modification of the

U-Net segmentation algorithm, other alternative architectures

included non-convolutional Artificial Neural Network models

(41), voxel-wise classification (33), AdaBoost algorithms and

Chan-Vese algorithms (37), CNN with bagging and boosting

(44), and V-Net (34, 65). These alternative algorithms achieved

DSCs or AUCs above 0.7, which is on par with the median
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performance of the U-Net models. However, U-Net variations have

been tried in a greater number of studies and demonstrated

performance as high as 0.9821 in this cohort (58), indicating that

U-Net may be more suitable at present day for achieving

maximal performance.
4.5. Approaches to segmentation

Two approaches to delineating or segmenting regions of

interest are “filling in the lesion” and “tracing precise

contour”. Filling in the lesion involves segmenting the entire

volume of the region of interest including both the solid and

necrotic components of the lesion. On the other hand, tracing

precise contours involves precisely outlining the boundaries of

a region of interest such that healthy tissues and other non-

relevant features are excluded. While the overwhelming

number of publications use lesion segmentation as the only

methodology, a few studies in literature have discussed a

multi step strategy “identification of lesions”, viz creating

bounding boxes around the lesions as a separate first step and

then a subsequent strategy of precise segmentation of lesions

(85, 86). Despite the different implications of these

approaches, most papers did not specify which approach they

followed when establishing ground truth. If establishment of

ground truth was discussed at all, it was usually generally

stated the number and skill level of radiologists involved in

the process, but with no specific mention of methodology.

Even so, Trägårdh et al. studied the importance of inter-

reader heterogeneity by comparing model performance on a

test set annotated by the same physician who annotated the

training set as compared to separate annotators, finding

substantial performance differences between sensitivities (57).

Methodology of producing ground truth segmentations

warrants further discussion to establish a repeatable standard

in future studies. The inter-reader heterogeneity also points to

the benefit of using probabilistic segmentation algorithms that

would account for this variability and produce an ensemble of

likely segmentations for a given input image. While these

algorithms have been used for the segmentation tasks (17,

87), they have not yet been applied to bone segmentation.

One of the strengths of this review is the comprehensive

analysis of all papers fitting search criteria, and the detailed data

extraction to allow for comparison of methods or qualities

among all papers which have studied this type of problem.

Another strength is maintaining focus on clinically relevant

features of model design while also keeping in mind technical

details of model implementation. A limitation is the difficulty in

comparing metrics across studies. Dataset quality, annotation

heterogeneity, and noise can make evaluation of a good DSC

specific to the specific dataset being studied. Additionally, the

relatively small number of studies involved in the review made it

difficult to perform any rigorous statistical analysis between

subcategories.

In conclusion, deep learning shows great promise for

bone lesion segmentation. Considerations include model
Frontiers in Radiology 09
architecture, imaging modality and dimensionality, dataset

size, and establishment of ground truth. Compared to other

tissues and organs, there is still much to be done to expand

on the task of bone lesion segmentation. Future directions

include training on larger and more diverse datasets, applying

multiple methods of establishing ground truth, accounting for

variability in the segmentation task, and integrating into

clinical application. The success with the osteosarcoma MRI

dataset from Second Xiangya Hospital of Central South

University shows the importance and applicability of these

large public datasets (63), and similar efforts should be

undertaken from other institutions and studying other types

of lesions. General image segmentation models, such as the

Segment Anything Model (12), could also show promise in

bone lesion segmentation, especially in conjunction with

optimization processes involved in the architecture design of

these studies. Deep learning-guided segmentation results have

great potential to augment human performance, especially in

conjunction with radiomic and pathomic data. As these

models continue demonstrating success and generalizability,

they will help radiologists save time and improve accuracy in

delineating these lesions.
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