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Factors affecting the labelling
accuracy of brain MRI studies
relevant for deep learning
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Unlocking the vast potential of deep learning-based computer vision classification
systems necessitates large data sets for model training. Natural Language
Processing (NLP)—involving automation of dataset labelling—represents a
potential avenue to achieve this. However, many aspects of NLP for dataset
labelling remain unvalidated. Expert radiologists manually labelled over 5,000
MRI head reports in order to develop a deep learning-based neuroradiology
NLP report classifier. Our results demonstrate that binary labels (normal vs.
abnormal) showed high rates of accuracy, even when only two MRI sequences
(T2-weighted and those based on diffusion weighted imaging) were employed
as opposed to all sequences in an examination. Meanwhile, the accuracy of
more specific labelling for multiple disease categories was variable and
dependent on the category. Finally, resultant model performance was shown to
be dependent on the expertise of the original labeller, with worse performance
seen with non-expert vs. expert labellers.
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1. Introduction

Deep learning-based computer vision systems hold enormous promise in a variety of

clinical applications (1–3) including neuroradiology (4, 5). For example, by enabling

appropriate triage of neuroradiology studies, studies with abnormal findings can be

flagged for rapid clinical reporting (6–10).

One stumbling block for clinical development is a lack of large clinically representative

datasets available to train models. Supervised deep learning models require a labelled dataset,

which itself normally requires significant expertise and person-hours for manual labelling.

One potential solution to increase the size of datasets is to consider training and using

non-expert labellers, which may represent a less expensive and more abundant resource

than expert labellers (11). There are various studies in the literature which have

investigated the use of “crowdsourcing” to label images as part of non-clinical (12) and

clinical computer vision tasks (13, 14). However, no study has investigated whether such
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crowdsourcing engenders a consequent decrease in labelling

performance. We therefore investigated whether using non-expert

labellers led to a reduction in labelling accuracy.

Natural Language Processing (NLP) is a further potential

avenue to obviate this issue, using text classification models to

automatically label MRI studies based on information derived

from the original report. NLP necessarily involves classification

to transduce written reports into discrete categories. These may

be single category (e.g., normal vs. abnormal) or multiple disease

categories with varying degrees of granularity. In order to truly

validate a single or multi-category classification system for use

with NLP, the reports themselves should faithfully reflect the

source images. In other words, the report needs to be entirely

accurate.

Numerous neuroradiology-focused studies have employed

multi-category NLP models as part of computer vision model

training (15–17). However, none of these studies provided source

image validation of the original scan reports. This study aimed to

examine whether the assumption that reports faithfully reflect

source imaging is valid in both single category and multi-

category classification systems at a UK neurosciences centre. It

therefore serves as a demonstration as to how a pragmatic

research study may approach label validation.
2. Materials and methods

After excluding paediatric (<18 years) examinations, the study

included 125,556 adult cerebral MRI studies, reported between

2008 and 2019 by expert neuroradiologists (UK consultant grade;

US attending equivalent) at King’s College Hospital NHS

Foundation Trust (KCH), London, UK. Each report included

basic clinical information about the patient and the reasons for

the study request, along with a radiological description and

conclusion. The UK National Health Research Authority and

Research Ethics Committee approved the study.

Prior to labelling, a complete set of 12 clinically relevant

neurological disease categories was developed by the research

group (a group which included several expert neuroradiologists).

In principle, these disease categories were designed to

subcategorise the entire gamut of radiologically-relevant cerebral

(i.e., non-spinal) neurological diseases and are as follows:

supratentorial atrophy, infratentorial atrophy, intracranial mass

lesion, extracranial lesion, demyelinating disease, acute infarction,

chronic damage, vasculopathy, small vessel disease, foreign body,

haemorrhage and hydrocephalus. Of the 125,556 neuroradiology

MRI reports available for the study, 5,000 were randomly

obtained and subsequently labelled consecutively by expert

neuroradiologists in order to train the neuroradiology report

classifier [Automated Labelling using an Attention model for

Radiology reports of MRI scans (ALARM) classifier], the details

of which have been previously described in the following

conference proceeding (16). Five thousand was considered a large

training dataset likely to capture most examples of radiological

disease, almost all examples of radiological normal, and together

highly likely to capture the lexical report content which would
Frontiers in Radiology 02
describe something as normal or abnormal (16). All labellers

were blinded to one another except at consensus as described

below.

Of the 5,000, 3,000 were independently labelled by 2 expert

neuroradiologists and were categorised as abnormal (i.e.,

containing at least one of the clinically relevant conditions) or

normal. For this single category labelling task, the reported

agreement value was 94.9%. Then, for the discrepant labels, a

third neuroradiologist was employed to generate a consensus

outcome to complete a labelled report dataset.

The remaining 2,000 reports were independently labelled by 3

expert neuroradiologists and more specifically classified as to

whether they demonstrated any of 12 pre-determined categories

of neuroradiological abnormalities. Complete agreements

amongst the 3 neuroradiologists occurred in 95.3% of cases, with

a consensus decision being made for the remainder to complete

a labelled report dataset. The total of 5,000 labels generated in

this fashion by neuroradiology consultants is henceforth referred

to as “silver standard” reference labels for the corresponding

images.

Expert neuroradiologists are a limited resource and an order of

magnitude less frequent than either neurologists or junior

radiologists (UK registrar grade; US resident equivalent) who

might be considered the most optimal of all non-expert labellers.

Therefore, the study group included both a non-expert physician

(neurologist with 10 years clinical experience involving brain

MRIs) and a junior radiologist (with 3 years of general radiology

training). After a 6-month period of label training, both also

labelled the data in an identical fashion to above. All labellers

joined fortnightly team meetings over the category development

phase which lasted 6 months. Training took place based on

category consensus as well as edge case discussions.

The discussions were often preceded by discrepancies and so the

process served as a form of formative assessment.

The performance of the ALARM classifier trained using the

individual physician-derived labels and the individual junior

radiologist-derived labels was compared to the performance of a

model trained using individual neuroradiologist-derived labels.

The F1-score—a harmonic mean of precision and recall—was

used to quantify model performance.

A set of 500 labels was generated from source image analysis

primarily to perform checks on the NLP label process i.e., the

MRI studies themselves were re-assessed and labelled by the

expert neuroradiologist, as opposed to the reports. The set was

randomly selected. The details of the labelling process itself is

similar to “silver standard” reference labels, with 250 studies

being categorised as normal vs. abnormal (by 2 neuroradiologists

with a third neuroradiologist employed to generate a consensus

outcome for discrepant labels) and 250 studies being labelled on

the presence or absence of 12 categories of neuroradiological

abnormalities (also by consensus based on 3 neuroradiologists).

Labels generated in this manner are henceforth referred to as

“gold standard” reference labels for the corresponding images. A

qualitative assessment of “silver standard” and “gold standard”

label discrepancies was carried out by our group of expert

neuroradiologists. We examined whether an error appeared to be
frontiersin.org
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due to a deliberate omission by the reporting radiologist, or

whether the omission was accidental.
3. Results

3.1. Comparing performance of non-expert
vs. expert labelling

The ALARM classifier model was trained using both single

category (normal vs. abnormal) individual physician-derived

labels and individual expert neuroradiologist-derived labels and

then tested on a set of silver standard reference labels. There was

a significant reduction in model performance accuracy when the

model was trained using the physician’s labels (F1 score = 0.76)

compared to the neuroradiologist’s labels (F1 score = 0.90)

(Figure 1). Given the low performance accuracy based on

physician-derived labels in the single category labelling task, a

non-radiologist labelling strategy was not pursued as a potential

alternative to neuroradiologist labelling in the multicategory

labelling task. In the multicategory labelling task, a junior

radiologist labelling strategy was examined. However, there was a

reduction in ALARM classifier performance accuracy when

junior radiologist-derived labels were used (F1 score = 0.71).
3.2. Report validation

We next compared the performance of our silver standard

reference (consensus labelling based on reports) to our gold

standard reference (consensus labelling based on re-review of the

corresponding MRI source images).
FIGURE 1

Reduction in [Automated labelling using an attention model for radiology (AL
expert labels vs. expert labels at an arbitrarily fixed sensitivity of 90%.
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The sensitivity of the silver standard reference labels varied

amongst the 12 categories of abnormality. In particular,

haemorrhage (including microhaemorrhage), hydrocephalus

(including chronic), extracranial abnormality, and infratentorial

atrophy demonstrated a sensitivity below 80% whilst certain

categories including infarct, foreign body, mass, small vessel

disease, white matter inflammation and supratentorial atrophy

had a sensitivity above 90% (Table 1). Importantly, the silver

standard reference labelling system had an excellent sensitivity

(98.7%), specificity (96.6%) and accuracy (98.5%) regarding

separating normal and abnormal studies using the gold standard

reference.
3.3. Sequence-specific performance

An MRI report consists of a single assessment of multiple

imaging sequences, with each sequence providing different tissue-

specific information that is synthesised by the neuroradiologist to

produce a cohesive answer to the clinical question. For example,

multiple imaging sequences are required to estimate chronicity:

haemorrhage signal intensity changes over time eventually

becoming dark on both T1-weighted and T2-weighted images

after ∼30 days (Figure 2). Broadly speaking, an expert

neuroradiologist (and potentially a computer vision system),

using limited sequences only for labelling, loses information if all

the multiple input sequences are not used for a single

examination-level label. For example, in the case of haemorrhage,

a lack of T1-weighted images would engender a loss of

information regarding haemorrhage chronicity. This would be

important information loss if a cohesive answer to the clinical

question were required, for example in a diagnostic task.
ARM)] classifier model performance when it was trained using the non-
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TABLE 1 Sensitivity, specificity and F1-score of the silver standard
reference labels amongst the 12 categories of abnormalities.

Category Sensitivity
(%)

Specificity
(%)

F1 score
(%)

Foreign Body 100 99.6 99.6

Supratentorial atrophy 100 94.6 76.9

Intracranial mass
lesion

97.9 93.6 95.9

Demyelinating disease 95.6 100 97.7

Acute infarction 94.4 99.5 94.4

Small vessel disease 90.5 95.6 93.2

Vasculopathy 83.3 88.4 86.5

Chronic damage 82.4 92.7 87.8

Infratentorial atrophy 77.7 94.3 54.5

Hydrocephalus 70.0 99.6 77.8

Haemorrhage 69.2 99.6 78.3

Extracranial lesion 60.0 94.7 54.5

Mean 85.1 96.0 82.8

Benger et al. 10.3389/fradi.2023.1251825
Conversely, if the only information required was the presence or

absence of an abnormality, such as in a triage task, we

hypothesized that a limited number of sequences would provide

sufficient information. In Figure 2, for example, either T1-

weighted or T2-weighted images would suffice.

Therefore, we investigated whether clinically-useful

information could be derived from a minimal number of

frequently-used MRI sequences. Specifically, we chose standard

axial T2-weighted sequences and those based on diffusion

weighted imaging (DWI), which are used together in over 80%

of MRI studies at our institution. We investigated the percentage

of abnormal findings detectable using only these sequences.
FIGURE 2

30 year-old female with sudden onset headache and right-sided facial sensory
onset demonstrates a subacute haematoma on the lateral aspect of the right v
by: (A) high T2 signal relative to grey matter on the axial T2-weighted sequen
contrast enhancement on the gadolinium-enhanced axial T1-weighted sequ
arteriovenous malformation on digitally-subtracted cerebral angiography (not

Frontiers in Radiology 04
Single binary labelling (normal or abnormal) was performed by

an expert neuroradiologist looking at only the T2-weighted and

DWI information for 250 studies and this was compared to

binary labelling derived from all available sequences generated by

a different expert neuroradiologist. Inter-observer agreement was

98%, demonstrating the utility of using these sequences alone in

defining studies as normal or abnormal. An extremely wide

range of abnormalities were detected using only T2-weighted and

DWI information. An example of cerebral lymphoma detected as

“abnormal” using limited sequence information is shown in

Figure 3.
4. Discussion

Accurate dataset labelling is a crucial step in the development

of optimal computer vision classification systems. This was the

first research study to investigate the accuracy of this labelling

process itself.

One crucial category of dataset labelling is accurately

differentiating normal and abnormal studies. This facilitates the

development of computer vision classification systems that can

identify and triage “abnormal” studies for urgent radiology

reporting (18). Reassuringly, comparing our silver standard

reference labels to our gold standard reference, the accuracy of

expert neuroradiologists was found to be very high.

Interestingly, the accuracy of labelling dropped off significantly

when performed by non-expert labellers who had relevant clinical

experience and had undergone considerable labelling preparation
disturbance. MRI head study performed several days after initial symptom
entral pons at the site of entry of the right trigeminal nerve characterized
ce (white arrow) (B) low T1 signal relative to grey matter and absence of
ence (blue arrow). The patient was subsequently found to have a small
shown).
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FIGURE 3

59 year-old male patient presented with right arm and leg weakness. (A) Axial T2-weighted MRI head sequence demonstrates an ovoid lesion in the left
centrum semiovale which is hyperintense relative to grey matter. There are features consistent with surrounding peri-lesional vasogenic oedema. There is
a further smaller lesion in the right centrum semiovale. (B) Both lesions demonstrate homogenous, increased diffusion restriction relative to background
brain parenchyma on the axial DWI MRI head sequence. The patient was diagnosed with primary cerebral lymphoma based on imaging features and
cerebrospinal fluid (CSF) analysis.

Benger et al. 10.3389/fradi.2023.1251825
before the task. Specifically, the F1-score decreased from 0.90 to

0.76. The ramifications of this lower F1-score need to be

considered. The F1-score is the harmonic mean of the model’s

precision (number of true positive predictions divided by the

total number of positive predictions) and recall (number of true

positive predictions divided by the total number of actual

positive cases) (19). In many domains, an F1-score of >0.75 is

considered acceptable. However, in neuroimaging, a higher

threshold is required. Specifically, in a theoretical “triage-based”

Artificial Intelligence (AI) clinical pathway, a false-negative AI

report (engendered by a low recall score for the model) may

place the incorrectly-reported study to the bottom of the queue

for human reporting and potentially significantly delay diagnosis.

The exact definition of a “good enough” F1-score for neuroimaging

applications remains to be determined and indeed, at the time of

writing, almost no neuroimaging abnormality detection tools have

been adequately validated in representative clinical cohorts (10),

although there are a few notable exceptions (7, 8).

Despite the shortage of expert neuroradiologists as labellers,

our research suggests that employing experts in the labelling

process of brain MRIs is necessary to ensure labelling accuracy

and corresponding performance accuracy of any computer vision

classification system derived from it. It is worth noting that an

alternative strategy, employing semi-supervised training with

limited labelled data, has recently been proposed in the field of

chest x-ray imaging (20), however limited data are currently

available and no equivalent research has yet been performed in

the field of neuroimaging.
Frontiers in Radiology 05
The degree of discrepancy between labellers of different clinical

backgrounds and experience is notable. Across all institutions, the

reporting style of expert neuroradiologists is variable with certain

authors tending towards greater complexity (for example, more

detailed anatomical and sequence-specific descriptions) while

others tend towards a more broad-brush and succinct style. It is

plausible that the former reporting style may not lend itself as

easily to interpretation and labelling by non-experts. For

example, the phrase “there are multiple foci of SWI signal drop

out indicating areas of haemosiderin deposition” may be less

likely to yield a correct label than the synonymous phrase “there

are multiple microhaemorrhages”. Although, clearly, there is no

“correct” reporting style, the drop-off in labelling accuracy by

non-experts might demonstrate the potential for report

misinterpretation by those less well acquainted with the

neuroradiological lexicon, and hence the importance of tailoring

one’s report to the target audience.

The accuracy of labelling for disease categories of pathology

was variable and dependent on differing sensitivity of radiology

reports for each category (i.e., inaccurate disease categories were

ones which were less frequently remarked upon in the report

when present on the image as opposed to incorrect attribution to

another disease category).

A discussion amongst our group of expert neuroradiologists

established likely causes for this. Firstly, when writing radiology

reports, radiologists often exclude mentioning pathologies that

bear no relevance to the clinical question at hand. For example,

benign extracranial abnormalities and chronic atrophic brain
frontiersin.org
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changes may not be relevant when reporting a follow-up scan for a

malignant brain tumour resection. Similarly, one or two

microhaemorrhages are a common finding in ageing brains and

frequently of minimal clinical relevance, therefore some

neuroradiologists may not choose to mention them (21, 22).

Furthermore, post-operative hydrocephalus, if present pre-

operatively and reducing in volume over time, may be an entirely

expected finding and the report might be worded to ensure there

is no miscommunication which could otherwise trigger an

unnecessary urgent intervention. In contrast, a post-operative

infarct or a residual brain tumour mass are almost always of

high clinical relevance and therefore are likely to have a higher

comparative sensitivity within a report.

A second source of low sensitivity for some granular categories

was thought to be related to “satisfaction of search” errors in the

reports. In particular, MRI scans are frequently performed to rule

out a specific type of pathology—for example a patient with

memory loss may have an MRI study to look for supratentorial

atrophy in particular. For such studies, neuroradiologists may

tailor their search method accordingly, and may therefore have a

higher probability of failing to search for additional co-existent

and/or incidental pathology, such as extracranial pathology. There

is, of course, an overlap with the first cause of low sensitivity, in

that certain pathologies may be considered by the reporter to be

irrelevant and therefore not searched for in the first place.

Finally, we established the potential utility of limited sequence

labelling to overcome potential real-world time issues regarding

reviewing multiple input sequences for a single examination-level

label. The majority of “clinically-relevant” lesions were identified

using T2-weighted and DWI sequences only. However, particular

lesions may not be identified by this combination of sequences—

for example, although we did not find the following false

negatives in the current study, it is conceivable that certain

infections and neoplasms may be identified on post-contrast

imaging only (23, 24). Similarly, haemorrhage detection is greatly

facilitated by a T2*-weighted sequence (25, 26).

A limitation of our study is the potential for institution-

dependent bias in reporting, impacting upon the sensitivity

weighting of the various categories. Each institution will tend to

focus on different patient demographics, different subspecialty

areas and may have a different reporting ethos in terms of what

pathology they tend to include in reports. This highlights a

general problem with single institution labelling.

Another limitation is the use of single labeller comparisons to

determine the suitability of the type of labeller (expert or non-

expert). Larger numbers of expert and non-expert labellers would

be required to comprehensively confirm the plausible inference

that the performance of non-expert labellers is inferior to expert

labellers and, therefore, that expert labellers are required to label

datasets accurately for brain MRI. Even if an experiment was

performed with a larger number of non-experts and we found

that all new non-experts were not inferior to experts, knowledge

that just a few non-experts are inferior would prevent the

rational use of non-expert labellers routinely. Furthermore, we

had little incentive to explore this further given the considerable

resource requirements to confirm inferiority of non-experts
Frontiers in Radiology 06
definitively. Instead, we recommend that future experiments that

require labelling rely upon expert labellers alone.

Finally, whilst this study highlights the efficacy of combining

T2-weighted and DWI sequences for labelling MRI scans as

“normal” or “abnormal”, it should be noted that these sequences

were chosen pragmatically given their relatively frequent

incorporation into scanning protocols at King’s College Hospital,

London. Other combinations of MRI sequences could have been

chosen for experimentation: in particular, future experiments

may look to combine Fluid Attenuated Inversion Recovery

(FLAIR)—which improves detection of lesions adjacent to CSF-

containing spaces (27)—and DWI to see if this improves the

accuracy of the detection algorithm still further.

In conclusion, we have demonstrated the high performance of the

silver standard reference (consensus labelling based on reports) in

terms of single category binary labelling of “normal vs. abnormal”.

This labelling process is relatively expedient in terms of time taken

when compared to the “gold standard” labelling reference standard

involving re-reporting of source images. Notably, this research also

demonstrates the importance of employing expert neuroradiologists

in the labelling process of brain MRIs, given the significant drop in

performance observed when labelling was performed by an

experienced, but non-expert, physician or a junior radiologist. The

silver standard reference labelling demonstrated a more variable

performance regarding 12 granular labelling categories, likely

secondary to the relatively infrequent inclusion of particular

categories in neuroradiology reports. Finally, this research shows

that the majority of “clinically-relevant” lesions may be identified as

abnormal (vs. normal) using T2-weighted sequences and those

based on diffusion weighted imaging only, potentially limiting the

number of MRI sequences required to train computer vision systems.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by UK National

Research Ethics Committee. The studies were conducted in

accordance with the local legislation and institutional

requirements. Written informed consent for participation was

not required from the participants or the participants’ legal

guardians/next of kin as this was not applicable due to it being a

large volume anonymized imaging study.
Author contributions

MB, DW, SK, AB, EG, JL, MT, AM, JS, NG, GB, SO, JC and TB

contributed to study design, data collection, analysis and

interpretation. MB, TB and DW contributed to manuscript

drafting and revision. All authors contributed to the article and

approved the submitted version.
frontiersin.org

https://doi.org/10.3389/fradi.2023.1251825
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/


Benger et al. 10.3389/fradi.2023.1251825
Funding

DW, GB, JC, TB, SO: supported by the Medical Research

Council [MR/W021684/1]. TB, SO: supported by the Wellcome

Trust [WT 203148/Z/16/Z].
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Radiology 07
TB declared that they were an editorial board member of

Frontiers, at the time of submission. This had no impact on the

peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S,
et al. Clinically applicable deep learning for diagnosis and referral in retinal disease.
Nat Med. (2018) 24(9):1342–50. doi: 10.1038/s41591-018-0107-6

2. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end
lung cancer screening with three-dimensional deep learning on low-dose chest
computed tomography. Nat Med. (2019) 25(6):954–61. doi: 10.1038/s41591-019-
0447-x

3. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al.
International evaluation of an AI system for breast cancer screening. Nature. (2020)
577(7788):89–94. doi: 10.1038/s41586-019-1799-6

4. Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of
cerebral aneurysms using artificial intelligence: a systematic review and meta-
analysis. J Neurointerv Surg. (2023) 15(3):262–71. doi: 10.1136/jnis-2022-019456

5. Wood D, Cole J, Booth T. NEURO-DRAM: a 3D recurrent visual attention model
for interpretable neuroimaging classification. arXiv preprint arXiv:1910.04721 (2019).

6. Gauriau R, Bizzo BC, Kitamura FC, Landi Junior O, Ferraciolli SF, Macruz FB,
et al. A deep learning–based model for detecting abnormalities on brain MR images
for triaging: preliminary results from a multisite experience. Radiol Artif Intell.
(2021) 3(4):e200184. doi: 10.1148/ryai.2021200184

7. Wood DA, Kafiabadi S, Al Busaidi A, Guilhem E, Montvila A, Lynch J, et al. Deep
learning models for triaging hospital head MRI examinations.Med Image Anal. (2022)
78:102391. doi: 10.1016/j.media.2022.102391

8. Lee S, Jeong B, Kim M, Jang R, Paik W, Kang J, et al. Emergency triage of brain
computed tomography via anomaly detection with a deep generative model. Nat
Commun. (2022) 13(1):4251. doi: 10.1038/s41467-022-31808-0

9. Wood DA, Kafiabadi S, Al Busaidi A, Guilhem E, Montvila A, Agarwal S, et al.
Automated triaging of head MRI examinations using convolutional neural networks.
Medical imaging with deep learning. PMLR (2021). p. 813–41.

10. Agarwal S, Wood D, Grzeda M, Suresh C, Din M, Cole J, Booth TC. Systematic
review of artificial intelligence for abnormality detection in high-volume
neuroimaging and subgroup meta-analysis for intracranial hemorrhage detection.
Clin Neuroradiol. (2023):1–14. doi: 10.1007/s00062-023-01291-1

11. Wood DA, Kafiabadi S, Al Busaidi A, Guilhem E, Lynch J, Townend M, et al.
Labelling imaging datasets on the basis of neuroradiology reports: a validation study.
Interpretable and annotation-efficient learning for medical image computing: third
international workshop, iMIMIC 2020, second international workshop, MIL3ID 2020,
and 5th international workshop, LABELS 2020, held in conjunction with MICCAI
2020, Lima, Peru, October 4–8, 2020, proceedings 3. Springer International
Publishing (2020). p. 254–65.

12. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: a large-scale
hierarchical image database. 2009 IEEE conference on computer vision and pattern
recognition (2009). p. 248–55

13. Cocos A, Masino A, Qian T, Pavlick E, Callison-Burch C. Effectively
crowdsourcing radiology report annotations. Proceedings of the sixth international
workshop on health text mining and information analysis. Association for
computational linguistics, Lisbon, Portugal (2015). p. 109–14. doi: 10.18653/v1/W15-
2614

14. Crump MJC, McDonnell JV, Gureckis TM. Evaluatingamazon’smechanical turk
as a tool for experimental behavioral research. PLoS One. (2013) 8(3):1–18. doi: 10.
1371/journal.pone.0057410

15. Shin B, Chokshi FH, Lee T, Choi JD. Classification of radiology reports using
neural attention models. 2017 International joint conference on neural networks
(IJCNN). IEEE (2017). p. 4363–70

16. Wood DA, Lynch J, Kafiabadi S, Guilhem E, Busaidi AA, Montvila A, et al.
Automated labelling using an attention model for radiology reports of MRI scans
(ALARM). Proc Mach Learn Res. (2020) 121:811–26.

17. Zech J, Pain M, Titano J, Badgeley M, Schefflein J, Su A, et al. Natural language-
based machine learning models for the annotation of clinical radiology reports.
Radiology. (2018) 287(2):570–80. doi: 10.1148/radiol.2018171093

18. Booth TC, Agarwal S, Wood DA. Re:“validation study of machine-learning chest
radiograph software in primary and secondary medicine”. Clin Radiol. (2023) 78
(6):473. doi: 10.1016/j.crad.2023.02.019

19. Powers, David MW. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness & correlation. Proc Mach Learn Technol. (2011) 2
(1):37–63.

20. Abdullah-Al-Zubaer I, Terzopoulos D. Semi-supervised multi-task learning with
chest x-ray images. MLMI 2019: machine learning in medical imaging). p. 151–9

21. Lee J, Sohn EH, Oh E, Lee AY. Characteristics of cerebral microbleeds. Dement
Neurocogn Disord. (2018) 17(3):73–82. doi: 10.12779/dnd.2018.17.3.73

22. Viswanathan A, Chabriat H. Cerebral microhaemorrhage. Stroke. (2006)
37:550–5. doi: 10.1161/01.STR.0000199847.96188.12

23. Rangarajan K, Das CJ, Kumar A, Gupta AK. MRI In central nervous system
infections: a simplified patterned approach. World J Radiol. (2014) 6(9):716–25.
doi: 10.4329/wjr.v6.i9.716

24. Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int. (2013) 4(Suppl
4):S209–19. doi: 10.4103/2152-7806.111298

25. Schelhorn J, Gramsch C, Deuschl C, Quick H, Nensa F, Moenninghoff C, et al.
Intracranial hemorrhage detection over time using susceptibility-weighted magnetic
resonance imaging. Acta Radiol. (2015) 56(12):1501–7. doi: 10.1177/
0284185114559958

26. Imaizumi T, Chiba M, Honma T, Niwa J. Detection of hemosiderin deposition
by T2*-weighted MRI after subarachnoid hemorrhage. Stroke. (2003) 34:1693–8.
doi: 10.1161/01.STR.0000075771.88719.CE

27. Herskovits EH, Itoh R, Melhem ER. Accuracy for detection of simulated lesions:
comparison of fluid-attenuated inversion-recovery, proton density-weighted, and T2-
weighted synthetic brain MR imaging. Am J Roentgenol. (2001) 176(5):1313–8. doi: 10.
2214/ajr.176.5.1761313
frontiersin.org

https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1136/jnis-2022-019456
https://doi.org/10.1148/ryai.2021200184
https://doi.org/10.1016/j.media.2022.102391
https://doi.org/10.1038/s41467-022-31808-0
https://doi.org/10.1007/s00062-023-01291-1
https://doi.org/10.18653/v1/W15-2614
https://doi.org/10.18653/v1/W15-2614
https://doi.org/10.1371/journal.pone.0057410
https://doi.org/10.1371/journal.pone.0057410
https://doi.org/10.1148/radiol.2018171093
https://doi.org/10.1016/j.crad.2023.02.019
https://doi.org/10.12779/dnd.2018.17.3.73
https://doi.org/10.1161/01.STR.0000199847.96188.12
https://doi.org/10.4329/wjr.v6.i9.716
https://doi.org/10.4103/2152-7806.111298
https://doi.org/10.1177/0284185114559958
https://doi.org/10.1177/0284185114559958
https://doi.org/10.1161/01.STR.0000075771.88719.CE
https://doi.org/10.2214/ajr.176.5.1761313
https://doi.org/10.2214/ajr.176.5.1761313
https://doi.org/10.3389/fradi.2023.1251825
https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org/

	Factors affecting the labelling accuracy of brain MRI studies relevant for deep learning abnormality detection
	Introduction
	Materials and methods
	Results
	Comparing performance of non-expert vs. expert labelling
	Report validation
	Sequence-specific performance

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


