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Radiomic analysis of the proximal
femur in osteoporosis women
using 3T MRI
Dimitri Martel*, Anmol Monga and Gregory Chang

Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York
University Grossman School of Medicine, New York, NY, United States

Introduction: Osteoporosis (OP) results in weak bone and can ultimately lead to
fracture. MRI assessment of bone structure and microarchitecture has been
proposed as method to assess bone quality and fracture risk in vivo. Radiomics
provides a framework to analyze the textural information of MR images. The
purpose of this study was to analyze the radiomic features and its abilityto
differentiate between subjects with and without prior fragility fracture.
Methods: MRI acquisition was performed on n= 45 female OP subjects: 15 with
fracture history (Fx) and 30 without fracture history (nFx) using a high-resolution
3D Fast Low Angle Shot (FLASH) sequence at 3T. Second and first order
radiomic features were calculated in the trabecular region of the proximal femur
on T1-weighted MRI signal of a matched dataset. Significance of the feature’s
predictive ability was measured using Wilcoxon test and Area Under the ROC
(AUROC) curve analysis. The features were correlated DXA and FRAX score.
Result: A set of three independent radiomic features (Dependence Non-Uniformity
(DNU), Low Gray Level Emphasis (LGLE) and Kurtosis) showed significant ability to
predict fragility fracture (AUROC DNU=0.751, p < 0.05; AUROC LGLE=0.729,
p < 0.05; AUROC Kurtosis = 0.718, p < 0.05) with low to moderate correlation with
FRAX and DXA.
Conclusion: Radiomic features can measure bone health in MRI of proximal femur
and has the potential to predict fracture.
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Introduction

Osteoporosis (OP) is a disease of increased fracture risk (Fx) caused by reduced bone

mass and microarchitectural deterioration of bone tissue. The main consequence of OP is

fragility fracture. In 2014, 432,000 hospital admissions, 2.5 million hospital visits and

180,000 nursing home admissions in the USA were attributed to osteoporosis in USA (1).

Hip fracture accounts for 72% of all osteoporosis-based fracture costs (1) and results in a

mortality as high as 21% in the first year after fracture (2). Given the aging U.S and

world population and the prevalence osteoporosis in older individuals, the cost of

osteoporosis and fracture care is only expected to increase, further burdening societal

healthcare systems (3).

To mitigate the effects of osteoporosis-related fracture, a major step is to improve

accurate quantification of fragility fracture risk to make a relevant clinical or

pharmaceutical intervention (4). The most common standard-of-care methods to quantify

fracture risk are areal bone mineral density (BMD) and trabecular bone score (TBS)

calculated using dual energy x-ray absorptiometry (DXA) and the Fracture Risk
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Assessment Tool (FRAX), a clinical-outcome-based 10-year

fracture risk predictor. BMD is the WHO reference standard

method used to diagnose osteoporosis (5). However, more than

50% of all fragility fracture cases occur in subjects who do not

meet BMD criterion for osteoporosis (T-score <−2.5). This

indicates that BMD has low sensitivity to diagnose osteoporosis

and does not completely capture fracture risk. TBS was

developed to estimate bone microarchitectural information.

However, it is limited to the lumbar spine and is computed from

a 2D projection of trabecular bone microarchitecture (TBA) and

does not capture 3D information. FRAX on the other hand

considers clinical factors (age, gender, BMI, parental Fx History

6) in its prediction of fracture risk. It is combined with other

bone health measures like BMD, which capture bone density but

no microarchitectural properties of the bone (6, 7).

Magnetic resonance imaging (MRI) allows quantitative

assessment of TBA and was first described two decades ago in

the distal radius and calcaneus and more recently has been

described in the proximal femur (8–12). MRI of TBA consists of

depicting the unique 3-D network, size, and shape of individual

submillimeter trabeculae. This requires resolution to be on the

order of the size of trabeculae. The proximal femur is relatively

deep in the human body, which makes high-resolution imaging

more challenging because SNR decays quickly as the distance

from the receive coil increases. Only recently, through pulse

sequence and coil optimization, the femur was made accessible

for trabecular bone analysis.

In addition, MRI of TBA is not widely available since it

requires specialized analysis software and intense computation.

Radiomics has been used extensively in cancer research (13–19)

and pancreatitis detection (19) and provide a way to construct

models based on image analysis. Radiomics image analysis software

are widely available and may provide another means to quantify bone

microarchitecture on MR images, specifically by analyzing texture,

shape, and intensity distribution in the region of interest (20, 21).

The purpose of our study was to use radiomic to measure

textural features in the trabecular bone architecture of the

proximal femur and determine their relationship with fracture

status and compared it to FRAX.
Material/methods

Subjects

This prospective, HIPAA compliant study was approved by our

institutional review board, and written informed consent was

obtained from all subjects. Forty-five postmenopausal women were

recruited from our institution with total hip dual-energy x-ray

absorptiometry (DXA, GE Lunar, Rahmay, NJ) results consistent

with osteoporosis (femoral neck or total hip BMD T scores of

greater than −2.5, 15 of whom had radiographically confirmed

fragility fractures and 30 of whom did not have a fracture).

Fragility fracture was defined as a low-energy fracture due to

trauma from a fall of standing height or less. There are subjects

that have had more than one fragility fractures, the types of
Frontiers in Radiology 02
fragility fractures included major osteoporotic fractures of the wrist

(n = 3), spine (n = 2), elbow (n = 3), rib (n = 3), metatarsal (n = 2)

and distal radius (n = 2). The median time since fragility fracture

was 13 months. All subjects were able to ambulate without

limitation. FRAX score was computed according to the standard

method (https://www.sheffield.ac.uk/FRAX/tool), considering

patient race and with/without BMD (total hip BMD T-score =−2.
26 ± 0.65; Femoral Neck BMD T-score =−2.52 ± 0.64). Subjects

were divided into two age-matched (age > 40 years) groups: with

history of fragility fractures (Fx, n = 15) and without (nFx, n = 30).
Magnetic resonance imaging

The non-dominant proximal femur of each subject was scanned

on a 3 TMRI scanner (SKYRA system, Siemens Healthcare) using an

26 element receive-coil setup (18 elements from a body matrix coil

anteriorly and eight elements from a spine coil posteriorly). The

coil was wrapped around the hip and secured by sandbags laterally

and a velcro strap. We used a 3-dimensional (3D) fast low-angle

shot sequence (FLASH) with the following scan parameters:

repetition time (TR)/echo time (TE) = 37 ms/4.92 ms, 0.234 mm×

0.234 mm, slice thickness = 1.5 mm, 60 coronal slices, bandwidth =

130 Hz/pixel, parallel acceleration [generalized autocalibrating

partially parallel acquisition (GRAPPA) factor = 2, and acquisition

time = 15 min 18 s. The imaging parameters were chosen in order

to have the smallest voxel size possible while maintaining high

enough SNR to visualize trabeculae and, most importantly, perform

the image analysis (minimum of SNR ∼10–15 required).
Segmentation

Figure 1 illustrates a typical acquisition of the proximal femur and

the segmented trabecular region used for analysis. The segmentation of

the proximal femur was conducted by an expert, who manually

delineated the trabecular border of bone on MR images using the

FireVoxel software package (NYU Center for Advanced Imaging

Innovation and Research, New York, USA; https://wp.nyu.edu/

firevoxel/downloads/). This expert operated under the direct

supervision and guidance of a musculoskeletal radiologist.

Subsequently, the region of interest was resampled to an isotropic

resolution of 1 × 1 × 1 mm3 using 3rd order B-spline interpolation
Processing

Radiomic textural features of the trabecular region of the

proximal femur were extracted using the PyRadiomics toolbox

(22). The features encompassed: (1) first-order textural features

such as average, contrast, variance, median, skewness, etc., and

(2) second-order features like Gray Level Co-occurrence Matrix

(GLCM) features, Gray Level Run length Matrix (GLRLM)

features, Gray Level Dependence Matrix (GLDM) features, Gray

Level Size Zone Matrix (GLSZM) features, and Neighboring

Gray Tone Difference Matrix (NGTDM). Second-order features
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FIGURE 1

MRI acquisition of the proximal femur and segmented trabecular region in osteoporosis patients, differentiated by (A) history of previous fracture and (B)
no fracture history.
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gauge relationships between adjacent pixels. For computation,

parameters such as the neighborhood radius (d) and the

intensity quantization interval (BW) were considered. The

radiomic features were computed for d ranging from 1 to 5 and

BW ranging from 2 to 16.
Statistical analysis

The association between radiomic features and bone health was

discerned using three analysis methods:
1. Wilcoxon test: Assesses feature separability between the Fx and

nFx groups, considering features with p-value < 0.05 as

significantly separable.

2. ROC analysis: Evaluates the capability of radiomic features in

predicting fragility fractures, measuring the Area Under the

ROC (AUROC). The significance of AUROC values was

ascertained through the Wilcoxon test.
Frontiers in Radiology 03
3. Spearman correlation: Determines correlations between

radiomic measurements and established clinical and imaging

parameters, such as age, BMI, FRAX scores (both overall and

specific to the hip, and with or without BMD consideration),

and BMD values from DXA (T-scores for the hip and

femoral neck regions). A p-value < 0.05 was considered

indicative of significance.

Furthermore, inter-feature correlations among radiomic features

were assessed to eliminate redundant features, utilizing Pearson

correlation with a significance threshold of p-value < 0.001.
Result

Subject demographics

Demographic data are presented in Table 1. Age, weight,

height, BMI and T-scores did not significantly differ between Fx

and nFx patients.
frontiersin.org
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TABLE 1 Demographics and characteristics.

Fx (n = 30,F) nFx (n = 15,F) p-value

Mean sd 95% CI Mean sd 95% CI
Age 63.13 7.62 58.91–67.36 63.57 6.08 61.29–65.84 0.79

T-score (Femoral Neck) −2.63 0.85 (−3.10)–(−2.16) −2.47 0.53 (−2.67)–(−2.28) 0.87

T-score (Hip) −2.39 0.85 (−2.91)–(−1.88) −2.19 0.52 (−2.40)–(−1.97) 0.35

Height (m) 1.59 0.08 1.54–1.63 1.57 0.06 1.55–1.60 0.93

Weight (Kg) 53.67 6.31 50.18–57.16 51.30 7.15 48.58–54.02 0.26

BMI (Kg/m2) 21.19 1.97 20.10–22.29 20.72 2.38 19.84–21.61 0.44
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Feature selection

Features with significant relationships between radiomic textural

features and bone health are presented with their associated

abbreviations in Table 2. These features are discriminative of Fx

and nFx group or are significantly correlated to FRAX and BMD.

The parameter d and BW are optimized for each radiomic feature

to produce the most predictive measure of bone health.
Feature discrimination

Table 3 shows AUROC of radiomics parameters and clinical

parameters able to discriminate between subjects with and

without fragility fracture determined in Table 2.
TABLE 2 Selected features with significant separability between Fx and
nFx group; or significant correlation with FRAX or BMD; and associated
abbreviation.

Features Type Distance Bin
width

Abbreviation

Dependence NonUniformity GLDM 2 4 DNU

Size Zone Non Uniformity GLSZM 1 2 SZNU

Low Gray Level Emphasis GLDM 1 8 LGLE

Run Length Non Uniformity GLRLM 1 16 RLNU

Kurtosis Firstorder Kurtosis

Large Dependence Low
Gray Level Emphasis

GLDM 5 8 LDLGLE

Long Run Low Gray Level
Emphasis

GLRLM 1 8 LRLGLE

Maximum Probability GLCM 2 1 MP

Low Gray Level Run
Emphasis

GLRLM 1 4 LGLE

Large Area Low Gray Level
Emphasis

GLSZM 1 1 LALGLE

Gray Level Non Uniformity GLSZM 1 8 GLNU

Energy Firstorder Energy

Total Energy Firstorder TE

Coarseness NGTDM 5 2 Coarseness

Short Run Low Gray Level
Emphasis

GLRLM 1 2 SRLGLE

Skewness Firstorder Skewness

Zone Variance GLSZM 1 4 ZV

Cluster Shade GLCM 1 8 CS

MCC GLCM 1 1 MCC

Cluster Prominence GLCM 4 1 CP

Small Dependence Low
Gray Level Emphasis

GLDM 4 16 SDLGLE

Busyness NGTDM 3 16 Busyness
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Radiomic features could discriminate between Fx and nFx with

AUROC values ranging from 0.687–0.751 (p-value < 0.05). The

non-uniformity features DNU, SZNU and RLNU showed high

discriminatory ability (AUROC > 0.7; p-value < 0.014); the first

order features such as Kurtosis showed significant discriminatory

ability (AUROC = 0.718; p-value = 0.0183). Furthermore, GLDM

and GLRLM features including LGLE, LDLGE and LRLGLE

measure the emphasis on low gray level pixels and large

accumulation of similar pixel intensity within neighborhood in

the trabecular ROI and showed significant discriminatory ability

(AUROC > 0.7; p-value < 0.024) between Fx and nFx group.

FRAX scores could discriminate between Fx and nFx group

with AUROC values ranging from 0.687–0.745. T-scores could

not discriminate between Fx and nFx groups which was expected

since there was no significant difference in T-scores between the

groups. DNU and SZNU had AUROC values comparable to

those of FRAX scores.
Relationship between radiomic features and
clinical parameters.

Correlation between the radiomic features and clinical

parameters are presented in Table 4. Non-Uniformity features

such as DNU, SZNU and RLNU demonstrated a significantly

weak to moderate positive correlation with FRAX (0.299–0.444).

DNU, SZNU, RLNU and GLNU demonstrated a moderate

positive correlation with FRAX + BMD measure (ρ = 0.461, 0.484,

0.531 and 0.527 respectively). First order features such as

kurtosis showed no correlation with age, FRAX and T-scores.

Moreover, GLDM and GLRLM features such as LGLE, LDLGLE

and LRLGLE showed no significant correlation with any clinical

metrics or FRAX scores.
Correlation between features

Figure 2 shows the Pearson-correlation between radiomic

features. Among the features that showed high ability to predict

fragility fracture were SZNU, DNU, and RLNU—or coarseness

features—and these were significantly and highly correlated with

each other. LGLE, LDLGLE, MP and LRLGLE, which also

showed significant ability to predict fragility fracture, were also

significantly and highly correlated with each other.
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TABLE 3 Separability of feature evaluated through Wilcoxon test and area under the receiver operating characteristic curve (AUROC).

Fx nFx p-value AUROC

Features Median IQR Median IQR
DNU 1.070 × 105 9.74 × 104–1.37 × 105 9.100 × 104 8.59 × 104−1.12 × 105 0.007 0.751

SZNU 4.240 × 105 3.85 × 105–4.82 × 105 3.560 × 105 3.36 × 105–4.19 × 105 0.009 0.742

LGLE 2.980 × 10−3 0.0025–0.0032 3.600 × 10−3 0.0029–0.0041 0.013 0.729

RLNU 5.040× 105 4.83 × 105–5.91 × 105 4.480 × 105 4.11 × 105–5.09 × 105 0.013 0.729

Kurtosis 2.720 × 10 2.565–2.862 2.963 × 10 2.759–3.154 0.018 0.718

LDLGLE 3.610 × 10 2.458–4.332 4.774 × 10 3.327–6.721 0.020 0.716

LRLGLE 3.810 × 10−3 0.0031–0.0042 4.700 × 10−3 0.004–0.014 0.024 0.709

MP 8.000 × 10−5 6.46 × 10−5–9.99 × 10−5 1.100 × 10−4 8.55 × 10−5−1.57 × 10−4 0.027 0.704

LGLE 7.700 × 10−4 7.04 × 10−4–9.19 × 10−4 9.800 × 10−4 7.86 × 10−4−1.28 × 10−3 0.028 0.702

LALGLE 7.000 × 10−5 6.57 × 10−5–9.12 × 10−5 1.000 × 10−4 7.37 × 10−5–0.245 0.032 0.698

GLNU 9.960 × 103 9.02 × 103–1.15 × 104 8.640 × 103 7.88 × 103−1.01 × 104 0.032 0.698

Energy 3.770 × 1010 3.26 × 1010–4.92 × 1010 3.380 × 1010 2.67 × 1010–4.02 × 1010 0.041 0.689

Total Energy 4.710 × 109 4.08 × 109–6.15 × 109 4.220 × 109 3.34 × 109–5.03 × 109 0.041 0.689

Coarseness 9.000 × 10−6 8.05 × 10−6–1.01 × 10−5 9.929 × 10−6 9.24 × 10−6−1.13 × 10−5 0.041 0.689

SRLGLE 1.900 × 10−4 0.00018–0.00024 2.600 × 10−4 0.00020–0.00038 0.043 0.687

Skewness 2.060 × 10−1 0.107–0.382 3.480 × 10−1 0.210–0.467 0.102 0.651

ZV 2.5 × 10 1.527–3.835 3.006 × 10 2.276–6.142 0.219 0.613

CS 2.201 × 102 90.25–968.56 5.375 × 102 281.57–855.78 0.219 0.613

MCC 5.500 × 10−1 0.505–0.681 6.300 × 10−1 0.557–0.734 0.301 0.596

CP 2.870 × 108 1.32 × 108–3.83 × 108 1.930 × 108 1.60 × 108–2.38 × 108 0.485 0.564

SDLGLE 2.200 × 10−4 1.83 × 10−4–3.09 × 10−4 2.100 × 10−4 1.36 × 10−4–3.03 × 10−4 0.485 0.564

Busyness 2.402 × 102 203.26–310.05 2.400 × 102 200.54–289.02 0.647 0.542

FRAX overall + BMD 2.000 × 101 14.5–27 1.200 × 101 9.125–19.75 0.008 0.746

FRAX-Hip + BMD 4.300 × 10 2.9–8.3 2.500 × 10 1.825–4.375 0.043 0.687

FRAX overall 2.100 × 101 17–27.5 1.100 × 101 8.775–17.75 0.002 0.789

FRAX-Hip 5.100 × 10 3.5–9.25 2.400 × 10 1.4–3.95 0.008 0.747

T-score (Femoral Neck) −2.600 × 10 −8.000 × 10−1 −2.400 × 10 (−2.8)-(−2.2) 0.866 0.516

T-score (Hip) −2.400 × 10 −5.000 × 10−1 −2.300 × 10 (−2.5)-(−1.9) 0.397 0.585

IRQ, interquartile range.

Significant differences are highlighted in bold (p < 0.05).

TABLE 4 Spearman correlation between radiomic features and clinical parameters.

Features Tscore (Hip) Age FRAX + BMD FRAX FRAX-Hip + BMD FRAX-Hip Tscore (Femoral neck)
DNU −0.330 0.012 0.461 0.299 0.196 0.063 −0.105
SZNU −0.366 0.061 0.484 0.315 0.238 0.082 −0.158
LGLE 0.067 0.256 −0.082 −0.193 0.097 −0.121 −0.004
RLNU −0.304 0.075 0.531 0.444 0.275 0.230 −0.113
Kurtosis −0.050 −0.094 −0.190 −0.223 −0.240 −0.217 0.085

LDLGLE 0.042 0.253 0.054 −0.002 0.129 0.064 −0.130
LRLGLE 0.055 0.297 0.041 −0.119 0.167 −0.012 0.091

MP 0.069 0.260 0.096 0.012 0.169 0.194 0.149

LGLRE 0.011 0.289 0.023 −0.121 0.144 −0.048 0.081

LALGLE 0.113 0.190 0.103 −0.152 0.226 −0.089 −0.070
GLNU −0.277 0.088 0.527 0.362 0.356 0.189 −0.315
Energy −0.072 0.355 0.307 0.361 0.249 0.356 −0.012
TE −0.072 0.355 0.307 0.361 0.249 0.356 −0.012
Coarseness 0.077 −0.084 −0.285 −0.286 0.054 −0.118 0.124

SRLGLE −0.009 0.314 0.046 −0.120 0.136 −0.044 0.092

Skewness −0.094 −0.157 −0.308 −0.339 −0.201 −0.279 −0.082
ZV −0.034 0.315 0.131 0.020 0.216 0.382 −0.073
CS −0.075 −0.090 −0.322 −0.350 −0.220 −0.279 0.082

MCC −0.046 0.289 0.045 0.076 0.128 0.330 0.220

CP −0.048 0.042 −0.240 −0.126 −0.238 −0.065 0.342

SDLGLE −0.169 −0.251 −0.300 −0.263 −0.150 −0.403 −0.158
Busyness −0.138 −0.079 0.243 0.043 0.151 −0.062 −0.322

Significant correlation values are highlighted in bold (p-value < 0.05).
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FIGURE 2

Significant correlation found between features using Pearson’s r coefficient (p-value < 0.01).

Martel et al. 10.3389/fradi.2023.1293865
Discussion/conclusion

In conclusion, MRI-based radiomics can discriminate between

OP women with and without fragility fractures. According to our

analysis, we identified that DNU, LGLE and Kurtosis are three

features of interest since they have the highest AUROC, very low

correlation with other radiomic features, and weak correlation

with BMD and FRAX scores suggesting that they could be used

as novel, imaging biomarkers for bone health that provide

complementary information to each other and to DXA and FRAX.

In the T1-contrast MRI acquisitions of the trabecular region of

the proximal femur used in this study, subjects with fragility

fracture showed lower kurtosis and LGLE values and higher

DNU values compared to subjects without fracture. DNU and

LGLE are local second-order features. DNU measures

nonuniformity in the interdependence of pixels within the

trabecular region of interest in the proximal femur. LGLE

measures the empasis of low intensity pixels within the

trabecular region of interest. Kurtosis is a global first-order
Frontiers in Radiology 06
feature. High kurtosis values imply that in the region of interest

there is a copmaratively large number of pixel values towards the

extremes, while a low kurtosis value implies high peakedness of

the distribution. MRI of microarchitecture indirectly image of the

trabeculae since it relies on the contrast between non fully

relaxed bone marrow fat tissue and trabeculae fully relaxed

signals. GLDM features that we found of interest are defined on

low intensity voxels, notably their dependance (LGLE) and their

uniformity (DNU). They may correspond to a measure of the

trabecular bone network since in our image fat appear

hyperintense and bone hypointense. One of the technical

considerations in our study was the MRI image resolution,

specifically the slice direction resolution being much lower than

the in-plane resolution. Differences in resolution can potentially

influence the granularity of the features extracted and might play

a role in the robustness of the radiomic analysis. In the context

of bone health and fracture risk assessment, where subtle

variations in the trabecular structure can be critical, the

resolution of the MRI images can be a determining factor. While
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our study utilized high-resolution MR images of the proximal

femur to ensure detail preservation, it is imperative for future

research to investigate the direct impact of varying resolutions,

especially slice direction resolution, on radiomic feature

extraction and subsequent analyses. Such investigations would

provide clearer insights into the optimal imaging parameters for

robust radiomic analyses in osteoporosis assessments.

In recent years, several studies have investigated the use of

radiomics in oncology to analyse tumors. There are few studies

which have investigated the use of radiomics for bone health

assessment. In the lumbar spine a multi-contrast approach was

evaluated using both T1 and T2 weighted MRI (23) to detect

osteoporosis compared to osteopenic and controls subjects. They

found similar AUROC values of 0.73 using T1-weighted images,

of 0.734 for T2 weighted image, and of 0.769 when using T1-

and T2-weighted images. Another study used opportunistic

abdominal CT to retrospectively compute 41 radiomic features in

the proximal femur of 500 patients (24) to predict OP status and

found an AUROC of 0.96 to predict OP. More recent studies

combine radiomic features computed using CT and MRI scans of

the lumbar spine (25). They notably used chemical shift encoded

MRI methods to separate bone marrow from MR images. They

showed that the use of additional radiomic features can provide a

better differentiation between OP patients with and without

vertebral fracture (47% of the variance in osteoporotic vertebral

fracture was explained by the model when it was based on BMD

and bone marow measurement only compared to 81% of the

variance in fracture when adding textural features to the model).

To the best of our knowledge, our study is the first to analyze

the relationship between high-resolution MR-based radiomic

features of the proximal femur and osteoporotic fracture status

and the relationship between MR-based radiomic features and

standard-of care measures of fracture risk such as FRAX and BMD.

In this study, we decided to perform a univariate analysis. Most

studies use multiple combinations of feature selection and machine

learning models over unmatched datasets to arrive at a model that

shows high predictive ability. However, while advanced ML models

have feature selection capabilities, our study’s objective was to

provide foundational insights into the underlying radiomics

features critical for osteoporotic fracture risk. The distinct

features we identified could guide and refine the feature selection

process in subsequent ML models, ensuring they’re both

statistically robust and grounded in domain-specific knowledge.

The limitation of such methods is that high predictivity might be

influenced by confounding factors, such as age or BMI. Matching

the test and control data has the effect of limiting the size of the

dataset. In earlier stage of this study we used the above defined

method but found that during feature selection methods one or

two features were selected and individual features showed similar

predictive ability as models with several features. Features

showing significant predictive ability could be deciphered by

curating the dataset by using high quality MRI images with

matched control and test groups. Measuring and analyzing the

predictive accuracy of individual features could help to use the

dataset more effectively rather than building a multiparametric

machine learning model.
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indicators such as FRAX/BMD is weak to moderate. This

suggests that radiomics parameters provide information distinct

from that captured by FRAX/BMD. If there was a strong

correlation, it would mean the information from both sources

overlaps, reducing the need to assess radiomics parameters.

However, the observed correlation indicates that radiomics

parameters capture different aspects of bone health.

Given this distinction, while FRAX and BMD remain primary

tools for osteoporosis screening, radiomics analyses might be used

for further risk stratification. This approach could be particularly

beneficial when primary screening results are inconclusive.This

study is not without limitations. The first limitation is the

relativley small size of the dataset. However, as an initial pilot

study, we believe that this is sufficient in size and provides the

foundation and evidence for a larger study with more fracture

cases and controls. Second, with larger dataset, we could build

machine learning models combining multiple features to predict

osteoporotic fracture risk. This would be possible now that we

know which types of features are most important after doing the

univariate analyses in this study. Third, we do not have clinical

imaging or microarchitectural information on these subjects, and

in the future it would be important to determine the correlation

between radiomic information and microarchitectural parameters

or information that could be derived from clinical scans. Finally,

this study is limited in that we used a T1-weighted FLASH

acquisition for the MRI data. Moreover, considering the potential

of MR Fingerprinting (MRF) as a quantitative method for

assessing fracture risk, future research might benefit from

exploring its utility alongside traditional imaging techniques. In

the future, it would be important to investigate the effect of

different types of image acquisitions or even investigate MRF in

more depth as a promising method to assess fracture risk.

In conclusion, we have shown that MR-based radiomics of the

proximal femur, in particular the features of DNU, LGLE, and

Kurtosis can discriminate osteoporotic fracture cases from

controls and provides different information about fracture risk

compared to DXA and FRAX. Larger, longitudinal studies are

need to help determine whether these radiomics parameters

could have value to predict future fracture.
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