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Purpose: Conventional contrast-enhanced MRI is currently the primary imaging
technique used to evaluate radiation treatment response in meningiomas.
However, newer perfusion-weighted MRI techniques, such as 3D
pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic
information beyond the structural information provided by conventional MRI
and may provide additional complementary treatment response information.
The purpose of this study is to assess 3D pCASL for the evaluation of
radiation-treated meningiomas.
Methods: Twenty patients with meningioma treated with surgical resection
followed by radiation, or by radiation alone, were included in this retrospective
single-institution study. Patients were evaluated with 3D pCASL and
conventional contrast-enhanced MRI before and after radiation (median follow
up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral
blood flow (ASL-nCBF) was measured within each meningioma and radiation-
treated meningioma (or residual resected and radiated meningioma), and the
contrast-enhancing area was measured for each meningioma. Wilcoxon
signed-rank tests were used to compare pre- and post-radiation ASL-nCBF
and pre- and post-radiation area.
Results: All treated meningiomas demonstrated decreased ASL-nCBF following
radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after
radiation (p= 0.008) but only for approximately half of the meningiomas (9),
while half (10) remained stable. A larger effect size (Wilcoxon signed-rank
effect size) was seen for ASL-nCBF measurements (r= 0.877) compared to
contrast-enhanced area measurements (r= 0.597).
Conclusions: ASL perfusion may provide complementary treatment response
information in radiation-treated meningiomas. This complementary
information could aid clinical decision-making and provide an additional
endpoint for clinical trials.
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Abbreviations

ASL, arterial spin labeled; pCASL, pseudocontinuous arterial spin labeling; CBF, cerebral blood flow; nCBF,
normalized cerebral blood flow.
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Introduction

Meningiomas are the most common primary brain tumors in

the United States, accounting for 36.1% of all primary brain

tumors (1). A variety of treatment options exist for management

of meningiomas including surgical resection, radiotherapy, or a

combination of the two (2–6). Of these treatment options,

radiotherapy can be particularly beneficial for meningiomas in

difficult to access sites such as the skull base or for meningiomas

intimately associated with critical structures. Numerous studies

have shown high rates of long-term local control using

radiotherapy as the primary treatment modality or as an adjunct

to surgery (3, 4, 7–10).

An ongoing challenge with radiation treatment for

meningiomas is evaluation of post-radiation treatment response

(6, 11). Prior studies evaluating meningioma radiation treatment

response have relied on variations of the Macdonald criteria

(12–14) (designed for high-grade glioma treatment response) or

the Response Evaluation Criteria in Solid Tumors (RECIST) (15)

(designed for systemic tumor treatment response), but neither of

these criteria fully account for effects specific to meningiomas,

nor radiation response. Recently, the Response Assessment in

Neuro-oncology (RANO) Working Group released a report

proposing standardized response assessment criteria for

meningiomas (16). These guidelines allow for improved

standardization of meningioma treatment response assessment,

but there are persistent inherent difficulties. Conventional

contrast-enhanced MRI size measurements remain the primary

radiologic tool for assessment of meningioma response or

progression; however, even when meningiomas are effectively

treated with radiation, they often demonstrate little to no change

in size (17–19). Additionally, slowly progressive meningiomas

may not demonstrate a meaningful size increase for several years

after failed treatment (11, 16). Given these limitations, novel

endpoints for meningioma treatment response are being sought

which would provide more immediate and quantitative

evaluation, thereby aiding clinical decision making and allowing

for improved standardization of clinical trial endpoints.

Arterial spin labeling (ASL) is a promising MR perfusion-

weighted imaging technique which may be useful for evaluation

of radiation treatment response in meningiomas. In ASL

imaging, inflowing arterial blood is magnetically “labeled”

through the use of radiofrequency inversion pulses, allowing for

quantitative tissue perfusion measurements (20–22). Because ASL

evaluates tissue perfusion, ASL may provide a way to evaluate

physiologic treatment response beyond the structural information

provided by conventional contrast-enhanced MRI. Previous

studies have shown that in meningiomas, quantitative ASL

perfusion measurements correlate with histologic measures of

micro-vessel area (23) and micro-vascular density (24). Based on

these prior studies and known mechanisms of radiation

treatment effects including endothelial cell damage, small vessel

injury, decreased capillary perfusion, and decreased micro-

vascular density (25–28), we hypothesize that ASL perfusion may

provide an effective technique to capture the microvascular

changes that occur in meningiomas after radiation treatment. No
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other studies have assessed ASL for meningioma radiation

treatment response. Compared to other proposed techniques,

such as PET-based techniques (29, 30), ASL does not require a

separate PET tracer, additional scan, or additional contrast agent.

Additionally, ASL can be integrated into routine follow up MR

exams, thus providing an attractive technique to efficiently

monitor meningioma treatment response.

Therefore, the purpose of this study is to assess ASL perfusion

for the evaluation of radiation treatment response in meningiomas.
Materials and methods

Study design and patients

This retrospective, observational, single-institution study was

approved by an Institutional Review Board and was compliant

with the Health Insurance Portability and Accountability Act.

Between June 2014 and March 2021, thirty-two adults at our

institution were identified who received radiation treatment for

meningiomas and received clinical MR evaluation before and

after radiation. From this group, twenty patients were selected

who met the following inclusion criteria: (i) confirmed diagnosis

of meningioma by biopsy or resection, or by consensus imaging

and clinical criteria; (ii) MRI of the brain including post-contrast

and 3D pseudocontinuous arterial spin labeled (3D pCASL)

sequences before and after radiation (9 patients were excluded

because 3D pCASL was not performed either before or after

radiation); (iii) residual measurable disease following resection,

measuring at least 5 mm in two perpendicular dimensions (2

patients were excluded because no measurable disease was

present after resection); (iv) perfusion was measurable on the

baseline pre-radiation MRI (1 patient was excluded because

perfusion was not measurable in a thin en-plaque meningioma);

(v) standard of care radiotherapy including either stereotactic

radiosurgery (SRS), stereotactic radiation therapy (SRT), or

external beam radiation therapy (EBRT).
MR exams

All MR exams were performed on a 3 T MRI scanner

(Discovery 750, GE Healthcare, Milwaukee Wisconsin) using an

8-channel brain array coil. Conventional MRI protocol included

post-contrast 3D T1-weighted fast spoiled gradient-echo (FSPGR)

imaging (TE/TR = 3.0/6.9 ms; FA = 9°; FOV = 25 cm; matrix =

256 × 256; slices = 180, slice thickness = 1 mm, interslice gap

1 mm). Contrast enhanced exams were performed using either

gadobenate dimeglumine (Bracco Diagnostics) or gadobutrol

(Bayer AG), both at 0.1 mmol/kg.

ASL was performed using pseudocontinuous labeling with a

3D stack-of-spirals fast spin echo readout; this reflects the GE

product ASL sequence. PCASL-specific parameters included a

labeling duration of 1,450 ms and post labeling delay of

2025 ms with 3D spiral readout parameters as follows: spiral

interleaves = 8; points per spiral = 512; slices = 36; slice thickness
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4.0–4.2 mm; FOV = 24–26 cm; in-plane resolution = 3.64–

4.53 mm2; bandwidth = 62.5 kHz; TE = 9.5–10.5 ms; TR = 4,800–

4,847 ms; NEX = 3; and scan time = 4 min 32 s–4 min 42 s.
Image analysis

Maps of ASL-derived cerebral blood flow (ASL-CBF) were

generated from the 3D pCASL images using ReadyView ASL

(GE Healthcare). ASL-CBF maps were co-localized with post-

contrast T1-weighted images. A board-certified neuroradiologist

with 10 years of experience (NF) and a neuroradiology fellow

with 5 years of experience (PM), who were blinded to patient

clinical and pathologic data, reviewed each ASL perfusion map

and deemed to be sufficient diagnostic quality to assess perfusion

within the meningioma. Subsequently, both readers placed

circular ROIs on the regions of maximum perfusion signal on

the CBF maps, within a slice, corresponding to the area of

meningioma contrast enhancement on the co-localized post-

contrast T1-weighted images. Areas of necrosis, surgical cavities,

vessels, hemorrhage, and susceptibility artifact were avoided. To

normalize the CBF values, the cerebellum was chosen as the

reference region. The cerebellum was chosen because

meningiomas are extra-axial tumors; therefore, normalization to

traditional contralateral “normal appearing” gray or white matter

(used for intra-axial tumors) is less applicable. Several prior

studies have described the cerebellum as a useful reference region

for the evaluation of normalized CBF including studies of

gliomas (31) and meningiomas (32). Accordingly, to evaluate

normalized CBF perfusion values (ASL-nCBF), an additional ROI

was placed in the ipsilateral cerebellar hemisphere measuring

approximately 2 × 2 cm capturing an average distribution of gray

and white matter, and normalized perfusion values were

calculated by dividing the signal intensity within the meningioma

ROI by the signal intensity within the cerebellar ROI.

Per the RANO meningioma response assessment guidelines

(16), meningioma size estimates were made by manually

measuring the maximum meningioma diameter in two

perpendicular planes on the axial post-contrast 3D FSPGR

images. Estimates of tumor area were calculated by multiplying

the perpendicular diameter measurements. Measurements were

made by an image analyst with 2 years of experience (SS) and

were approved by the board-certified neuroradiologist (NF).
Statistical analysis

Statistical analyses were performed using R version 3.6.1 (R

Core Team, 2019). For patients evaluated over multiple time

points, the pre-radiation and the most recent post-radiation ASL

perfusion time points were evaluated. Wilcoxon signed-rank tests

were used to evaluate differences in ASL perfusion before and

after radiotherapy as well as differences in contrast enhancing

area before and after radiotherapy. A p-value of 0.05 was

considered statistically significant. For patients with histologic

data (15 out of 20 patients), group differences between low-grade
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(grade I) and higher-grade (grade II or III) meningiomas were

evaluated for pre-radiation ASL perfusion. Group differences

were tested using Mann-Whitney U tests. Finally, inter-reader

agreement was evaluated by calculating the intraclass correlation

coefficient (ICC) for the two readers.
Results

Patient population

Twenty adults with radiation-treated meningiomas (12 female

and 8 male) met inclusion criteria, and ages ranged from 27 to 72

years (mean 54 ± 12 years). Histologic data was available for 15

out of 20 patients. Of patients with histologic data, 7 patients were

diagnosed with WHO grade I, 5 patients with WHO grade II, and

3 patients with WHO grade III meningioma. All patients were

treated with radiotherapy: 4 patients were treated with SRS (dose

ranging from 2,100–2,400 cGy in 3 fractions) and 16 were treated

with EBRT (dose ranging from 5,400–6,600 cGy in 30–33

fractions). Most patients underwent either subtotal resection or

near gross total resection prior to radiotherapy (15 patients), but 5

patients were treated with radiotherapy alone. The post-radiation

evaluations were performed between 2 and 35 months (median

6.5 months) after patients completed radiotherapy. Descriptive

information regarding the study cohort is provided in Table 1.
Quantitative ASL perfusion and contrast-
enhancing area analysis

Both ASL-nCBF and contrast enhancing area measurements

decreased after radiation (Figure 1). Post-radiation ASL-nCBF

was significantly lower than pre-radiation ASL-nCBF (p < 0.001)

with median pre-radiation ASL-nCBF measuring 4.1 (IQR: 3.1–

6.6) and median post-radiation ASL-nCBF measuring 2.7 (IQR:

2.1–4.2) (Figure 2). The effect size (Wilcoxon signed-rank effect

size) between pre- and post-radiation ASL-nCBF measurements

was large (r = 0.877). Similarly, post-radiation contrast-enhanced

size measurements were also lower than pre-radiation contrast-

enhanced size measurements (p = 0.008), with median pre-

radiation area measuring 2.4 (IQR: 1.5–3.6) cm2 and median

post-radiation area measuring 2.5 (IQR: 1.1–3.5) cm2 (Figure 2).

Although the median pre- and post-radiation areas were nearly

the same, the average and interquartile ranges were lower

following radiation. The effect size between pre- and post-

radiation contrast-enhanced size measurements was not as large

(r = 0.597) compared to the effect size between pre- and post-

radiation ASL-nCBF measurements (r = 0.877).

All patients demonstrated decreased ASL-nCBF after radiation.

However, for contrast-enhanced area measurements, 9 patients

demonstrated a decrease in size, 10 patients demonstrated no

change, and 1 patient demonstrated a small increase in size.

Furthermore, twelve patients demonstrated a decrease in ASL-

nCBF measuring at least 25%, whereas only 4 patients

demonstrated a decrease in size measuring at least 25% (Figure 3).
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TABLE 1 Descriptive characteristics of patient cohort.

Patient number Age Sex Grade Resection Radiotherapy Radiotherapy total
dose (cGy)

Time between radiotherapy and
post ASL exam (months)

1 61 M 2 nGTR EBRT 5,400 6

2 65 M 3 STR EBRT 6,600 2

3 47 F 1 nGTR EBRT 5,400 6

4 60 F 3 STR EBRT 6,600 5

5 27 M NA None EBRT 5,580 6

6 67 F 1 STR EBRT 5,400 6

7 45 F 2 STR EBRT 5,850 7

8 50 F 3 STR EBRT 6,000 7

9 29 F 2 nGTR EBRT 6,000 6

10 42 F 1 STR EBRT 5,400 12

11 58 F 1 STR SRS 2,400 3

12 67 M NA None SRS 2,400 11

13 72 F 2 STR EBRT 5,940 6

14 60 F NA None SRS 2,400 13

15 55 M 1 STR EBRT 5,940 6

16 54 M NA None SRS 2,100 18

17 56 F 1 STR EBRT 5,400 20

18 46 F 1 STR EBRT 5,580 25

19 52 M 2 STR EBRT 5,625 22

20 67 M NA None EBRT 5,400 35

M, male; F, female; nGTR, near gross total resection; STR, subtotal resection; EBRT, external beam radiotherapy; SRS, stereotactic radiosurgery; cGy, centigray.

Grade =meningioma WHO Grade I, II, or III.

FIGURE 1

ASL perfusion and size over time. Line plots demonstrate the pre- and post-radiation normalized ASL cerebral blood flow (ASL-nCBF) values for each
patient over time, with a general downward trend (A) Comparison line plots demonstrate the pre- and post-radiation contrast-enhanced area
measurements for each patient over time, also with a slight downward trend, but less pronounced than for ASL-nCBF (B).

Manning et al. 10.3389/fradi.2024.1345465
No significant change was seen between the low-grade and

higher-grade histology groups for pre-radiation ASL-nCBF

measurements (p = 0.698).

The inter-reader agreement was excellent with ICC measuring

0.975.
Illustrative case

In Figure 4, we highlight a representative case

which demonstrates a decrease in ASL-nCBF on the
Frontiers in Radiology 04
post-radiation scan, with no appreciable change in

meningioma size.
Discussion

To our knowledge, no other studies have assessed ASL for

the evaluation of radiation treatment response. In this initial

study, we found that all meningiomas demonstrated decreased

ASL-nCBF after radiation, with a relatively large effect size.

Contrast-enhanced area also decreased after radiation, but
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FIGURE 2

ASL perfusion and size before and after radiation. Box plots and paired line plots display differences between pre- and post-radiation ASL-nCBF (A)
Comparison box plots and paired line plots display differences between pre- and post-radiation contrast-enhanced area (B) Differences were
significant for both ASL-nCBF and area measurements, but the effect size was larger for ASL-nCBF.

FIGURE 3

Percent change in ASL perfusion and size following radiation. Bar plot demonstrates the percent change between pre- and post-radiation ASL-nCBF
and contrast-enhanced area measurements for each patient. The 25% threshold used by RANO criteria to indicate meaningful change is highlighted
with a dashed horizontal line.
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only in approximately half of the meningiomas and with a

smaller effect size. These findings suggest that ASL perfusion

measurements may provide an additional complementary

quantitative method for evaluating post-radiation treatment

response in meningiomas, particularly in cases where

conventional contrast-enhanced area measurements show no

change. We suspect the reason we observed a larger effect size

for ASL perfusion measurements compared to conventional

contrast-enhanced area measurements is because ASL

captures physiologic response to radiation treatment, whereas
Frontiers in Radiology 05
contrast-enhanced area measurements predominantly capture

structural information.

Currently, the efficacy of radiation treatment in meningiomas

is determined by stability or decrease in size over time. However,

slow-growing and indolent meningiomas may not demonstrate a

meaningful size increase for several years after failed treatment.

Therefore, using size measurements alone, effectively treated

meningiomas may not be accurately discriminated from

progressive meningiomas for months or years after treatment.

ASL may provide early quantitative evaluation of radiation
frontiersin.org
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FIGURE 4

Example of treated meningioma. Example case demonstrates a meningioma along the left frontal convexity before and after radiation treatment.
Comparing the pre-radiation contrast-enhanced size (A) and ASL-nCBF measurements (B) to post-radiation size (C) and ASL-nCBF measurements
(D), the size remains stable while ASL-nCBF decreases.

Manning et al. 10.3389/fradi.2024.1345465
treatment response which may inform clinical decisions sooner,

including decisions regarding how long to wait before repeat

imaging, whether to continue observation, or whether to re-

resect or re-irradiate. Additionally, ASL may provide

complementary information for clinical trial endpoints. Because

meningiomas are very slow growing neoplasms, most

meningioma clinical trials rely on surrogate endpoints such as

progression-free survival at 6 months (PFS6) or radiographic

objective response rate (ORR) rather than overall survival (OS)

(16). However, these surrogate endpoints depend on contrast-

enhanced size measurements which may be stable over the first 6

months following treatment, despite slow progression, or may

not show enough change to be considered significant by

radiologic ORR criteria (16). Early quantitative evaluation of

radiation treatment response using ASL could provide

complementary treatment information in clinical trials when size

measurements remain stable.

Our results parallel previous short-term and subsequent long-

term studies of the metabolic PET agent 11C-L-methionine for

evaluation of radiation treatment response in meningiomas
Frontiers in Radiology 06
(29, 30). Similar to our study, the short-term study of 11C-L-

methionine demonstrated that early after radiation (within the

first 36 months after treatment), most meningiomas

demonstrated decreased uptake of 11C-L-methionine while

contrast-enhanced size measurements showed little change,

suggesting that 11C-L-methionine PET imaging may provide a

way to detect early post-radiation treatment response. The

subsequent long-term study of 11C-L-methionine (10 year follow

up after treatment) showed that although most meningiomas

demonstrated decreased uptake early after treatment, this initial

decrease was only modestly predictive of later progression. A

similar long-term study of ASL perfusion would be necessary to

determine whether early post-radiation ASL-nCBF changes are

predictive of long-term response or progression. One clear

benefit of ASL compared to 11C-L-methionine is that the 3D

pCASL sequence can be added directly to routine follow up MR

exams without separate procedures for radiotracer synthesis,

injection, and image acquisition which are necessary for 11C-L-

methionine PET imaging. Thus, ASL imaging could be more

ubiquitously applied for monitoring, would be less expensive,
frontiersin.org
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FIGURE 5

Example of progressing meningioma. Example case demonstrates a meningioma located along the left frontal convexity slowly progressing over time.
At 22 months following radiation, the contrast-enhanced size (A) and ASL-nCBF measurements (B) are provided. Later, 36 months following radiation,
the size remains stable (C), but the ASL-nCBF dramatically increases (D) Finally, after 47 months following radiation, the size eventually also increases
(E), along with the ASL-nCBF (F).

Manning et al. 10.3389/fradi.2024.1345465
and would not require special contrast agents. Additionally, 3D

pCASL has been shown to be reliable and repeatable over

multiple brain segments and between different scanners and

vendors (33, 34) suggesting a relatively robust imaging biomarker.

Almost none of the meningiomas in our cohort progressed

during the study window (median time to follow up 6.5 months),

but this is not unexpected given that meningiomas are known to

progress both rarely and slowly, with median time to progression

on the order of 4.1 years for grade I meningiomas (35) and 2.1

years for grade II and III meningiomas (36). Anecdotally, one

meningioma in our cohort progressed after the study window

(patient 19, grade II meningioma). Review of this meningioma

demonstrated that ASL-nCBF initially decreased after radiation

and remained decreased at 22 months following radiation

(during the study window). However, at 38 months following

radiation, the ASL-nCBF subsequently increased, preceding an

increase in size (Figure 5). Although anecdotal, this case suggests
Frontiers in Radiology 07
that ASL may provide an early indicator of progression, possibly

even before size increases. This may be particularly helpful for

progressing meningiomas because slow changes in size can be

subtle and difficult to perceive by conventional MRI. Long-term

follow up including more cases of progressive disease would be

necessary to investigate these findings.

We hypothesized that ASL perfusion values would be helpful to

discriminate low- from higher-grade meningiomas, but we found

no significant difference in the pre-radiation perfusion values

between grades. One potential explanation is that higher-grade

meningiomas are more likely to out-grow their blood supply and

result in necrosis and heterogenous regions of perfusion which

could lead to an overall reduction in perfusion. In contrast to

our study, a previous study investigating ASL perfusion in

meningiomas demonstrated that ASL was able to differentiate

low- from higher-grade using qualitative ASL perfusion pattern

analysis rather than overall cerebral blood flow (37). A qualitative
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approach may better account for heterogenous perfusion patterns

which may be seen in higher-grade meningiomas. Additionally,

as the previous study suggested, the relationship between neo-

angiogenesis and meningioma grade may not be direct as it is in

gliomas. There was, however, overall variability in the pre-

radiation ASL perfusion measurements between meningiomas.

This is in keeping with findings described by Kimura et al. who

showed that that histology patterns between meningiomas can

affect the degree of ASL perfusion, highest for angiomatous

meningiomas and lowest for fibrous meningiomas, potentially

explaining some of these differences (23).

Unexpectedly, one case in our cohort demonstrated a

significant decrease in size following radiation, with only a small

decrease in ASL perfusion. Detailed review of this case revealed

that the initial size was large, measuring 14.4 cm2 in cross-

sectional area. The relatively small decrease in ASL perfusion

could be due to our pre-defined ROI-measuring procedure.

Based on our procedure, we placed an ROI on the area with

highest ASL signal intensity, but for this large meningioma this

only captured a small fraction of the lesion. Qualitatively, most

of the meningioma actually demonstrated substantially decreased

perfusion. This case highlights the imperfect nature of the ROI-

method for perfusion evaluation. Ideally, full lesion segmentation

and 3D measurements could be performed, potentially using

histogram analyses to comprehensively evaluate tumor perfusion.

However, we believe the ROI-method we employed is reflective

of current clinical practice where dedicated histogram analyses

are less likely to be performed, and we believe simple ROI-based

methods are more likely to be adopted in a clinical setting.

Compared to other perfusion-weighted MRI techniques like

dynamic susceptibility contrast (DSC) or dynamic contrast-

enhanced (DCE) imaging, ASL may be particularly well suited for

evaluation of radiation-treated meningiomas for several reasons.

Meningiomas are extra-axial tumors which lack a blood-brain

barrier. The absence of the blood-brain barrier can exacerbate

contrast “leakiness” which can occur in contrast-based techniques,

resulting in erroneously high or low quantitative values (38, 39).

Since ASL is a non-contrast perfusion technique, the absence of

the blood-brain barrier would not be expected to affect the

perfusion values for meningiomas. Additionally, issues of

nephrogenic systemic fibrosis (NSF) and gadolinium deposition

inherent to contrast-based techniques (40, 41) are avoided with

ASL perfusion. Finally, unlike DSC and DCE, newer

implementations of ASL are spin-echo (T2) based sequences,

mitigating problems related to susceptibility artifact which can be

pronounced on gradient-echo (T2*) based sequences. This is

particularly beneficial for evaluation of meningiomas at the skull

base where treatment with radiotherapy may be preferred and

susceptibility artifact can be pronounced (31, 42).

Several limitations to our study should be acknowledged. First,

our study was conducted with a small sample size at a single

institution. Second, although inclusion and exclusion criteria

aimed to evaluate a representative cohort of patients, there is

inherent heterogeneity in the cohort as described in the patient

demographics table with mixed meningioma grades (including

grades I, II, and III), variable initial meningioma size, variable
Frontiers in Radiology 08
extent of resection, and variable radiotherapy treatment type.

Third, an important limitation to our study was the limited time

to follow up after radiation treatment. Most of the patients in

our cohort were followed for less than one year after treatment.

Our intent was to evaluate early post-radiation treatment

response; however, due to the slow-growing nature of

meningiomas, in order to adequately evaluate whether early

changes in perfusion are predictive of future meningioma

recurrence or progression, a long-term follow up study would be

necessary. This is already underway at our institution. Related to

the limited time to follow up, only one anecdotal example of

meningioma progression was captured within our study. We

believe this is because most meningiomas do not progress within

a short, less than one year, time frame (up to four years for

grade I meningiomas). A longer time to follow up would allow

more examples of progressive disease to be captured so that ASL

perfusion could be evaluated in these cases.

If future multi-center and longitudinal studies support the

current findings, ASL perfusion could potentially be integrated

into standard meningioma imaging protocols, thereby providing

complementary treatment response information beyond contrast-

enhanced size measurements for clinical decision making. At our

institution, ASL is now included as part of the standard of care

protocol for evaluation of meningiomas before and after radiation.
Conclusion

ASL perfusion may provide an early complementary

quantitative measure of treatment response in radiation-treated

meningiomas. This complementary information could aid clinical

decision-making and provide an additional endpoint for

clinical trials.
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